2015-…: Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

September 8th, 2018

Extreme-scale, high-performance computing (HPC) significantly advances discovery in fundamental scientific processes by enabling multiscale simulations that range from the very small, on quantum and atomic scales, to the very large, on planetary and cosmological scales. Computing at scales in the hundreds of petaflops, exaflops—quintillions (billion billions) operations per second—, and beyond will also lend a competitive advantage to the US energy and industrial sectors by providing the computing power for rapid design and prototyping and big data analysis.

To build and effectively operate extreme-scale HPC systems, the US Department of Energy cites several key challenges, including resilience, or efficient and correct operation despite the occurrence of faults or defects in system components that can cause errors. These innovative systems require equally innovative components designed to communicate and compute at unprecedented rates, scales, and levels of complexity, increasing the probability for hardware and software faults.

This research project offers a structured hardware and software design approach for improving resilience in extreme-scale HPC systems so that scientific applications running on these systems generate accurate solutions in a timely and efficient manner. Frequently used in computer engineering, design patterns identify problems and provide generalized solutions through reusable templates.

Using a novel resilience design pattern concept, this project identifies and evaluates repeatedly occurring resilience problems and coordinates solutions throughout hardware and software components in HPC systems. This effort will create comprehensive methods and metrics by which system vendors and computing centers can establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components and optimize the cost-benefit trade-offs among performance, resilience, and power consumption. Reusable programming templates of these patterns will offer resilience portability across different HPC system architectures and permit design space exploration and adaptation to different design trade-offs. For more information, please visit ornlwiki.atlassian.net/wiki/display/RDP.

Current resilience design pattern specification: Version 1.2

Funding Sources

Participating Institutions

Peer-reviewed Journal Publications

Symbols: Abstract Abstract, Publication Publication, BibTeX Citation BibTeX Citation

  1. Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale. Journal of Supercomputing Frontiers and Innovations (JSFI), volume 4, number 3, pages 4-42, 2017. South Ural State University Chelyabinsk, Russia. ISSN 2409-6008. DOI 10.14529/jsfi170301. Abstract Publication BibTeX Citation

Peer-reviewed Conference Publications

Symbols: Abstract Abstract, Publication Publication, Presentation Presentation, BibTeX Citation BibTeX Citation

  1. Rizwan Ashraf, Saurabh Hukerikar, and Christian Engelmann. Pattern-based Modeling of Multiresilience Solutions for High-Performance Computing. In Proceedings of the 9th ACM/SPEC International Conference on Performance Engineering (ICPE) 2018, pages 80-87, Berlin, Germany, April 9-13, 2018. ACM Press, New York, NY, USA. ISBN 978-1-4503-5095-2. DOI 10.1145/3184407.3184421. Acceptance rate 23.7% (14/59). Abstract Publication Presentation BibTeX Citation
  2. Rizwan Ashraf, Saurabh Hukerikar, and Christian Engelmann. Shrink or Substitute: Handling Process Failures in HPC Systems using In-situ Recovery. In Proceedings of the 26th Euromicro International Conference on Parallel, Distributed, and network-based Processing (PDP) 2018, pages 178-185, Cambridge, UK, March 21-23, 2018. IEEE Computer Society, Los Alamitos, CA, USA. ISBN 978-1-5386-4975-6. ISSN 2377-5750. DOI 10.1109/PDP2018.2018.00032. Acceptance rate 29.3% (27/92). Abstract Publication Presentation BibTeX Citation
  3. Saurabh Hukerikar and Christian Engelmann. A Pattern Language for High-Performance Computing Resilience. In Proceedings of the 22nd European Conference on Pattern Languages of Programs (EuroPLoP) 2017, pages 12:1-12:16, Kloster Irsee, Germany, July 12-16, 2017. ACM Press, New York, NY, USA. ISBN 978-1-4503-4848-5. DOI 10.1145/3147704.3147718. Abstract Publication BibTeX Citation
  4. Saurabh Hukerikar and Christian Engelmann. Havens: Explicit Reliable Memory Regions for HPC Applications. In Proceedings of the 20th IEEE High Performance Extreme Computing Conference (HPEC) 2016, pages 1-6, Waltham, MA, USA, September 13-15, 2016. IEEE Computer Society, Los Alamitos, CA, USA. DOI 10.1109/HPEC.2016.7761593. Abstract Publication Presentation BibTeX Citation

Peer-reviewed Workshop Publications

Symbols: Abstract Abstract, Publication Publication, Presentation Presentation, BibTeX Citation BibTeX Citation

  1. Rizwan Ashraf and Christian Engelmann. Performance Efficient Multiresilience using Checkpoint Recovery in Iterative Algorithms. In Lecture Notes in Computer Science: Proceedings of the 24th European Conference on Parallel and Distributed Computing (Euro-Par) 2018 Workshops: 11th Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids, Turin, Italy, August 28, 2018. Springer Verlag, Berlin, Germany. Acceptance rate 50.0% (4/8). To appear. Abstract Publication Presentation BibTeX Citation
  2. Saurabh Hukerikar and Christian Engelmann. Pattern-based Modeling of High-Performance Computing Resilience. In Lecture Notes in Computer Science: Proceedings of the 23rd European Conference on Parallel and Distributed Computing (Euro-Par) 2017 Workshops: 10th Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids, pages 557-568, Santiago de Compostela, Spain, August 29, 2017. Springer Verlag, Berlin, Germany. ISBN 978-3-319-75177-1. DOI 10.1007/978-3-319-75178-8_45. Acceptance rate 66.7% (4/6). Abstract Publication Presentation BibTeX Citation
  3. Saurabh Hukerikar, Rizwan Ashraf, and Christian Engelmann. Towards New Metrics for High-Performance Computing Resilience. In Proceedings of the 26th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC) 2017: 7th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS) 2017, pages 23-30, Washington, D.C., June 26-30, 2017. ACM Press, New York, NY, USA. ISBN 978-1-4503-5001-3. DOI 10.1145/3086157.3086163. Acceptance rate 83.3% (5/6). Abstract Publication Presentation BibTeX Citation
  4. Saurabh Hukerikar and Christian Engelmann. Language Support for Reliable Memory Regions. In Lecture Notes in Computer Science: Proceedings of the 29th International Workshop on Languages and Compilers for Parallel Computing, pages 73-87, Rochester, NY, USA, September 28-30, 2016. Springer Verlag, Berlin, Germany. ISBN 978-3-319-52708-6. ISSN 0302-9743. DOI 10.1007/978-3-319-52709-3_6. Acceptance rate 76.9% (20/26). Abstract Publication Presentation BibTeX Citation

Peer-reviewed Conference Posters

Symbols: Abstract Abstract, Poster Poster, BibTeX Citation BibTeX Citation

  1. Christian Engelmann and Rizwan Ashraf. Modeling and Simulation of Extreme-Scale Systems for Resilience by Design. Poster at the Workshop on Modeling and Simulation of Systems and Applications, Seattle, WA, USA, August 15-17, 2018. Abstract Publication BibTeX Citation
  2. Onkar Patil, Saurabh Hukerikar, Frank Mueller, and Christian Engelmann. Exploring Use Cases for Non-Volatile Memories in Support of HPC Resilience. Poster at the 30th IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis (SC) 2017, Denver, CO, USA, November 12-17, 2017. Abstract Publication BibTeX Citation

Technical Reports

Symbols: Abstract Abstract, Publication Publication, BibTeX Citation BibTeX Citation

  1. Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale (Version 1.2). Technical Report, ORNL/TM-2017/745, Oak Ridge National Laboratory, Oak Ridge, TN, USA, August, 2017. DOI 10.2172/1436045. Abstract Publication BibTeX Citation
  2. Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale (Version 1.1). Technical Report, ORNL/TM-2016/767, Oak Ridge National Laboratory, Oak Ridge, TN, USA, December, 2016. DOI 10.2172/1345793. Abstract Publication BibTeX Citation
  3. Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale (Version 1.0). Technical Report, ORNL/TM-2016/687, Oak Ridge National Laboratory, Oak Ridge, TN, USA, October, 2016. DOI 10.2172/1338552. Abstract Publication BibTeX Citation

Talks and Lectures

Symbols: Abstract Abstract, Presentation Presentation, BibTeX Citation BibTeX Citation

  1. Christian Engelmann and Rizwan Ashraf. Modeling and Simulation of Extreme-Scale Systems for Resilience by Design. Invited talk at the Workshop on Modeling and Simulation of Systems and Applications, Seattle, WA, USA, August 15-17, 2018. Abstract Presentation BibTeX Citation
  2. Christian Engelmann. Pattern-based Modeling of Fail-stop and Soft-error Resilience for Iterative Linear Solvers. Invited talk at the 18th SIAM Conference on Parallel Processing for Scientific Computing (PP) 2018, Tokyo, Japan, March 7-10, 2018. Abstract Presentation BibTeX Citation
  3. Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale. Invited talk at the 18th SIAM Conference on Parallel Processing for Scientific Computing (PP) 2018, Tokyo, Japan, March 7-10, 2018. Abstract Presentation BibTeX Citation
  4. Christian Engelmann. The Missing High-Performance Computing Fault Model. Invited talk at the 17th SIAM Conference on Parallel Processing for Scientific Computing (PP) 2016, Paris, France, April 12-15, 2016. Abstract Presentation BibTeX Citation
  5. Christian Engelmann. Resilience Challenges and Solutions for Extreme-Scale Supercomputing. Invited talk at the United States Naval Academy, Annapolis, MD, USA, February 18, 2016. Abstract Presentation BibTeX Citation
  6. Christian Engelmann. Toward A Fault Model And Resilience Design Patterns For Extreme Scale Systems. Keynote talk at the 8th Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids, held in conjunction with the 21st European Conference on Parallel and Distributed Computing (Euro-Par) 2015, Vienna, Austria, August 24-28, 2015. Abstract Presentation BibTeX Citation

Comments are closed.