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Abstract—Extreme-scale computing systems employ Reliabil-
ity, Availability and Serviceability (RAS) mechanisms and infras-
tructure to log events from multiple system components. In this
paper, we analyze RAS logs in conjunction with the application
placement and scheduling database, in order to understand the
impact of common RAS events on application performance. This
study conducted on the records of about 2 million applications
executed on Titan supercomputer provides important insights
for system users, operators and computer science researchers.
Specifically, we investigate the impact of RAS events on applica-
tion performance and its variability by comparing cases where
events are recorded with corresponding cases where no events
are recorded. Such a statistical investigation is possible since
we observed that system users tend to execute their applications
multiple times. Our analysis reveals that most RAS events do im-
pact application performance, although not always. We also find
that different system components affect application performance
differently. In particular, our investigation includes the following
components: parallel file system, processor, memory, graphics
processing units, system and user software issues. Our work
establishes the importance of providing feedback to system users
for increasing operational efficiency of extreme-scale systems.

I. INTRODUCTION

Reliability, availability, and serviceability (RAS) events play
a major role in the maintenance and operation of extreme-scale
computing systems. These events are recorded from almost all
components in a high-performance computing (HPC) system
and therefore provide useful insights into the reliability of the
system. The infrastructure to log RAS events is an integral
part of the HPC ecosystem, and is used by system operators
to assess operational efficiency of the system and to keep
up with its maintenance. At the same time, the logged RAS
events also provide important insights into the different kinds
of faults, errors and failures which can occur in an extreme-
scale computing system.

Previous studies on various large-scale machines with di-
verse architectures have helped to understand multiple failure
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mechanisms and quantified system time-to-failure [1]-[5].
However, these studies do not correlate failure mechanisms
with application executions. Our work is distinct in this regard,
since RAS events are analyzed in conjunction with application
runs. Such an investigation is critical to understand the impact
of faults, errors and failures on user applications executed
in extreme-scale systems. Previously, it has been shown that
memory errors even when correctable through error-correcting
codes (ECC) cause severe performance degradation due to
overheads of the error-reporting stack [6]. Their experiments
with SPEC CPU2006 benchmarks and a web-search workload
on a single machine using a proprietary fault injection tool
reveal variation in performance degradation dependent on the
workload. The analysis herein does similar analysis in terms of
assessing performance impact, however, on a much larger scale
and for a complex combination of workloads in a deployed
HPC system. Another related work [7] characterizes resiliency
of applications executed on Blue Waters supercomputer, how-
ever, fails to assess the impact of RAS events on application
performance. Based on our knowledge, the study herein is first
of a kind, which concurrently analyzes the impact of RAS
events in parallel file system, processor, memory, graphics
processing units (GPUs), interconnect, and system software
on extreme-scale application performance.

In this work, we analyze logs from the Titan supercom-
puter at Oak Ridge Leadership Computing Facility (OLCF)
at Oak Ridge National Laboratory (ORNL). Titan is a Cray
system with a hybrid architecture composed of 18,688 nodes.
Each node is composed of 16-core AMD Opteron CPUs
and NVIDIA Kepler GPUs. Titan supercomputer provides
an open resource for scientific computing. A complex mix
of workloads from a variety of scientific domains including
biology, chemistry, computer science, earth science, engineer-
ing, fusion, materials science, etc., are executed on Titan.
The resources are allocated to users using three different
competitive allocation programs, for up to one year. Our
analysis is done on RAS event and application logs of about
13 months, i.e., from Dec. 24, 2015 to Feb. 2, 2017. Based
on the allocation cycle, study over one year is sufficient to
capture the different kind of workloads. The interested reader
is referred to: [1], for an in-depth and multi-year analysis on
the RAS logs from Titan supercomputer.



Titan has a hybrid architecture with computing acceler-
ated using GPUs. Use of diverse components from different
hardware vendors give rise to a complex ecosystem where
RAS logs need to be aggregated from multiple components in
order to operate the system efficiently. System administrators
use the logs to observe and maintain system health, and to
efficiently allocate resources to user applications. For example,
memory modules reporting frequent errors are replaced as part
of routine maintenance [5]. We leverage this infrastructure and
analyze the impact of RAS events on application performance.
We investigate whether RAS events slowdown application
execution. RAS events may or may not be caused by the
users, and we investigate impact in each case. For instance,
segmentation faults are caused mostly by user applications.
Similarly, congestion in Lustre network can cause RAS events
to be logged, which may be caused due to multiple users in the
system writing to the parallel file system at the same time. This
paper looks into the impact of each component separately and
also co-analyzes events from different types of components.

In our analysis, we find that RAS events impact appli-
cation performance in most cases irrespective of whether a
failure of an application occurs or not. This is an important
finding since it is normally assumed that non-fatal events
do not impact application performance given extreme-scale
systems are configured to handle such cases efficiently and
have minimal overhead due to the logging infrastructure. Our
analysis is facilitated by the presence of multiple executions
of applications with same workloads. However, it is not clear
why such multiple executions are done by the users, and one
of the reasons may be to remove outliers when conducting
performance and/or debug runs. Whatever the reason may be,
we are able to conduct a useful study using these logs. In
particular, our work is important for the following reasons:
1) users of large-scale machines can understand how system
RAS events impact the execution of their applications, 2)
system operators can mitigate the overheads associated with
the logging of RAS events which are observed to impact
application performance, and 3) computer science researchers
can develop mechanisms in programming models, runtime
systems and system software which incorporate information
from system RAS events and subsequently lower impact on
application performance, e.g., doing another task if the parallel
file system is not responding.

II. THE DATA AND ITS LIMITATIONS
In this paper, the following logs are used for our analysis:

e Event log: this contains information about RAS events
such as the type of event, time of the event, and identity
of the node where the event took place.

o Application Level Placement Scheduler (ALPS): this con-
tains allocation information for all applications executed
on compute nodes such as name and identity of the
executable (a single job submission may contain mul-
tiple application executions, each is counted separately),
identity of the user (running the application), start time,
end time, identities of allocated nodes.

TABLE I: Distribution of RAS events occurring in the Titan
supercomputer independent of application executions.

Event Class Category Percentage
Parallel File System Hardware/Software 73.7%
Processor Events Hardware/Software 15.7%
Machine Check Exceptions Hardware 6.5%
Graphics Processing Unit Hardware/Software 1.5%
Seg-Faults & Out-of-Mem. Software 1.9%
Interconnect Hardware 0.8%

In our study, we only consider RAS events taking place
on compute nodes where bulk of applications are executed
after their production phases. We remove from our analysis
all events taking place on other non-compute type of nodes
in the system such as, service nodes (used for production-
type work), login nodes, data transfer nodes (user for data
transfer to Lustre storage), etc. We also exclude scheduled
maintenance periods from our analysis, subsequently removing
all recorded events and test applications executed during these
periods. Furthermore, given these assumptions and available
data, our study has the following limitations:

e We are unable to distinguish between fatal and non-
fatal application runs since exit codes are not available.
The difficulty of assessing fatal events or severity of
events also prevents us from making this classification.
Furthermore, the fatal event may or may not be fatal
for an application depending on whether some resiliency
mechanism is implemented or not. Nonetheless, this limi-
tation does not prevent us from analyzing the performance
impact of RAS events on applications. At the same
time, we are unable to identify runs which might have
terminated early due to a fatal event resulting in a speedup
as compared to corresponding cases with no events.

o Our study is oblivious to any resilience mechanisms im-
plemented in the applications, such as checkpoint restart,
since we do not have this information. We therefore
can not assess the performance benefit of resilience
mechanisms.

o Resource utilization information for different system
components such as memory utilization, I/O bandwidth,
GPU utilization, etc., is not available. This prevents
us from determining the role of resource utilization or
contention in application slowdown. For example, we
can not assess the impact of Lustre I/O utilization on
application performance when different Lustre events are
recorded during application runs. Similarly, we can not
accurately assess the proportion of applications using
GPUs which prevents us from normalizing recorded GPU
events across only the applications which use them.

III. CATEGORIZATION OF RAS EVENTS AND
CHARACTERISTICS OF APPLICATIONS WITH RAS EVENTS

The type of RAS events analyzed in this work are catego-
rized in Table I. We distinguish our analysis based on these
classifications to assess the impact of each system component



separately. During our categorization, we do not isolate events
triggered by user applications because of the complexity
associated with determining the root-cause. For instance, an
out of memory error in an application run could be triggered
by a system software issue and/or prior application runs
on the node. We do however distinguish between hardware-
and software-related events. Next, we briefly discuss each
RAS event category and analyze the occurrence of events
independent of application executions, i.e., the events may or
may not take place during the application executions.

A. Categorization of RAS events independent of application
executions

During our study period, RAS events from Lustre file
system (parallel file system) are the most dominant event type
when considered independently of application executions (see
Table I). Lustre file system events are composed of both the file
system software events and Lustre network events. Example
of some common RAS events reported by Lustre include:
communication errors between nodes, out of memory errors
on Lustre nodes, failure of request sent due to slow reply or
network error, etc. It is to be noted that this breakdown is
not normalized and reporting mechanisms differ for different
components. For instance, Lustre tends to generate a large
number of RAS events in a short period as compared to other
system components.

In terms of number of events, Lustre events are followed by
‘Processor Events. These include HWERR (Hardware Error),
kernel panic, and graphics engine error. HWERR is the most
dominant event type within this category. HWERR includes
access violation errors, dynamic page retirement, double bit
uncorrectable memory errors, etc. Operating system kernel
panic included in this category causes a reboot of the node
due to fatal exception generated by a hardware or a software
error in the processor. For instance, double bit memory errors
detected using ECC and uncorrectable in system software
(most scenarios) cause kernel panic, which is fatal for the
application using the node.

Related to the processor events are machine check excep-
tions (MCEs), which are part of the machine check architecture
of the processor. This architecture facilitates reporting of
processor and system hardware errors to system software.
It is configurable and includes logging of both correctable
and uncorrectable errors. Errors which are uncorrectable are
reported to system software via a MCE and if they are not
correctable require a system shutdown, for example, through
a kernel panic. Notice, the uncorrectable error is also recorded
redundantly as a HWERR above, and is not removed from
our analysis since we are interested in the overall overhead
associated with the chain of events triggered from a single
root-cause. Mostly memory errors are reported in DRAM
and can often be corrected in hardware using ECC [3].
Although, such reporting does not impact the correctness of
the application and does not cause a failure, it is important to
quantify the overhead of such a correction event on application
performance. It should be pointed out that system operators
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Fig. 1: Distribution of applications based on type of RAS
events observed during their executions. All possible combina-
tion of events (within a single category and across categories)
are considered to classify each application. Only major com-
binations of events across different categories are included.

replace memory modules reporting frequent ECC corrections
over time in order to minimize these errors, and such infor-
mation is not available nor required as part of this study.

GPU errors are composed of GPU memory hardware errors
which are uncorrectable, as well as errors due to user applica-
tions, GPU driver, and thermal issues. An example of an error
due to user application is when an array is accessed illegally
in a kernel. Segmentation faults and out of memory (OOM)
errors in the GPU and/or CPU are categorized separately in
our analysis, and may or may not be caused due to user
applications. Note, correctable errors in the GPU memory are
not included in our analysis. Related work [8] has devised
machine learning models for predicting the occurrence of GPU
memory correctable errors in Titan supercomputer.

Interconnect errors are logged whenever there is an issue
in any of the network links in the system. In Titan, there
are three lanes in a link, and any combination of lanes can
go down. The severity of this event can be high if all lanes
go down in a link at the same time. In this work, we do
not distinguish between the severity of different interconnect
failure cases. These events are recorded at gemini routers and
mapped to compute nodes. Interconnect errors are the least
occurring event type during our study period. Interested reader
is referred to following references for a detailed account of
interconnect errors in Cray machines: [9], [10].

B. Categorization of applications based on observed RAS
events

Next, each application execution is classified based on the
types of RAS events (as described above) recorded during
their execution (see Fig. 1). Node sharing is not allowed on
Titan supercomputer, therefore, there is a one-to-one mapping
between event occurrences and scheduled applications on the
nodes. We find that about 68k applications in our study period
out of a total of about 2 million applications have events
recorded during their execution. This number should not be
taken literally since all events do not cause an application
failure and due to the limitation of not recording all the event
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Fig. 2: Left figure: one set of bars show the histogram of all application executions based on number of nodes utilized
irrespective of whether there is an event or not, and the second set of bars show the proportion of applications in each bin with
events. This provides an estimate of the likelihood of having events based on application size. The bins for application sizes are
defined according to prioritization given to applications during scheduling; Center figure: shows the breakdown of applications
with different event categories normalized w.r.t. applications of different sizes. Note, all possible event combinations are not
included, resulting in incomplete accounting of applications with events in each bin; Right figure: shows the distribution of
applications with different event categories based on multiple size bins.
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Fig. 3: Left figure: one set of bars show the histogram of all application executions based on execution times irrespective of
whether there is an event or not, and the second set of bars shows the proportion of applications in each bin with events;
Center figure: shows the breakdown of applications with different event categories normalized w.r.t. applications of different
execution times. Right figure: shows the distribution of applications with different categories based on multiple time bins.

types in the system at all times (to keep overheads low). Yet, it
gives us a lower bound on the proportion of applications whose
performance might be impacted in extreme-scale systems.

The observed RAS events in application executions are used
to classify each run as shown in Fig. 1. All combinations of
different event types within the same event class are considered
(where applicable) to classify each application execution.
Majority of the applications have MCEs recorded during their
execution, i.e., 59% of applications. This is in contrast to dis-
tribution of RAS events considered independent of application
executions. Without a joint analysis, one could wrongfully
ascertain that Lustre events impact majority of application runs
(see Table I). In contrast to previous observation, Lustre events
are only recorded in about 22% of the applications. Also, some
events from distinct event categories frequently occur together.
For example, Lustre and MCE events occur together within the
same application execution in about 2.7% of cases, which is
plausible. Another common and interesting occurrence is the
presence of HWERR with GPU errors in about 2.1% of the
cases. As mentioned earlier, the number of applications with
GPU events in our analysis are not normalized based on the
number of applications which actually use the GPUs.

We also analyze the characteristics of applications with
events as shown in Figs. 2 and 3 based on number of nodes

utilized and execution times, respectively. We later find out that
it is important to identify these characteristics since occurrence
of RAS events cause slowdown in most cases. Two important
observations can be made from the histograms (figures on
the left) in Figs. 2 and 3: majority of applications executed
on Titan supercomputer during our study period used only a
fraction of the total nodes and had short execution times (less
than 30 mins); the likelihood of having events increases as the
size of applications increase and/or execution times increase.
For instance, only 3.9% of applications in our analysis used
more than 313 nodes. And about 96% of applications with size
of 11250 or more, had events recorded during their executions.

Results in Fig. 2 also show the distribution of applications
with different event types based on the number of nodes
utilized. The following observations can be made from these
results: most of the applications with Lustre, segmentation
faults and OOM errors, processor errors, and GPU errors (most
GPU errors occur in combination with HWERR) use less than
126 nodes in the system; MCEs seem to occur uniformly
across applications of all sizes; interconnect events mostly
appear in medium- to large-scale applications, for instance,
they are the second most dominant event type appearing in
combination with MCEs within applications of size greater
than 11249 (note, this result is not included in Fig. 2); events



from distinct event categories appear more often together in
large-scale applications (this can be observed by the high
proportion of incomplete categorization of applications to
individual event classes in the last bin as seen in Fig. 2).

One probable explanation for such a high proportion of
segmentation faults and OOM errors at low-scale may be
because users tend to test their codes before running their
applications at large-scales, even though service nodes are
reserved for this purpose. Part of this explanation can also
be used to explain the dominance of processor errors and
GPU errors at low-scale. Especially, common co-occurrence
of HWERR and GPU errors might be due to testing of GPU
codes resulting in kernel exceptions in the GPUs. GPU errors
are also not so common at large-scale since we suspect that
not many applications use GPUs at such scale, although, we
do not have the GPU utilization data to back this claim.
Finally, a low proportion of applications with Lustre events
at large-scale (roughly 80% occur for applications using less
than 126 nodes), can be partly explained by small number of
jobs competing for Lustre resources at the same time. This
also shows that Lustre events are mostly caused due to user
applications.

Fig. 3 shows the distribution of applications with recorded
events based on execution times. The following observations
can be made from these results: majority (more than 50%)
of applications with Lustre, segmentation faults and OOM
errors, processor errors, and GPU errors have execution times
between 1 hour and 4 hours; MCEs once again seem to occur
uniformly across applications with different execution times;
interconnect events are mostly recorded in short lived execu-
tions, which also holds true when they appear in combination
with MCEs; events from distinct event categories appear more
often together in applications with execution times over 8
hours. In contrast to results in Fig. 2, Lustre, segmentation
faults and OOM errors, processor errors and GPU errors seem
to be distributed across applications with various execution
times. However, presence of their majority in the 1 to 4 hours
time window is interesting and needs to be investigated further.

Most of these findings are intuitive, for example, the proba-
bility of having an event is higher for large-scale and lengthier
executions. Other observations include: MCEs are the most
common event type occurring in applications and do not
relate to size or runtime, i.e., they mostly occur randomly;
Lustre, segmentation faults and OOM errors, and GPU errors
occur mostly in small-scale applications, although part of this
might be due to users testing their codes or due to contention
of resources; interconnect errors mostly occur in medium to
large-scale and short-lived applications. These findings can be
used by extreme-scale system users as guidelines to deploy
resiliency mechanisms in their applications.

IV. STATISTICAL ANALYSIS FOR COMPARING
APPLICATIONS WITH AND WITHOUT EVENTS

In this section, we perform statistical analysis between
execution times of applications with no events and execution
times of applications with events. The goal is to establish

whether occurrence of events cause a significant and noticeable
difference in performance as compared to the error-free case.
We compare the runtimes of applications with same binary
names and using same number of nodes. This analysis is
possible since we observe that users tend to run multiple
instances of the same application. The assumption is that the
application runs being compared utilize the same workload.
Unfortunately, we do not have resource utilization information,
such as memory utilization, available as part of this study,
which we could use to verify this assumption. However, it is
plausible to make this assumption since users on extreme-scale
systems often run well-established workloads.

We perform two sample t-tests on multiple applications,
for whom we have executions with events and corresponding
executions with no event occurrences. These tests consider
both the sample size and variability in the data. We are able
to perform this analysis on a wide variety of applications since
over 70% users in the system are impacted by events in the
system during our analysis period. The two samples represent
two different groups for each distinct binary name using dis-
tinct number of nodes. Specifically, we test the null hypothesis
that “execution times of applications with and without events
are same,’ i.e., there is no significant statistical difference
between the execution times of applications irrespective of
whether events take place or not. This hypothesis testing is
done using Spark. We use, LogSCAN [11], for this analysis.

The results of two sample t-tests reveal that the null hypoth-
esis can be rejected with a p-value of less than 0.1 in 48.1%
cases. Alternatively, the two groups of execution times are
from two different distributions. In these cases, the t-scores
are significantly high with a low p-value. Note, a high t-
score represents that the two samples are significantly different
and a corresponding low p-value indicates confidence in the
results. A low p-value indicates that the sample is inconsistent
with the null hypothesis. As an example, Fig. 4 highlights
the distinction in execution times of a select few applications
whereby runtimes are grouped and plotted separately to distin-
guish runs with events from runs without events. The disparity
in execution times is obvious by comparing the difference
in median values between the two sets. The execution times
also show performance variation, common in extreme scale
systems. Although not investigated thoroughly in this work,
one of the reasons of performance variation is the occurrence
of RAS events during executions, which may or may not take
place due to random failure events in the system. In the next
section, we measure the impact on application performance as
a result of RAS events.

V. SLOWDOWN ANALYSIS

The presence of statistically different groups of executions
for same applications as demonstrated in previous section
allows us to perform the slowdown analysis herein. The mean
of one group is compared with the mean of other group to
measure slowdown, i.e., the ratio of average of execution times
with events to average of execution times without events. In
our analysis, we find significant slowdowns in majority of the
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cases, as discussed later on. Based on this finding, we attempt
to address the following questions: 1) do different system
components impact application performance differently, 2) do
larger-scale applications see a greater impact on performance
as compared to medium- or small-scale applications, 3) do
high number of recorded events during an application run
cause a greater impact on application performance, 4) do
occurrence of events across multiple nodes in an application
(beyond a single node) cause a greater impact on applica-
tion performance. First, we compare performance difference
caused due to different system components.

A. Event type and Slowdown

Fig. 5 shows the box plots of slowdowns across different
application runs grouped together based on application name
and size and then distributed based on the type of RAS events
observed in each group. Results indicate that the slowdowns
across applications are significant irrespective of the event
type, i.e., majority of the slowdown values for different
applications lie somewhere between 1 and 10. These results
also indicate the performance variation (inconsistent impact
on performance) common in extreme-scale systems. Among
all classes, the highest variation in performance is due to
Lustre events. Additionally, MCEs, segmentation faults, and
OOM errors seem to result in a number of outlier cases with
performance impacts well over 100X in some cases. Due to
the inconsistency, speedups are also observed in some cases
(where slowdown is less than 1). One possible explanation of
speedups is the early termination of applications due to fatal

events. However, we are not able to verify this, as highlighted
earlier.

The differences in slowdowns due to different event types
and combination of distinct event categories are listed in
the results in Table II. It shows the median and average
values of the slowdowns across different application runs, and
also presents the proportion of cases in which a slowdown
is observed (see last column ‘% Applications’). Among all
event classes, highest slowdowns are due to MCEs (both
median and average values are high). On the other end of
the spectrum, the least impact on application performance is
due to interconnect events, which also has the least proportion
of runs with slowdowns among all the cases listed.

Overall, a difference in performance impact exists across
different system components, e.g., average slowdown due to
Lustre events is 9.08 compared to 22.14 for MCEs in the
processors. Another interesting observation is the general trend
of higher average and median slowdown values when events
from distinct categories occur together in the same application
run. For example, the median slowdown is as high as 3.04
(average slowdown is 28.06) when MCE, Lustre, and OOM
events occur together, as opposed to 1.43 when MCEs occur
alone. The proportion of runs with slowdowns are also higher
in these cases (over 85% cases). These results show that if an
application run coincides with RAS events from two or more
distinct system components, it is more likely to encounter a
higher slowdown.

An open research question after this analysis is that why
do not occurrence of RAS events always cause a slowdown.
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Fig. 5: Application slowdowns w.r.t. corresponding no event
executions distributed based on type of recorded events. Event
classes are defined in Section III-A. Commonly co-occurring
events from multiple classes are also shown.

Although early termination of applications partly answers this
question, we suspect this may not always be the case. An-
other aspect which needs to be considered is the relationship
between resource utilization and the performance overhead
once events are recorded due to that particular resource.
For example, increased memory utilization of applications
has been associated to higher overheads due to MCEs in
previous work [6]. Similarly, increased utilization of Lustre
I/O bandwidth may be associated to increased chance of
slowdown due to subsequent Lustre events. On the other
end, occurrence of random Lustre events not associated with
increased utilization may not impact application performance.
We plan to investigate this question further in future work.
Next, we investigate whether using large number of nodes in
the system correspond to an increase in slowdown.

B. Application Size and Slowdown

The impact of number of nodes utilized in the system on
application slowdown is assessed by grouping the slowdowns
of the applications based on size. This set of results shown
in Fig. 6 is used to gauge whether expected slowdowns
increase as higher number of nodes are used. Comparison of
application slowdowns in distinct size bins shows that large-
scale applications tend to have higher median slowdown. A
clear distinction can be seen between applications of size
greater than 3749 and other applications of smaller sizes.
We also notice a higher performance variation in small-scale
applications, which can be explained by dominance of Lustre
events in these applications as observed earlier. A higher
median slowdown for large-scale applications as compared
to small-scale applications can be explained by dominance
of MCE events in the former, which tends to cause higher

TABLE II: Median and average values of slowdowns from
Fig. 5, and proportion of runs in which a slowdown is
observed.

Event Class Median Average % Applications
Parallel File System 1.21 9.08 75.7%
Processor Events 1.16 6.41 76.5%
Machine Check Exceptions 1.43 22.14 78.3%
Graphics Processing Unit 1.34 2.16 72.5%
Seg-Faults & Out-of-Mem. 1.24 12.30 82.2%
Interconnect 1.02 1.23 52.4%
Event Groups — selected, sorted by # of cases

(MCE, Lustre) 1.92 36.45 88.7%
(HWERR, GPU) 1.18 10.39 76.8%
(MCE, Out-of-Mem.) 2.00 32.77 89.3%
(Lustre, Out-of-Mem.) 1.18 13.08 84.0%
(MCE, Lustre-Err) 1.81 16.33 84.4%
(MCE, Seg-Fault) 1.91 35.96 90.2%
(HWERR, GPU, MCE) 1.82 18.04 84.6%
(MCE, Lustre-Err, Lustre) 2.85 31.87 89.9%
(Seg-Fault, Lustre) 1.29 2.34 85.9%
(MCE, Lustre, Out-of-Mem.) 3.04 28.06 87.8%
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Fig. 6: Application slowdowns w.r.t. corresponding no event
executions distributed based on number of nodes.

slowdowns as compared to other components. It should be
pointed out that there are less samples for the last two bins
(with applications of size greater than 3749) as compared to
other bins, since corresponding no event cases occur less often
in these bins as observed from the results earlier (see Fig. 2).

C. Number of Events and Slowdown

To investigate the effect of logging infrastructure on ap-
plication slowdown, we assess how the number of events
reported during application runs impact slowdown. In partic-
ular, we are interested to find out if increase in number of
recorded events cause an increase in application slowdown.
This increase might be due to a condition in some component
which is triggered over and over again by the application. For
example, an application might continuously write to a perma-
nently failed bit in the memory which is corrected on every
write using ECC and every time a MCE event is recorded.
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Fig. 7: Application slowdowns w.r.t. corresponding no event
executions distributed based on average number of events
observed.

Fig. 7 shows the impact of having large number of events
recorded during application runs. These results are obtained
by averaging number of events recorded in each application
group for which the slowdown is being assessed. Most of
the times, larger number of events cause more slowdown in
applications as compared to applications where less number
of events are observed. However, this does not represent the
complete picture for all the different event types. This is
because some system components tend to generate a large
number of events in a short interval as a result of single root-
cause, i.e., reporting mechanisms vary across components.
For example, Figs. 8a, 8b, and 8c show the disparity in
the average number of events recorded in applications as a
result of Processor, MCE, and Lustre events, respectively. A
separate correlational analysis across applications with events
recorded due to different system components shows that higher
number of events do not always cause a higher slowdown.
Specifically, correlation coefficients (between slowdown and
number of events) for MCE and interconnect events are 0.27
and 0.48 respectively, whereas, they are close to zero for other
event types. This shows that number of events is not a strong
indicator for slowdown across different system components,
and the logging infrastructure does not seem to interfere with
application performance in most cases. As discussed earlier,
multiple reasons may cause slowdown such as utilization of
resources, number of nodes utilized, and it is challenging
to find an exact root cause of these slowdowns. Next, we
investigate how proportion of nodes with events recorded
within an application relate to slowdown.

D. Proportion of Nodes with Events and Slowdown

Depending on the cause of RAS events, they may be
recorded in a single node or multiple nodes of the application.
Fig. 9 shows the histogram of percentage nodes with recorded
events out of all the allocated nodes (note the logarithmic scale

of the y-axis). The histogram shows a bimodal distribution,
whereby either most applications have between 0 to 10% nodes
with events or 100% nodes with events. We find that MCEs
mostly occur on a fraction of the allocated nodes, i.e., 91.2%
of applications with MCEs have between O to 5% of the total
allocated nodes with events. Similarly, interconnect events also
impact a fraction of the allocated nodes. On the other end
of the spectrum, Lustre events are recorded on most of the
allocated nodes. Other noticeable event types on this end of
the spectrum include: segmentation faults and OOM errors,
which is plausible. Events which occur on majority of the
allocated nodes can be attributed to users in most cases.

Based on the above, we investigate the relationship between
slowdown and percentage of nodes with events. Fig. 10 shows
the slowdowns based on percentage nodes with events. We do
not observe a strong disparity among cases when percentage
nodes with events are different. The median value of slowdown
in first bin (0 to 20%) is the highest, which is explainable
since MCE is mostly seen in such cases and it causes the
highest slowdown among all the event classes, as observed
earlier. One of the use of these results is to define a threshold
number of nodes with events, which we can use to say that
it will cause higher than average slowdown or that the errors
are user induced.

E. Discussion

In this section, we found that occurrence of events do
correspond to application slowdown in majority of the cases.
However, finding the exact root cause is difficult. A limitation
of this study is the non-availability of resource utilization
information. This study establishes the need to develop fault
injection mechanisms to trigger RAS events in different system
components irrespective of whether an application failure takes
place or not. It will enable systematic understanding of appli-
cation and system characteristics which leads to application
slowdown and performance variation. Although, some of this
testing can only be performed while the system is not in use,
which is often not feasible. We also plan to use the occurrence
of different types of events in applications for classification of
applications in extreme-scale systems, which can help system
operators to deploy more efficient systems.

VI. RELATED WORK

The impact of detectable and correctable memory errors
on application performance has been investigated by Gottscho
et al. [6]. A proprietary fault injection tool is used to
assess the overhead of the memory error reporting stack.
The simulated fault injection experiments showed that high
workload or increased memory utilization leads to increased
performance degradation, which is mostly due to overhead
of the firmware/software stack and is not necessarily due
to the ECC correction mechanism in hardware. However,
their experiments are limited to a single machine with a
very specific configuration/setup, and for CPU SPEC2006
benchmarks. A noticeable slowdown of 3746X under peak
load is reported for an interactive web-search workload. In this
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work, we investigate similar effects on a wide variety of real-
world applications and workloads executed on a deployed HPC
system. Furthermore, we investigate the performance impact
due to other components in a HPC system.

A similar study on a deployed system [7], the Blue Waters
supercomputer at the National Center for Supercomputing
Applications, analyzes the resiliency of applications to failure
events in the system. The efficacy of resiliency mechanisms
implemented in applications is also investigated. However,
they do not investigate the impact of reliability events on
application performance, which is a contribution of this work.

Multiple studies have been conducted on deployed HPC
systems in the past to assess failure rates and mechanisms. For
example, multiple generations of supercomputers at OLCF [1]
have been analyzed. System failure rates are measured and
they are found to vary drastically from one time period to
another. It is concluded that use of mean-time-to-failure, com-
monly used for deploying resiliency mechanisms in extreme-
scale applications is not adequate. Spatial and temporal anal-
ysis of failures in different systems is also done. A similar
analysis is performed on the Blue Waters supercomputer by
Martino et al. [2]. In case of Blue Waters, it is found that
hardware-related failures are not the major cause of system
downtime since protection mechanisms such as ECC in mem-
ory are effective. In this work, we analyze the impact of such
errors, failures and protection mechanisms on the performance
of extreme-scale applications.

Previous works have also exclusively studied memory fail-
ure data in HPC systems. For instance, DRAM and SRAM
failure data for 6000-node and 8500-node systems at Lawrence
Berkeley National Laboratory and Los Alamos National Lab-
oratory were analyzed to establish the need to develop ef-
fective DRAM protection schemes [3]. Through this work,
we establish the need to develop low-overhead protection
mechanisms and reporting infrastructure. Similarly, DRAM
errors in multiple generations of IBM Blue Gene systems and
Google data-centers are analyzed in [12] and [5], respectively.
Again, most of these studies are performed independent of
application executions and therefore do not consider the impact



on application performance.

In this work, we utilize LogSCAN [11], which is a multi-
user distributed analytics framework for processing log data.
Distributed analytics is performed using Spark and the data is
ingested in Cassandra, a distributed database. This framework
enables us to perform efficient co-analysis on multiple distinct
databases, such as RAS log and application scheduling and
placement log, simultaneously. For example, database joins are
performed to find which events take place during application
executions. Similarly, use of group-by queries enable slow-
down analysis, whereby, a set of execution times is compared
with a corresponding set of execution times for applications
having same binary names and using same number of nodes.
Some other failure log analysis tools include: ELSA, used
for analysis of failure logs from Blue Waters [13]; LogDiver,
used for evaluating resiliency of HPC applications in Blue
Waters [14]; DESH, used for predicting lead time to failures
in Cray machines with deep learning [15].

VII. CONCLUSION

A correlational analysis between system events and applica-
tion executions is conducted in this work. The analysis shows
the performance impact on applications when system events
coincide with their execution. We quantify this performance
impact, and show it as one of the causes of performance
variation observed in extreme-scale computing systems. We
then investigate the relationship of application slowdown with
RAS events from different system components, application
size utilized, number of events recorded during application
execution, and proportion of allocated nodes with recorded
events. We find that some system components cause more
slowdown as compared to other components. We also find
that some events are caused due to user applications, such as
those occurring on all the nodes allocated to an application.
Whereas, some event types are truly random events in the
system, such as machine check exceptions. It is important to
address these cases appropriately and mitigate their perfor-
mance impact. In some cases, given the current state of large-
scale systems, it may be feasible to provide feedback to users,
in case a system event coincides with the execution of their
application. Such feedback will be useful to limit the number
of re-runs for scientists doing performance runs and/or science
experiments increasing operational efficiency of HPC systems.
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