
A Parallel Plug-in Programming Paradigm?

Ronald Baumann1,2, Christian Engelmann1,2, and Al Geist2

1 Department of Computer Science
The University of Reading, Reading, RG6 6AH, UK

2 Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164, USA

{r.baumann,c.engelmann}@reading.ac.uk
{baumannr,engelmannc,gst}@ornl.gov

http://www.csm.ornl.gov

Abstract. Software component architectures allow assembly of appli-
cations from individual software modules based on clearly defined pro-
gramming interfaces, thus improving the reuse of existing solutions and
simplifying application development. Furthermore, the plug-in program-
ming paradigm additionally enables runtime reconfigurability, making it
possible to adapt to changing application needs, such as different ap-
plication phases, and system properties, like resource availability, by
loading/unloading appropriate software modules. Similar to parallel pro-
grams, parallel plug-ins are an abstraction for a set of cooperating in-
dividual plug-ins within a parallel application utilizing a software com-
ponent architecture. Parallel programming paradigms apply to parallel
plug-ins in the same way they apply to parallel programs. The research
presented in this paper targets the clear definition of parallel plug-ins
and the development of a parallel plug-in programming paradigm.

1 Introduction

Today, parallel and distributed scientific computing is a tool that enables re-
searchers world-wide to solve large-scale problems in many different research
areas, such as climate, nanotechnology, quantum chemistry, nuclear fusion, and
astrophysics. Scientific high-end computing (HEC) utilizing tens-to-hundreds of
thousands of processors enables new scientific breakthroughs in these areas us-
ing computational simulations (simulated experiments) of real-world problems.
HEC exploits multi-processor parallelism of scientific algorithms on a large scale
using common parallel programming paradigms, such as single program multi-
ple data (SPMD) and multiple program multiple data (MPMD). The scientific
computation is performed by a set of cooperating individual processes or tasks
communicating via message passing and/or remote method invocation as part
of a parallel scientific application.
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Software component architectures, such as Harness [1, 2] and the Common
Component Architecture (CCA) [3, 4], allow assembly of scientific applications
from individual software modules based on clearly defined programming inter-
faces, thus improving the reuse of existing solutions and simplifying application
development. Furthermore, the plug-in programming paradigm additionally en-
ables runtime reconfigurability making it possible to adapt to changing appli-
cation needs, such as different application phases, and system properties, like
resource availability, by loading/unloading appropriate software modules.

Component architectures and plug-in programming are well understood tech-
nologies for non-parallel system architectures. HEC applications are inherently
parallel requiring adaptation of these technologies to parallel and distributed
system architectures. Past research focused on the following two approaches:

– In Harness, the component framework itself runs in a distributed virtual
machine (DVM) fashion, where all processes cooperate in a virtual machine
environment. This approach enables assembly of SPMD and MPMD appli-
cations from components, but requires the DVM to setup all components
based on locality. It is not very scalable, but applications are easy to im-
plement due to the support for global component setup. Fault tolerance is
addressed through plug-in checkpoint/restart mechanisms using the DVM
as a highly available backbone for management and storage.

– In CCA, the component framework itself runs in a parallel (SPMD) fashion,
where each process individually is able to manage its own set of components.
This approach also enables assembly of SPMD and MPMD applications from
components, but requires each component framework instance to setup its
components based on locality. It is very scalable, but applications are difficult
to implement due to the required local component setup. Fault tolerance is
addressed trough application checkpoint/restart mechanisms.

The notion of parallel plug-ins evolved from research within the Harness
project. Similar to parallel programs, parallel plug-ins are an abstraction for a
set of cooperating individual plug-ins communicating via message passing and/or
remote method invocation as part of a parallel scientific application. Parallel
programming paradigms (SPMD/MPMD) apply to plug-ins in the same way
they apply to programs. Parallel plug-ins within Harness are effectively realized
by utilizing the distributed virtual machine. Within CCA, parallel plug-ins are
effectively realized by implementing parallel programs consisting of plug-ins. Up
until now, both approaches avoided a clear definition of parallel plug-ins as it
was not well understood.

The research presented in this paper targets the clear definition of paral-
lel plug-ins and the development of a parallel plug-in programming paradigm
that combines both approaches in order to further improve reuse of existing
solutions and to simplify application development. Harness is being used as a
proof-of-concept research vehicle to prototype parallel plug-in management and
experimental parallel plug-ins.

In the following sections, we first briefly discuss past and ongoing related
research and development efforts. Secondly, we present a clear definition of par-



allel plug-ins, their programming models (types) and their programming require-
ments (communication, coordination, and fault tolerance). We continue with a
description of our prototype implementation for two distinct scientific applica-
tion scenarios. This paper concludes with a short summary of the presented
research and a discussion future work.

2 Related Work

The research in Harness [1, 2] is a collaborative effort among Oak Ridge National
Laboratory (ORNL), University of Tennessee, Knoxville, and Emory University
focusing on the design and development of technologies for flexible, adaptable, re-
configurable, lightweight environments for heterogeneous parallel and distributed
scientific metacomputing.

As part of the Harness project, a variety of experiments and system proto-
types were developed to explore lightweight pluggable runtime environments, as-
sembly of scientific applications from software modules, highly available DVMs,
fault-tolerant message passing, fine-grain security mechanisms, and heteroge-
neous reconfigurable communication frameworks.

Currently, there are three different Harness system prototypes, each con-
centrating on different research issues. The teams at ORNL [5–8] and at the
University of Tennessee [9–12] provide different C variants, while the team at
Emory University [13–16] maintains a Java-based alternative.

Conceptually, the Harness software architecture consists of two major parts:
a runtime environment (RTE) and a set of plug-in software modules. The multi-
threaded RTE manages the set of dynamically loadable plug-ins. While the RTE
provides only basic functions, plug-ins may provide a wide variety of services
needed in fault-tolerant parallel and distributed scientific computing, such as
messaging, scientific algorithms, and resource management. Multiple RTE in-
stances can be aggregated into a DVM.

Our research in parallel plug-ins focuses on the C-based lightweight Harness
RTE from ORNL [7] using its dynamic, heterogeneous, reconfigurable commu-
nication framework (RMIX) [6] plug-in for fault-tolerant message passing and
remote method invocation.

RMIX allows software components to communicate using various remote
method invocation (RMI) and remote procedure call (RPC) protocols, such as
ONC RPC, by facilitating dynamically loadable provider plug-ins to supply dif-
ferent protocol stacks. While the RMIX base library contains functions that are
common to all protocol stacks, like networking and thread management, RMIX
provider plug-ins contain protocol stack specific functions for connection man-
agement, message formats, and data encoding. Since it is up to the provider
plug-ins to reuse RMIX base library functions, implementations may range from
lightweight to heavyweight. Moreover, client- and server-side object stubs are
very lightweight and protocol independent as they only perform an adaptation
to the RMIX system. In addition to standard synchronous RMI/RPC mech-
anisms, RMIX also offers advanced RMI/RPC invocation semantics, such as



asynchronous and one-way. RMIX is not a high-performance message passing
system. Its RMI/RPC mechanisms are designed for loosely-coupled systems.

The Harness-RMIX plug-in contains the RMIX base library as well as client-
and server-side object stubs of the Harness RTE. Stubs for Harness plug-ins
are implemented as separate plug-ins. Since the Harness RTE supports plug-in
dependencies, a plug-in requiring RMIX automatically loads its stub plug-in(s),
which subsequently loads the RMIX plug-in.

The already mentioned Common Component Architecture (CCA) [3, 4] is a
component-based approach targeted at the needs of large-scale, complex, high-
end, scientific simulations. CCA relies on a standardized component framework
model for scientific applications based on an interface description language for
component interfaces, a port model for unified component interaction, core com-
ponent framework services, a framework configuration API and a framework
repository API. Several CCA framework implementations exist that serve dif-
ferent areas of interest for scientific applications. Furthermore, a set of CCA
components exist as well as a number of CCA-based scientific applications.

It is our hope that the work presented in this paper will be eventually incor-
porated in some form into production-type component architectures for scientific
HEC, such as the Common Component Architecture, to further improve reuse
of existing solutions and to simplify application development.

Other related past and ongoing research and development efforts include
lightweight plug-in design patterns [17], a various number of pluggable compo-
nent frameworks (e.g. the Open CORBA Component Model Platform [18, 19]),
as well as recent accomplishments in RTEs for parallel and distributed system
architectures, such as Open RTE [20].

3 Parallel Plug-ins

The intent of our research presented in this paper is to merge plug-in program-
ming technologies with pluggable component frameworks for parallel architec-
tures using common parallel programming models and appropriate design pat-
terns in order to provide better reuse of existing solutions as well as easier
scientific application development.

A parallel plug-in can be defined as a set of individual plug-ins cooperating in
a parallel architecture to perform a common task, such as solving a computation
or providing a service. Participating individual plug-ins may be located on the
same or on distributed computational resources, and communicate with each
other for task control and data transfer purposes. Similar to a parallel program,
a parallel plug-in is a parallel programming abstraction, where the same parallel
programming models, such as SPMD and MPMD, apply.

While the execution environment of a parallel program is a parallel or dis-
tributed operating system, parallel plug-ins reside within a component frame-
work for parallel architectures, i.e., within a parallel program. They provide a
componentized approach for building parallel applications by offering parallel
building blocks with clearly defined interfaces.



In the past, parallel plug-ins have been effectively realized by by utilizing a
pluggable DVM environment or by implementing parallel programs consisting
of individual plug-ins. Both approaches dealt with the necessary coordination of
individual cooperating plug-ins by using either distributed control [8] or localized
control [3], while avoiding a clear definition of parallel plug-ins. In both cases,
it is up to the plug-in component programmer to take care of task control and
data transfer without access to appropriate design patterns.

3.1 Parallel Plug-in Types

A parallel plug-in consists of one or more individual plug-ins that add features
and capabilities to the runtime environment of a component framework as part of
a parallel application. The following parallel plug-in types (see Figure 1) can be
defined based on number, location, and purpose of involved individual plug-ins:

– The singleton (or service) plug-in is a special case of parallel plug-in as it
involves only one individual plug-in at one node within the context of a
parallel application.

– The SPMD (or replicated) plug-in follows the known SPMD parallel pro-
gramming model and involves more than one node within the context of a
parallel application. The same plug-in code is replicated to different nodes
and applied to different data.

– The MPMD (or distributed) plug-in follows the known MPMD parallel pro-
gramming model and involves more than one node within the context of a
parallel application. Different plug-in codes are distributed to different nodes
and applied to different data.

3.2 Parallel Plug-in Communication

Communication is essential for parallel plug-ins. Similar to parallel programs,
parallel plug-ins communicate using message passing and/or RMI/RPC in or-
der to coordinate individual tasks and to transfer necessary data. In order to
identify individual collaborating plug-ins within a parallel plug-in, naming and
message/invocation routing is needed.

Message passing systems, such as PVM [21] and MPI [22], typically only
provide naming and routing mechanisms for individual processes of a parallel
application and not for individual plug-ins. Message tags may be used to identify
individual plug-ins within an individual process. However, a separate plug-in
naming service is needed in order to support dynamic adaptation, i.e., dynamic
loading and unloading of parallel plug-ins.

RMI/RPC systems typically provide a naming and routing mechanism for
exported objects or program parts. Individual plug-ins that are part of a parallel
plug-in may be exported as objects or program parts using a RMI/RPC system
for naming and routing of invocations. Furthermore, local services of individual
component framework processes may be exported as objects or program parts
as well to enable remote access to basic component framework services, such as
loading and unloading of plug-ins.
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Fig. 1. Parallel Plug-in Types

3.3 Parallel Plug-in Coordination

Coordination of individual plug-ins that are part of a parallel plug-in is needed
to perform loading, unloading, task and data distribution, and fault tolerance
mechanisms. This coordination is accomplished via separate coordination (ser-
vice) plug-ins and via the parallel plug-in itself using the communication sub-
system with its plug-in naming scheme to address individual plug-ins.

In order to load a parallel plug-in, the used component framework itself or
a separate service plug-in contacts individual component framework processes
and loads the appropriate individual plug-in based on the parallel plug-in type.
Unloading a parallel plug-in is implemented in the same way.



Task and data distribution can be performed by the parallel plug-in itself if
it supports self configuration. However, in order to simplify parallel plug-in and
application development, a separate service plug-in may be used to execute task
and data distribution based on the parallel plug-ins programming model, i.e.,
by automatically partitioning data and/or assigning tasks.

Similarly, fault tolerance mechanisms, such as checkpoint/restart, may be
performed by the parallel plug-in itself if supported, but may also be coordinated
by a separate service plug-in based on a design pattern that matches the fault
behavior and fault tolerance requirements of the parallel plug-in.

3.4 Parallel Plug-in Fault Tolerance

Fault tolerance is typically realized in three steps: detection, notification, and
reconfiguration. In parallel computing, detection and notification are typically
performed by the communication system using timeouts to detect faults and the
naming scheme to identify faulty communication endpoints.

A parallel plug-in may be reconfigured using the same techniques as for
parallel programs, with the exception that reconfiguration takes place within
the parallel plug-in programming scope. Parallel plug-in state may be regularly
stored on stable storage in the same way a parallel program checkpoint is stored.
Upon failure, the entire parallel plug-in or parts of it (individual plug-ins) may
be restarted on different nodes. Loss of state due to failures may be ignored if
the application is able to continue without extensive reconfiguration [23].

As already mentioned earlier, fault tolerance mechanisms for parallel plug-ins
may be encapsulated into a separate service plug-in based on a design pattern
that matches the fault behavior and fault tolerance requirements of the parallel
plug-in. Furthermore, such a service plug-in may directly interface to existing
fault tolerance technologies, such as checkpoint/restart layers.

4 Prototype Implementation

A proof-of-concept prototype has been implemented as part of a Master’s the-
sis [24] using the Harness RTE as a research vehicle.

The Harness RTE offers a lightweight backbone to load and unload individual
plug-ins into a multi-threaded process residing on a single node. Multiple Harness
RTEs located on the same or different nodes are used as a lightweight backbone
to load and unload parallel plug-ins utilizing a parallel parallel plug-in manager
for coordination and the Harness-RMIX plug-in for communication.

In the following, we describe the developed parallel plug-in manager and our
efforts in implementing a parallel plug-in design pattern for two distinct scientific
application scenarios.

4.1 Parallel Plug-In Manager

The parallel plug-in manager (PPM) is itself a service plug-in and provides par-
allel plug-in management services for both parallel plug-in programming models,



SPMD and MPMD. These services include: loading, unloading, task and data
distribution, and fault tolerance support.

The PPM loads a parallel plug-in by starting and contacting a set of Harness
RTEs via remote method invocation to load a specific individual Harness plug-in.
The set of available nodes is given by the user. The number of involved Harness
RTEs must be equivalent or more than the number of individual plug-ins needed.
A round robin schedule may be used in a more sophisticated solution to allow
oversubscribtion of nodes.

Loading a parallel plug-in introduces the problem of partial success, i.e., not
all individual plug-ins were loaded due to unavailability of resources (plug-in,
Harness RTE, or node). If there are more nodes available than needed, the PPM
retries to load an individual plug-in at a different location.

The parallel plug-in loading fails if not all required individual plug-ins were
loaded. This decision entirely depends on the parallel plug-in to load and is
guided by the user by configuring the PPM appropriately.

Task and data distribution depending on the parallel plug-in programming
model may be performed as part of the parallel plug-in loading procedure. Fur-
thermore, fault tolerance mechanisms are supported via the PPM by offering
restart of failed parallel plug-in parts.

4.2 Monte Carlo Integration

The first proof-of-concept parallel plug-in has been implemented using the SPMD
programming model performing a Monte Carlo integration algorithm in a bag-
of-tasks fashion. The developed parallel plug-in consists of a Monte Carlo inte-
gration algorithm, where each individual plug-in performs an equal share of the
overall computation. The PPM loads the parallel plug-in on all available nodes,
while accepting partial loading success.

Fault tolerance has been implemented using a separate service plug-in to
reload failed plug-ins upon notification. The Monte Carlo integration share of
a failed plug-in is repeated entirely. The degree of fault tolerance is n − 1, i.e.,
n− 1 out of n Harness RTEs may fail.

4.3 Image Processing

The second proof-of-concept parallel plug-in has been implemented using the
MPMD programming model performing a sequence of image processing algo-
rithms in a pipeline fashion. The developed parallel plug-in consists of a set of
individual plug-ins, each performing a different computation and forwarding its
result to the next plug-in. The PPM loads the parallel plug-in on the necessary
number of nodes. It does not accept partial loading success.

Fault tolerance has been implemented using a separate service plug-in to
reload failed plug-ins and to reconfigure the pipeline upon notification. Each
plug-in stores its results temporarily until completion has been acknowledged
by the next plug-in in the pipeline. The image processing algorithm of a failed



plug-in is repeated for all unacknowledged results. The degree of fault tolerance
is 1, i.e., 1 Harness RTE may fail. The degree may be increased significantly
using stable storage for intermediate results.

5 Conclusion

With this paper, we presented results of our recent research in a parallel plug-in
programming paradigm for software component architectures in parallel and dis-
tributed scientific high-end computing. We defined the parallel plug-in abstrac-
tion, associated programming models, and resulting programming requirements.
We demonstrated similarities and differences between parallel plug-ins and pro-
grams with regards to their programming models and execution environments.
We described a Harness-based proof-of-concept prototype of a parallel plug-in
manager and of parallel plug-ins for two distinct scientific application scenarios.
Further implementation details have been published in a Master’s thesis [24].

Our research indicates that the parallel plug-in programming paradigm pre-
sented in this paper is an appropriate design template for software component
architectures in parallel and distributed scientific high-end computing.

It is our hope that the work presented in this paper will be eventually incor-
porated in some form into production-type component architectures, such as the
Common Component Architecture, to further improve reuse of existing solutions
and to simplify application development.
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