

Reducing Waste in Extreme Scale Systems through Introspective Analysis

<u>Leonardo Bautista-Gomez</u>, Ana Gainaru, Swann Perarnau, Devesh Tiwari, Saurabh Gupta, Christian Engelmann, Franck Cappello and Marc Snir

- •Failure Analysis of Petascale Systems
- Monitoring and Reacting System
- Checkpointing Waste Reduction
- Conclusion

Failure Analysis of Petascale Systems

- Monitoring and Reacting System
- Checkpointing Waste Reduction
- Conclusion

Failure Distribution

Failure Distribution

Defining Failure Regimes

$$px = \frac{x_i * 100}{\sum x_i} \qquad pf = \frac{f_i * 100}{\sum f_i}$$

Defining Failure Regimes

Percentage of time spent in regime *i*

$$pf = \frac{f_i * 100}{\sum f_i}$$

Percentage of failures occurring in regime *i*

Defining Failure Regimes

Number of segments with i failures

Percentage of time spent in regime *i*

Number of failures in x_i segments

Percentage of failures occurring in regime *i*

System	LANL02	LANL08	LANL18	LANL19	LANL20	Mercury	Tsubame 2	BlueWater	Titan
Normal reg. px	73.81	74.15	78.36	75.05	78.19	76.69	70.73	76.07	72.52
Normal reg. pf	33.92	26.42	40.84	38.58	31.05	35.10	22.78	25.05	27.77
Normal reg. pf/px	00.46	00.36	00.52	00.51	00.40	00.46	00.32	00.33	00.38
Degraded r. px	26.19	25.85	21.64	24.95	21.81	23.31	29.27	23.93	27.48
Degraded r. pf	66.08	73.58	59.16	61.42	68.95	64.90	77.22	74.95	72.23
Degraded r. pf/px	02.52	02.85	02.73	02.46	03.16	02.78	02.64	03.13	02.63

Failure Regime Statistics

IPDPS 2016

Failure Regime Detection

- Most failures occur in degraded regime (Regime change?) .
- Some types of failures occur **only** in normal regimes.
- Pn_i = Probability of a type of failure to occur in normal regime.

Tsubam	e 2.5	LANL systems			
Failure type	pn_i	Failure type	pn_i		
SysBrd	100%	Kernel	100%		
GPU	55 %	Memory	61%		
Switch	33 %	Fibre	100%		
OtherSW	$100.0 \ \%$	OS	49%		
Disk	66 %	Disk	75%		

- •Failure Analysis of Petascale Systems
- Monitoring and Reacting System
- Checkpointing Waste Reduction
- Conclusion

Monitoring and Reacting

Beacon Notification System (publish/subscribe)

Event Traversal Latency

- Injecting a 1000 events burst.
- Most events analyzed in < 1ms.
- Event analysis << MTBF

0.0

0.2

0.4

0.6

Latency (ms)

700

600

500

400

300

200

100

Event Count

Events Forwarded

IPDPS 2016

- •Failure Analysis of Petascale Systems
- Monitoring and Reacting System
- Checkpointing Waste Reduction
- Conclusion

Checkpoint Overhead

Dynamic Checkpointing

Algorithm 1 Dynamic Checkpoint Interval

procedure FTI_SNAPSHOT

```
addLastIterationLengthToList(IL)
   if updateGailIter == currentIter then
      GAIL = compute Global Average Iteration Length
      IterCkptInterval = wallClockCkptInterval/GAIL
      if updateRoof > expDecay*2 then
          expDecay = expDecay*2
       end if
      updateGailIter = currentIter + expDecay
   end if
   if nextCkptIter == currentIter then
      FTI_Checkpoint
      nextCkptIter = currentIter + IterCkptInterval
   else
      received = checkForNewNotifications(noti)
      if received then
          endRegimeIter, IterCkptInterval = decodeNotification(noti)
      end if
   end if
   if endRegimeIter == currentIter then
      IterCkptInterval = wallClockCkptInterval/GAIL
      endRegimeIter = -1
   end if
currentIter = currentIter+1
end procedure
```

$T_{waste}^{total} = (Ck + Rt + Rx)$

$$T_{waste}^{total} = \sum_{i=1}^{R} (Ck_i + Rt_i + Rx_i)$$

$$T_{waste}^{total} = \sum_{i=1}^{R} (Ck_i + Rt_i + Rx_i)$$

$$T_{waste}^{total} = \sum_{i=1}^{R} \left(\left(\frac{Ex \times px_i}{\alpha_i} \right) \times \beta + \frac{Ex \times px_i}{\alpha_i} \left(e^{\frac{\alpha_i + \beta}{M_i}} - 1 \right) \times \left(\epsilon(\alpha_i + \beta) + \gamma \right) \right)$$

$$T_{waste}^{total} = \sum_{i=1}^{R} (Ck_i + Rt_i + Rx_i)$$

Waste Reduction

Waste for Different Ckpt.

Wasted time vs Checkpoint cost for systems with different mx (MTBF = 8 hours).24/05/16IPDPS 20162424

Waste for Different MTBF

Conclusions

- •Most systems show some level of temporal failure correlation.
- Introspective Analysis can be done on-the-fly for a low cost.
- Significant gains can be achieved trough dynamic adaptation.

Thank you!

Questions?