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Abstract

The advancements of high-performance computing (HPC) systems in the last de-

cades lead to more and more complex systems containing thousands or tens-of-

thousands computing systems that are working together. While the computational

performance of these systems increased dramatically in the last years the input/out-

put (I/O) subsystems have not gained such a significant improvement. With increas-

ing numbers of hardware components in the next generation HPC systems main-

taining the reliability of such systems becomes more and more difficult since the

probability of hardware failures is increasing with the number of components. The

capacities of traditional reactive fault tolerance technologies are exceeded by the de-

velopment of next generation systems and alternatives have to be found. This paper

discusses a monitoring system that is using data reduction techniques to decrease

the amount of the collected data. The system is part of a proactive fault tolerance

system that may solve the reliability problems of exascale HPC systems.
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1 Introduction

The microchip is one of the inventions of the last century that has changed many

aspects of the modern world. Microchips are used in nearly every electronic device

and are present in nearly every household of the modern world. They are found in

entertainment and control systems, cell phones and hand held devices, in engines,

and of course in systems that are called computer.

The use and appearance of a computer has dramatically changed over the last

decades. In the early beginnings, they were large-room-sized machines, used by

the military and the scientific community. With the rapid development they soon

reached the economy as well. The invention of the micro circuit has increased the

performance of the computer and decreased the size in the same way. Additionally

the power consumption and their price decreased and therefore the computer entered

the homes. Today computers are the foundation for many companies that either

produce hard- or software or provide services to a vast amount of customers.

While the average user benefited from these inventions and most of todays com-

puters provide more power than actually is needed, advanced users are always in

need for more performance. If the advanced user is a gamer, who is in need of a fast

graphic card and central processing unit (CPU), or an employee who is using the

computer in commercial applications, such as computer aided design or computer

aided engineering. But the most performant computers of their time were always

used by the scientific community or the military for research. Many improvements

to the computer were driven by these communities.

The need for performance is the nature of the applications running in most of

these research or development projects. The most time consuming applications that

are running on the fastest computers of the world are either some kind of simulation

or are used to evaluate huge amounts of data.

During the last decades improving the performance of computers was mainly

achieved by increasing the clock rate, shrinking structures and improvements of

the architecture of the CPU. From scalar over super scalar and vector to today’s

many core processors. Although the performance gain of the CPU is remarkable,

it was not sufficient to satisfy the needs of the operators of such HPC systems.

So the development in the HPC community started to find other ways to improve

performance. In the 1980’s, the systems with the highest performance were vector

1



Introduction Swen Böhm

computers which could issue one instruction to a sequence of data. And in the

1990’s, parallel computers were taking the place of the vector machines. These

systems are constellations of many single computers working together to solve a

problem and the current approach to satisfy the performance needed for today’s

computational problems.

Actual petascale HPC systems consists of thousands or tens-of-thousands of

compute nodes and upcoming exascale HPC systems are expected to scale to hun-

dreds of thousand nodes which will use multicore processors and additional general-

purpose computing on graphics processing units (GPGPU). The overall amount of

hardware components in current systems exceeds a million of components and the

next generation systems are expected to have ten to hundred times more.

With the increasing amount of components in HPC their reliability is decreas-

ing. The vast amount of hardware components, whose reliability has not changed

significantly in the last years, leads to an increasing failure rate.

The current way to deal with the reliability problems and to achieve fault toler-

ance (FT) in HPC applications is to create checkpoints and restart the applications

from the last checkpoint if a failure occurs. An application a creates checkpoint

of its current state, either using application specific approaches or mechanisms of

the underlying application programming interfaces (APIs) or the operating system

(OS), and writes it to a file system. Failures in the application or hardware that

causes the application to hang on one node or a node to crash, can cause the entire

application to fail. If this happens an administrator or a job submission system has

to restart the job beginning from the last checkpoint.

To meet the challenges of future HPC systems a new approach to increase FT

has to be found.

1.1 State of the Art
1.1.1 Reactive Fault Tolerance

Todays FT mechanisms for HPC applications rely on checkpointing and restart. A

checkpoint can be a copy of the processes memory and registers that is stored to

a storage device. In the case of an error the last checkpoint is used to recover the

process and to continue its execution from this point.

The checkpointing functions have either to be implemented by the application

developer or can rely on mechanisms provided by the job submission system or the

underlying OS. For an application level implementation of an checkpointing mech-

anism the application developers can implement it by themselves or by utilizing

2
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mechanisms provided by an API for parallel applications.

Today’s most common checkpointing mechanisms take coordinated checkpoints.

All processes on all nodes create a checkpoint to the same time.

Checkpointing of petascale applications produces an enormous I/O load on the

network and a huge amount of data on the storage. A HPC system with 10,000

nodes and an average memory usage of 2GB would produce an amount of 20,000

GB that has to be stored. Most HPC systems use a networked file system and the

transport of this vast amount of data can exceed the capabilities of the I/O subsystem

[6, 24], whose performance has not increased significantly during the last years.

With exascale HPC systems on the horizon that are going to be composed of much

more nodes, it is inevitable that this mechanisms have to be improved dramatically

or replaced by other mechanisms.

There are currently many research projects with the goal to improve check-

point/restart mechanisms used. Improvements to checkpointing can be done by

taking asynchronous or coordinated [4] checkpoints, by optimizing checkpointing

intervals [5] or with incremental checkpoints [9]. Asynchronous intervals will re-

duce the current bandwidth needed to save a checkpoint. The different nodes take

their checkpoints at different times and the file system utilization is distributed over

time. Asynchronous checkpointing however will not reduce the amount of the data

that has to be stored. Reducing the interval of the checkpoints on the other hand

will produce a smaller amount of transported and stored data.

1.1.2 System Health Monitoring

To monitor the health of computational systems many software solutions are avail-

able. There are many popular open source monitoring systems available, and many

hardware vendors offer monitoring solutions for their systems. In this section, two

open source systems will be described in detail and their advantages and disadvan-

tages will be discussed.

Ganglia

Ganglia [16, 19, 20] is a set of system daemon processes and tools dedicated to

monitor HPC systems, such as clusters and Grids. The Ganglia monitoring system

was started as the Millennium Project at the University of California, Berkeley. The

system is based on a hierarchical design to scale to large installations. Ganglia is a

set of daemons and tools that work together as a monitoring system. The monitoring

data is captured by the (gmond) daemon. It collects system metrics, like CPU,

3
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memory, disk, network, and process data. Additional metrics can be added using

the gmetric tool, which adds a metric value to a local or remote gmond service.

The monitoring daemons can be aggregated to groups which exchange their data

using the external data representation (XDR) protocol. The gmond service can be

queried on port 8679 (if not configured otherwise) and sends the data back in an

extensible markup language (XML) format (see Listing D.1 for an example).

To get a hierarchical structure, a second daemon gmetad collects the data from

the aggregated gmond groups. To achieve fault tolerance gmetad can query every

gmond in a group. A gmetad daemon itself can again be queried by another

gmetad daemon and form a tree structure to monitor big installations.

The representation of the monitoring data as XML dataset makes it easy to write

software to post process and validate the monitoring data. Another benefit is that

the data format is human readable as it is. The disadvantage of the XML output is

that it produces much more overhead. The XML data needs more bandwidth for

the transportation through a network and more space on the storage than a binary

format for example.

Nagios

Nagios uses a Web front end to represent the states of the monitored hardware but

the monitoring data can be dumped into a structured query language (SQL) database

which produces much less overhead than the XML format Ganglia uses. Nagios

uses a monitoring daemon that queries the nodes that have to be monitored. It

differentiates between public and private services that have to be monitored with

different methods. Public services are daemons that can be monitored through

a network connection, like Web, database and print servers for example. Private

services (in the Nagios notation CPU usage, loads and most other types of health

monitoring relevant metrics) can be gathered using different methods. On one side

there is the possibility to query Nagios remote plugin executor (NRPE) (a separate

daemon that runs on the monitored host(s)) or a Simple Network Management Pro-

tocol (SNMP) daemon. On the other side, Nagios can use passive checks, were the

monitored node can announce data using Nagios service check acceptor (NSCA).

Using passive checks the monitored host can run scripts periodically (using cron

or at on UNIX machines) and announce the results to the monitoring host with

the nsca_send tool. NRPE enables the monitor host to execute Nagios plug-ins

remotely. Both, NSCA and NRPE are Nagios add-ons that have to be installed

separately.

4
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1.2 Related Work
1.2.1 Proactive Fault Tolerance

A new approach to increase the reliability of HPC systems is proactive fault tol-

erance (PFT) [7, 21, 30]. It is an emerging technology that prevents the impact of

compute node failures to a parallel application. A proactive reliability, availability

and serviceability (RAS) framework [30,32] (see Figure 1.1) increases the applica-

tion mean-time to failure (AMTTF) of HPC systems by migrating application parts

away from nodes that are "about to fail".

To predict [8, 31] failures that can cause a compute node or an application to

fail, a proactive RAS system has to know the health state of all hosts. The health

of all compute nodes is constantly monitored and the data is analyzed in a constant

feedback loop (see Figure 1.2). If it is likely that a host is about to fail preventative

action is taken to migrate application parts away from nodes that are going to fail.

To move application parts a preemptive RAS system has to incorporate the resource

manager [15] or the runtime environment [33].

Highly Available RAS Engine

Virtualization Scope:
Application, Run Time Environment and Micro OS

IPMI Monitor

Local Policy-
Based Analysis

VM-Level 
Migration*

Coordinated Global Policy-Based 
Analysis and Decision Making

Local Policy-Based Analysis

Fault, Error and 
Trend Notification

Fault Tolerance 
Mechanism Invocation

Users, Administrator, 
System Services

Detection Recovery and 
Prevention

Customization 
and Guidance

Policy Configuration, 
Decision Guidance

Event 
Distribution

Round Robin Heart Beat

Individual 
Compute Nodes

Communication 
System

Multiple, Fully 
Redundant 

Service Nodes

Application * Migration of Virtualized Nodes

Figure 1.1: Previously proposed Proactive RAS framework ( [30])

The feedback loop can be classified in 4 types (see figure 1.2.1) with different

capabilities. Type I (see figure 1.3(a)) is the most basic form and provides coverage

for the most basic failures. The migration is triggered by the events generated by

the monitoring software on the compute nodes when a threshold is exceeded. It is

prone to false negatives and positives due to the lack of data correlation abilities.

Type II (see figure 1.3(b)) is an enhanced form of Type I. A filter on each node is
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Resource Manager/
Runtime Environment

Monitor/Filter/Analysis

Application
Reallocation

Application
Allocation

Application
Health

Figure 1.2: Control mechanism of proactive FT with preemptive migration using a
feedback loop [7].

able to analyze the monitoring data over a short period of time. Type III enhances

Types I & II by incorporating a reliability analysis. In Type IV a history database

is used by the reliability analysis to record the monitoring data and to use it for the

analysis.

To decrease AMTTF the RAS Framework is moving application parts away from

a node that is going to fail. The application part is moved to another healthy node,

which can either be a spare node or another node that is already running another part

of the application. While the node itself fails, the distributed application sustains its

work and is not interrupted.
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Figure 1.3: The different types of the RAS Framework (source [7])

It is obvious that it takes time to migrate an application part from one compute

node to another. The time window to migrate the application varies [32, 33] and
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depends on the used methods and technologies and the memory used by the appli-

cation. Therefore the failure has to be predicted in advance to the failure, such there

is enough time to successfully migrate the application part away from the failing

node.

To predict failures, it is necessary to know the health state of the system. Con-

stant monitoring of the system can provide the necessary information. The constant

observation of the health state of a hundred of thousands of compute nodes is a

challenge, since the monitoring produces a vast amount of data that needs to be

processed. To achieve an accurate reaction time for the prediction, the monitoring

data has to be processed nearly in real time.

Since current HPC systems have 1,000 to 20,000 nodes and up to than 200,000

cores, and are continuing to increase in scale, system monitoring and logging pro-

duces an increasing amount of data. The XTORC cluster (a small 64 node sys-

tem in the Computer Science and Mathematics Division at the Oak Ridge National

Laboratory (ORNL)) produces approximately 33 MB/h with a sampling interval of

30s [15]. The Jaguar [22, 23] system at ORNL with 18,772 compute nodes would

produce a monitoring stream of almost 10 GB/h with a sampling interval of 30s and

30 GB/h with a sampling interval of 10s assuming that the monitored metrics are

the same. To achieve the necessary reaction time, a smaller capture interval will be

necessary and will increase the amount of data even further.

Since it is not feasible to process these vast amount of data in a proactive FT

system and to store it in a history database [7] for a reliability analysis, the amount

of data must be reduced while it is generated.

1.2.2 Monitoring and Analysis

Open Intelligent Platform Management Interface (OpenIPMI) [25] and lm-sensors

[17] are libraries to access hardware monitoring data, such as processor tempera-

tures and fan speeds. Ganglia [16, 19, 20] (see Section 1.1.2) is a distributed mon-

itoring system that scales well in large installations. Ganglia and OpenIPMI were

used in Type 1 RAS solutions [21, 33]. Another RAS framework solution is OVIS

2 [3]. OVIS 2 monitors nodes either directly or collects information from other

monitoring solutions. It provides tools for statistical analysis of metric data. OVIS

2 provides Type 3/4 online analysis and Type 4 analysis using a history database

is provided for offline data. OVIS 2 has not been used in a proactive FT solution

until now. HPC vendors provide their own monitoring solutions (e.g. HP Cluster

Management Utility [11], IBM Cluster Systems Management [12]).
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1.2.3 Data Reduction

Data reduction is used to transform acquired information into an ordered and simpli-

fied form. The data can be sorted, rounded or classified by a set of criteria. Usually

data reduction algorithms have to compute large amounts of data that is stored on

the file system. Today many forms of data reduction techniques are used for dif-

ferent purposes. Compression algorithms, either lossy or lossless ones, filter and

correlation tools to find the relevant data in a dataset, and tools to classify datasets.

The performance monitoring system TAUoverMRNet (ToM) introduced by Nataraj

et al. [18] uses data reduction techniques to classify performance data of parallel ap-

plications on the fly. ToM utilizes multicast/reduction network (MRNet) [27, 29] to

distribute the computation to a number of nodes. MRNet uses a tree based overlay

network (TBŌN) [2], a tree based structure of processes, to communicate between

a front-end (the root of the tree) and the back-ends (the leaves of the tree). Fig-

ure 1.4 depicts the layout of a TBŌN. A set of processes, the nodes of the tree,

are used to run computations on the data that is transported through the TBŌN.

A TBŌN is a powerful programming model that has proven to scale well in large

distributed infrastructures. TBŌNs provide extensible data reduction and synchro-

nization techniques, high throughput and low latency data flow, and a flexible data

communication model.

Front-End Process

Intermediate Process

Back-End Process

Figure 1.4: A tree-based overlay network. Packets in the TBON flow up and down
the logical network through the communication processes (intermediate children).

MRNet is a software library that implements an overlay network. A tree of inter-

nal processes between the front-end (FE) and the back-ends (BEs) (see figure 1.4) is

used to improve the communication performance. The internal processes (interme-
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diate children (IC)) are also used to distribute control commands. The intermediate

child (IC) can process the data to keep the FE load manageable. MRNet-based soft-

ware uses logical channels, called streams, for communication. Filters can be bound

to these streams by loading application specific filter functions in the IC. The filters

are used to synchronize and aggregate the data that flows through the TBŌN. To

reduce the cost of control requests and achieve high-bandwidth communications,

MRNet uses multicast messages and a binary and compressed data representation

for the communication.

1.3 Objectives

To face the challenges of monitoring large scale computing systems, the goal of

the presented work is to develop and implement a prototype of a data reduction

monitoring system as part of a proactive RAS framework. The monitoring system

addresses the needs of Type III and Type IV of the RAS framework described in

Section 1.2.1.

To reduce the data produced by the monitoring system, it will sort the actual met-

ric values into given classes. The classification has to be configurable by defining

the intervals for the different classes. Every metric has to have its own configura-

tion. A global configuration has to be used to configure the monitoring system.

To increase flexibility and to address different hard and software architectures,

the monitoring system has to provide the possibility to extend the system to capture

metric values from new sources.

The monitoring system needs to be portable. It has to be able to run on different

system architectures and OSs. As part of a RAS system it is important that the

monitoring system will not cause any reliability issues for the RAS system itself.

It needs to have a small footprint (low memory and processor utilization) and an

effective way to communicate.
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2 Preliminary System Design
2.1 Analysis

To gather the health metrics of computer systems, monitoring software systems

(like Ganglia, Nagios or vendor software from Cray or IBM) can be used. These

monitoring solutions usually provide a set of system daemon processes to capture

and distribute monitoring data. They are either complex systems with a huge feature

set or solutions for specific systems. Another way to gather system health data,

is to use software libraries (libsensors, OpenIPMI) that can query the monitoring

capabilities that are integrated into the hardware. These libraries can be used to

develop a specialized software that fits the special needs of HPC environments.

Both monitoring solution (Nagios, Ganglia) (see Section 1.1.2) are freely avail-

able as open source software and deployed in many facilities. Both systems are

using a top down approach where the monitoring node queries the monitored sys-

tems in periodical intervals. In both systems, monitoring data is transported without

any data reduction and is not stored by default. Nagios has a database support and

the gmetad daemons store the data in a round robin database (RRD) . To perma-

nently store Ganglia data, it has to be fetched out of the RRD and to be stored with a

separate solution. But this exceeds the capabilities of current systems, where huge

installations have to be monitored. Therefore there is a need to reduce the data

before it is stored.

While system monitoring data, e.g. temperature, fan speeds, core voltages, and

so on are numerical, values which can be classified, system log data is passed as text

messages from applications to a system logging daemon. Monitoring data values

can be classified and transformed into histograms by sorting the value into a given

number of bins inside one of the specified classes.

Since there is currently no experience about the metrics that are necessary for

a fault prediction system and how accurate they have to be, there is a need for a

configurable system. The intervals in which the metrics will be gathered and the

different metric values (such as temperature, fan speeds, power supply) have to be

configurable, as well as the ranges of the different bins for a metric have to be

adjustable. To provide a system as flexible as possible it has to provide non uniform

sizes for the different bins.
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The overall impact of the monitoring system to the running applications has to

be as low as possible. Therefore the monitoring system has to use as less processor

time and memory as possible, and the network utilization has to be kept low as well.

To work with different HPC systems, the monitoring system has to be flexible and

portable.

Additional features like a RRD to store the accurate metrics for analysis and the

reduction of system log data can be implemented. Another additional feature that

would be useful to test failure prediction is an interface to inject failure patterns into

the system.

2.2 Design

The monitoring system will use a TBŌN to transport and process the monitoring

data. As implementation of the TBŌN the monitoring system will utilize the MRNet

library [27]. Given the hierarchical structure of a TBŌN and prerequirements of the

MRNet library, the monitoring system will consist of three elementary components.

Since the data reduction system is part of a proactive FT system, the most im-

portant requirement is that it has to be fault tolerant as well. Failing nodes must not

affect the functionality of the FT system. Whereas the MRNet library has support

for recovering form IC failures, FE and BE failures have to be handled by the FT

system. Although a BE-node failure is critical for the HPC system, it is not critical

for the FT system itself. However, it can lead to problems with filter plug-ins, be-

cause the filter functions are awaiting packets from all their children. Therefore a

mechanism is needed, to remove dead nodes from the TBŌN and reintegrate them

when they are up again.

The structure of the TBŌN has to be configurable to meet the requirements of

the underlying architecture. To gather system health metrics a system-independent

wrapper is needed, so that the software can be ported to different architectures.

First there is the FE daemon. The FE will receive and store the collected and

classified monitoring data from the compute nodes. It is also responsible to manage

the TBŌN and to configure the monitoring system.

The second part of the system is the BE process. It runs on all compute nodes that

are the leaves of the TBŌN. The BE process has the task to gather the monitoring

data and to send the data to the FE process. Instead of gathering the monitoring

data from a third party software, the BE will capture the monitoring data itself. The

advantages of capturing the data directly are, that only one process is involved in the
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monitoring and there is no need to parse the output format of a third party software.

Part three is the MRNet filter plug-in. It will be loaded by the ICs of the TBŌN.

The filter plug-in collects the data from all its child processes and repacks the mon-

itoring data to send it up to its parent until the FE is reached.

Figure 2.1 depicts the layout of the monitoring system and how the different

components correspond to the RAS framework proposed in [7]. The FE, the BE

and the ICs are the root, nodes, and leafs of the tree. The FE is part of a redundant

RAS system and is executed on the system management node [7]. The BE processes

are connected to the front-end process trough the ICs. While the BE and FE are part

of the monitoring system, the IC is a program provided by the MRNet library [27].

To execute application specific code the IC can load filter plug-ins. The plug-ins are

shared libraries and provide filter functions that can be applied to the data flowing

through the TBŌN.

To reduce the produced amount of monitoring data, the actual metric values of a

certain capture time will be classified by the back-end. Only the class of the value

will be transmitted to the FE and stored into a history database [7]. The transmitted

and stored data can be reduced even further by just transferring a class value when

it has changed since the last capture interval.
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Metric Module
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Back-End Metric Module

Metric Module

...

Back-End

Metric Module

Metric Module
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Metric Module
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Figure 2.1: The monitoring system as part of a RAS Framework. The Back-End is
executed on the compute nodes. It is constantly monitoring the nodes health state
and classifying the monitoring data. The data aggregation is performed on the (IC).
On the (FE) the data is written into the database.

To achieve the necessary fault tolerance, the front-end has to be highly available.

This can be done by having a redundant installation for the FE. The BE is the actual

monitor and is executed on all nodes that have to be monitored. In the case that a

node is going down (due to a failure or to a scheduled event) it has to be removed

from the TBŌN. To discover unscheduled downtimes the front-end needs to heart
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beat the BEs. The MRNet library has an build in mechanism to recover from an IC

failure, which requires the filter plug-ins to have a separate function to extract filter

states.

2.2.1 Front-End Damon

The FE is the head node of the monitoring system. It is responsible for the setup

of the TBŌN and to configure and start up the back-end processes. As all monitor-

ing data is send to the front-end, it is responsible to store the monitoring data for

the reliability analysis. The font-end will use a MySQL [26] database to store the

classified metric data.

To instantiate the TBŌN the FE has to pass a topology file to the network con-

structor of the MRNet library. The topology file contains a description of layout

and the participating hosts in the overlay network. The MRNet project provides a

tool to create the configuration file. The tool creates the topology file based on an

input file which contains the hostnames of the nodes that are part of the TBŌN.

The MRNet library has two different modes to set up a network. In the first mode

the MRNet library creates all internal and back-end processes using a remote shell.

If the target system uses a process management system and the back-end processes

can not be started directly, the second mode starts only the internal processes and

creates a file that contains a list of startup parameters for the back end processes.

Then it waits for the BEs to connect autonomously.

After the network is set up, the FE has to establish a configuration stream to send

the configuration to the BEs. The configuration of the monitoring system is stored

in a second configuration file. It is structured in sections for different aspects of the

configuration (e.g. database, metric). To provide the back-end processes with the

metric configuration (capture interval, the intervals for the classification) the front-

end has to read the metric section of the configuration. After the configuration is

passed to the back-end processes, the front-end waits for the back-ends to acknowl-

edge. If the configuration is acknowledged by the back-ends, the front-end sends a

message to start the monitoring process.

The monitoring data is received by a thread that listens for incoming packets.

The listener thread receives the incoming monitoring data. The data is stored into

the history database.
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2.2.2 Back-End Damon

BE processes are the most essential part of the monitoring system. A back-end

process captures the system and system health metrics of its particular node.

There are different sources available to gather system related or hardware health

metrics. System related metrics can be found in the /proc directory on the most

Unix-type systems. The /proc directory is a virtual file system that is dynamically

created by the OS kernel during runtime. It provides information to the running pro-

cesses, the system hardware, and the kernel. Hardware health metrics can be read

from integrated sensor chips or special monitoring hardware by using the different

available open source libraries (libsensors, OpenIPMI) or vendor specific libraries.

After the startup, either directly by the frond-end, a process management system

or an administrator, the back-end connects to the TBŌN provided by the MRNet

library. After the network is set up, the back-end waits to receive a configuration

message from the front-end. The configuration message includes all the necessary

information for the different metrics to collect.

The back-end will use modules to access different kinds of metrics. To reduce

the overhead as much as possible, the back-end will only load the modules that are

needed. While processing the different sections in the configuration received from

the FE, the back-end will load the necessary modules. For each module the BE will

register the metrics that have to be captured and assign an identifier (ID) to each

metric. The ID is used to refer a transmitted metric class value to the according

metric.

When the configuration is finished, the process will send a message to the front-

end to either communicate failures or to acknowledge the configuration. If the con-

figuration was loaded without failures, the message contains the metric configura-

tion with the associated IDs. Otherwise, it is used to transfer an error message.

After sending the acknowledgment message, the BE suspends its execution until

the FE sends a message to start the monitoring process.

To capture the monitoring data the back-end starts a separate thread. The capture

thread executes an infinite loop until the thread is stopped. Inside the loop, the

values for the registered configurations are read and stored in an internal structure.

To reduce the amount of data that has to be transported the BE will classify the

metric value. Therefore the BE determines the class of each metric value according

to the configuration of the intervals for the particular metric. To reduce the mes-

sage size even further, the BE will only store the class of a metric into the internal
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structure if its class value has changed since the last capture interval.

After all metrics for a certain interval have been captured the thread sends the

metrics stored in the internal structure to the FE. To send the captured and classified

data to the FE, the system will use a dedicated stream to transport the metric values.

After the metric class values are transfered to the FE, the capture thread will

suspend its execution until the next capture interval. To keep the capture intervals

as accurate as possible the pselect(...) function will be used, since it uses

the most accurate time structure and timer available. To determine the timeout, the

program will take a time stamp when the loop is started and a second time stamp

before it suspends. The difference of these two timestamps is the time that the

capturing process took, and that has to be subtracted from the timeout to the next

interval.

2.2.3 MRNet Filter Plug-in(s)

The filter plug-in is loaded by the intermediate children during runtime and asso-

ciated to the stream that is used to transport the metric class values. To load the

plug-in into the IC it has to be built as dynamically loadable library (a shared object

file on UNIX systems).

The intermediate children receive all packages from their particular children (ei-

ther a BE or another IC), and apply a filter function to the data associated with a

particular stream. The filter function for the metric stream aggregates the metric

class values of the received packages and arranges the data into a new packet. The

new packet is sent up the TBŌN, either to another IC or the front-end.

The MRNet library provides the possibility to store the current state of a filter.

The state data is used to recover the packet states if an IC fails.
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3 Implementation Strategy
3.1 Prerequirements

The monitoring system relies on some third party libraries that have to be installed

on the system and will be described in the following sections.

3.1.1 MRNet - A Multicast/Reduction Network

The MRNet software distribution is the foundation for the presented monitoring

system. It provides a library, libmrnet.a, and the mrnet_commnode program

that runs on the intermediate children and provide the communication between the

frond-end and the back-end processes.

The library provides an API to access the functions of the TBŌN. MRNet is an

implementation of a TBŌN provided by the Paradyn Project [27] from the Com-

puter Sciences Department of the University of Wisconsin.

The MRNet library implements an efficient way to communicate with a large

amount of nodes and to distribute processing functionality across multiple nodes.

The front-end application is the root of the logical tree and the back-end processes

are the leaves of the tree. The nodes between the root and the leaves are the ICs.

They are used to process the data flowing up or down the tree. MRNet provides

functions to assign filter functions to the data by loading plug-ins on the IC.

Since there is currently no binary distribution available, it is necessary to build

and install the MRNet library and the executables, before it is possible to compile

the monitoring system. The sources for the MRNet library and the documentation

are available at the MRNet project page (http://www.paradyn.org/mrnet/).

The library has to be installed on all nodes that are part of the TBŌN (FE, ICs

and BEs). Furthermore it has to be ensured that the library and executables can be

found on the nodes by setting the according environment variables.

The following subsections will explain the major parts of the API in more detail.

End-Points

An MRNet end-point is an application process (back-end) running on the leaf nodes

of the overlay network. The communication between front-end and back-end works

through streams. While the front-end can communicate to all back-ends or groups

of back-ends (by using communicators) in a unicast or multicast fashion, back-end
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processes can only send messages to the front-end, but not directly to each other.

Communicators

A communicator is the MRNet way to represent a group of back-ends similar to a

communicator in Message Passing Interface (MPI). Communicators provide a han-

dle that identifies the end-points for point-to-point, multicast, or broadcast commu-

nication. Where MPI applications typically have a non-hierarchical layout, MRNet

enforces a tree layout for all processes with the front-end as its root. Therefore the

front-end is responsible to create and manage the network and communicators.

Streams

The streams are the logical channels for the communication from front-end to the

back-end processes. All communication uses a stream either as downstream, be-

tween the front-end and the back-end processes or as upstream in the opposite di-

rection. Streams transport the data in a specific type that can be specified with

format strings (see Appendix B) similar to the C style formatted I/O.

Filter

Filter are functions that are contained in the filter plug-ins. To process the data,

while it is flowing through the network, a filter function can be associated to a

stream. A filter function is associated to a stream at the streams creation. MR-

Net uses two different filter types, synchronization and transformation filter. The

synchronization filter organizes the flow of the data through the network and the

transformation filter works on a packet of a specific type.

A synchronization filter is only working on the upstream. The MRNet library

currently supports two types of synchronization filters:

SFILTER_WAITFORALL The filter plug-in waits to receive the packets from all

its children before the packets can be processed.

SFILTER_DONTWAIT A received packet will be processed as soon as it arrives

at the filter.

The transformation filter can be used in both directions. They are used to com-

bine multiple packets and perform computational operations on them. Therefore, a

specific format string has to be specified for the filter. The format string of a partic-

ular packet and the stream filter function format have to be the same that the packet

is processed.
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Startup modes

The library supports two modes to initialize the TBŌN.

Mode 1 In the first mode MRNet creates all intermediate and back-end processes

for the TBŌN using the specified topology. The topology is defined in a con-

figuration file (see Appendix A.1.3) that contains the nodes and their position

in the TBŌN. The front-end starts the first level of the tree processes using a

remote shell. The newly created processes will establish a network connec-

tion to the process that created them. After the network connection is created

the newly created processes will receive the configuration of the subset of the

TBŌN. The configuration is used to instantiate the sub-tree of the according

processes. This is done, until the TBŌN is completely instantiated.

Mode 2 The second mode is used, when the system is instantiated with a process

management system. In this mode the library instantiates only the internal

nodes as in the first mode. The back-end processes are not created. The pro-

gram that uses MRNet has to wait for the back-ends to connect autonomously.

3.1.2 Boost C++ Libraries

Boost is a collection of free, widely useful and usable software libraries that are

working well with the C++ standard library. The monitoring system is using the

program options and the serialization library and some data types defined by Boost.

Boost is available as binary distribution for many architectures.

3.1.3 lm-sensors

Libsensors is part of the lm-sensors project [17] that is available for most avail-

able Linux distributions. The lm-sensors project provides access to many hardware

monitoring capabilities in today’s computer systems. The project continues to be in

development and provides access to the monitoring capabilities by using OS kernel

drivers, a user-space library, and tools.

The monitoring system accesses hardware monitoring capabilities by utilizing

the functions provided in libsensors. To use the library lm-sensors has to be installed

and properly configured. The functions provided by the library are defined in the

sensors/sensors.h header file.

3.1.4 MySql++

To store the captured monitoring data the monitoring system is using a MySQL

database. To access the MySQL database the monitoring system utilizes MySql++
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[1]. MySql++ is a C++ wrapper for MySQL’s C API. It provides functions to open

a connection, handle queries and results, and to deal with exceptions.

3.1.5 pthreads

To use threads inside the programs, both, the front-end and the back-end, utilize

the pthreads library. It provides a Linux implementation for the IEEE POSIX

1003.1c standard. The pthreads library provides functions to manage threads, mu-

texes to lock critical sections, condition variables to communicate between threads

that share a mutex and routines for thread synchronization.

3.1.6 libltdl

The libltdl library is part of the libtool package [14]. Libltdl provides an interface

that hides the complexity of the usual dynamic object loading mechanisms using

the dynamic loader provided with libdl. Modules are loaded with a simple call to

lt_dlopen which returns a handle to the loaded module. Each module provides

a getInstance() function that is called to instantiate the module. To find the

function in the module and to instantiate it, the address to the getInstance()

function is looked up with a call to lt_dlsym. Due to the different naming scheme

of C and C++, the getInstance() function in the modules has to be marked as

C code using the "extern "C"" declaration.

To avoid problems with different library versions, the library itself is contained

in the project and will be compiled during the build process. Libtool needs to be

provided with the -module switch to build libltdl compatible modules, which is

done in the corresponding Makefile.am in the modules subdirectory of the back-

end source tree.

3.1.7 libconfig

Libconfig [13] is a library to process structured configuration files. It is used in the

FE to read the configuration. The library uses a compact file format. Additionally

it is type aware, so no string parsing is necessary.

3.2 Development Environment

The software is implemented in a Linux environment because most HPC environ-

ments are running on it. As database management system MySQL is used. To build

the project the GNU autotools [10] are used. Since the MRNet API is written in

C++ it is also the programming language for this project.
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The source and header files are structured inside the project directory. All header

files are located inside the include directory, the source files are to be found in

the src directory. The sources again are structured in directories. Every part of the

system has its own directory (be, fe, filter...).

All directories contain a Makefile.am file to configure the make system for

the corresponding directory.

3.3 Implementation

The monitoring system consists of three parts, front-end, back-end and filter plug-

in (see Section 2.2). The implementation of the monitoring system will start with

the very basic implementations of front-end and back-end. The goal for the first

implementation phase is to have a working network communication between front-

end and back-end. The next step is to implement the module loading mechanisms,

the modules for the back-end and the classes needed to load, serialize and transmit

the back-end configuration. In the last step the filter plug-in and possible add-ons

will be implemented.

The following sections will give a brief description of the parts of the monitoring

system and how they have to work together to capture and reduce the monitoring

data, and to store the health state of a HPC system into a history database.

3.3.1 Front-end

The front-end is the root process of the monitoring system. It has to evaluate the

command line, read the configuration and is responsible to start up the TBŌN and

all belonging processes. After instantiating the TBŌN the metric configuration has

to be transmitted to the BE processes. The BE processes will acknowledge the con-

figuration with a message, that has to be verified by the FE. After the initialization

and configuration, the FE will start the monitoring process. The monitoring data

has to be received by the FE and stored into the database.

To read and validate the command line parameters, the front-end will utilize the

boost_program_options library, which provides an easy to use interface to

an extendable command line parser. The command line is used to pass the path

to the topology file, the configuration file and to the back-end executable (see Ap-

pendix A.1.1) for the command line parameters). If the BE processes can not be

started by the FE the number of back-ends has to be defined instead of the back-end

executable. This will cause the FE to use the second startup mode of the MRNet

library (see Section 3.1.1).
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To read the configuration file the front-end uses libconfig [13] that provides a

C++ interface to a configuration file parser. Since the objects provided by libconfig

provide only access to a static data structure that is hidden in the library there is

a need for an own data structure to send the configuration to the back-ends. The

configuration structure therefore needs to be serializable. To have a serializable

data structure a set of classes will be implemented that can be serialized using the

boost_serialization library and represent the structure of the metric con-

figuration.

The front-end builds the data structures according to the configuration. To pass

the configuration objects to the back-ends they have to be serialized. To serialize

the objects the boost serialization library will be used. Therefore all serializable ob-

jects have to implement an accessor method that is called by the Boost serialization

library.

To pass the configuration to the back-end processes the front-end uses TBŌN

that is provided through the MRNet library. Both, the front- and the back-end have

to be linked against libmrnet to utilize the library. To use the TBŌN provided by

MRNet the front-end has to create a network object and to associate a topology to

it. The topology has to be configured in a separate configuration file. The file’s

location is passed to the front-end by command line and used to create the network

object.

The MRNet library supports two different kinds of network creation. The first

method starts all processes needed by the software (intermediate and back-end pro-

cesses) and the second method only starts the intermediate processes. In the second

mode the back-end processes have to be started separately either by a job submis-

sion system or an administrator. The front-end will support both start up mecha-

nisms. If the second mechanism is used, the front-end has to create a file, that stores

the connection parameters for the different back-end processes.

If the network object is created successfully, the front-end can create a commu-

nicator that contains all back-ends (broadcast communicator) and create a stream

object with all back-ends in the communicator subsequently. The created stream

(configuration stream) is used to pass the metric configuration to the back-end pro-

cesses by sending the message that contains the configuration. After the configu-

ration is send, the front-end waits for the back-end processes to acknowledge the

configuration and to start the monitoring process. To start the monitoring process,

the front-end will create a second stream for the monitoring data and assign a filter
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function to it. To receive the incoming packets a listener thread that receives all

messages from the TBŌN is started and the the monitoring process is started by

sending a message to the back-ends.

3.3.2 Back-end

The back-end is responsible to capture the metric values from the different sources.

To be as portable and flexible as possible the reader for different metrics are im-

plemented as modules that can be loaded dynamically by the back-end. As part of

this work the program will support two different kind of metric modules: one that

uses the information provided by the kernel in the /proc file system and a sec-

ond that uses lm-sensors [17] to read metric values from hardware sensors. To load

the modules the back-end will utilize libltdl (see Section 3.1.6) that is part of the

libtools [14] package.

Through the modular design the software can easily be extended to capture mon-

itoring data from other sources by adding a new modules to the monitoring system.

Therefore all modules have to use the same interface to access the metric reader. To

to achieve the required portability and modularity the modules will all use the same

base class that defines all methods to instantiate the reader in the module.

A metric reader is implemented for each metric covered in a certain module. It

implements the methods to capture and return the currrent metric value.

To load the modules during run time, the back-end needs to know what metrics

will be captured and which module is needed. Therefore it has to be configured.

Although the back-ends could load the configuration for their own it is more con-

venient to have a centralized configuration. Separate configurations for front-end

and back-end would make it necessary that all compute nodes either share a net-

work file system or the configuration for every node has to be maintained. So the

configuration will be provided by the front-end.

To receive the metric configuration, the back-end has to instantiate the TBŌN.

In the case of the back-end the connection parameters will be provided by the com-

mand line. The parameters for the start up of the back-ends are either provided by

the front-end if the automatic start up is used or they can be read out of the file

written by the front-end for the separate back-end start up.

After the network is set up, the back-end processes wait for the configuration to

be transmitted by the front-end. When the configuration message is received, the

content is deserialized and the configuration is accessible in the back-ends. The con-

figuration is structured. A configuration object contains an object for each module
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that has to be loaded. The module objects again are a container for the configura-

tion of the different metrics that have to be captured by the module. The back-end

iterates through the configuration and loads all modules and registers the readers for

the configured metrics. After setting up all reader the back-end acknowledges the

received configuration and waits for a message to start the monitoring process.

The monitoring is done by a separate thread. The monitoring thread iterates

over the registered reader and sends the different metric values in to the front-end

using the TBŌN. The thread is stopped, when an quit message is received from the

front-end and the back-end process exits.

3.3.3 Filter Plug-in

The filter plug-in is executed on the intermediate processes of the TBŌN. A filter is a

shared object, that can dynamically loaded by the intermediate processes. It defines

filter functions which can be associated to a data stream. To aggregate the data

send by the back-end (actually by the child processes of the intermediate process)

the filter plug-in will implement a function to merge the different incoming packets

into a new packet and send it to its parent. To load the filter plug-in the front -end

uses a dedicated MRNet method to load the filter on all intermediate processes. All

processes that need to load the plug-in must know where to find the plug-in (by

providing the path in the environment).

The filter plug-in can implement different filter functions. MRNet defines a nam-

ing scheme for all parts of a filter function. The function name itself has to end with

a “_func” suffix.

As a filter function is assigned to a stream and it can be possible to use a stream

with different packet types (by defining different format strings, section 3.1.1) a

filter function needs to know the format of the packet it can work on. The format

string has to be defined by a symbol that is named with the filter function name and

the “_format_string” suffix (e.g. Merge_func_format_string). All

packets using the specified format are processed by the filter function.

3.3.4 Communication

The MRNet library uses streams to send data through the TBŌN. To send data to

a stream, the data has to be packed into a packet. The format of the packet has to

be specified to match the containing data. To specify the data format MRNet uses

format strings (see Section B) similar to the standard c library. To classify the data

in a packet a tag has to be assigned to the packet. The tag is an unsigned integer and
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can be chosen by the developer. Since it is used for MRNet internal communications

as well, it has to be higher than the value defined in FirstApplicationTag

(mrnet/Types.h).

To send simple messages like “start monitoring”, “stop monitoring” and so on

it is sufficient to send a packet and determine the message on the tag. In this case

an empty format string can be provided. If the packet contains data it is necessary

to provide a data format and can be added to the packet in the same fashion as in

the standard libraries printf(...) function. The format that will be used in the

monitoring system is “%auc” which specifies the data as an array of unsigned chars

(bytearray).

The monitoring system will use two different streams. One stream for the config-

uration and command data and one stream for the metric values. The metric stream

will have a filter function assigned to it to merge the packets flowing up the TBŌN.

3.4 Testing

To test and debug the software and to collect data for the evaluation the system will

be tested on the development workstation (preferably for testing and debugging)

and on the XTORC cluster (a small 64 node system in the Computer Science and

Mathematics Division at the ORNL).

There are different tests to conduct to either measure the amount of data produced

by the monitoring system over a defined period of time or how it handles faults in

the underlying tree (e.g. back-end or communication node failures).

To collect the monitoring data over a period of time the system has to run with

a reasonable configuration either on one machine with multiple instances or on a

cluster system. A reasonable configuration would be a similar or same configuration

to the tests in [15]. To gather accurate data that show a usual usage pattern, the

machine should have some work load system during this time. Additionally it may

be usable to cover up fan intakes to artificially increase the systems temperature and

therefore a change of the gathered data.
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4 Detailed Software Design

This section describes the design of the implemented monitoring solution. All pro-

grams deployed with the monitoring system and their components will be discussed

in detail and the interaction of all components will be explained. (see Figure 4.1)

shows the basic process of starting the monitoring system and capturing the moni-

toring data.

The Front-End is started on the monitoring host. After its start up it loads the

configuration and initializes the TBŌN. The MRNet library starts the Back-End

processes while the TBŌN is created. After the TBŌN is set up and the Back-End

are running the Back-End configuration is read by the Front-End and transmitted

to the Back-Ends. All Back-End processes load the Modules according to the con-

figuration and send a validation message back to the Front-End. The messages are

validated by the Front-End and if no errors are reported the monitoring process is

started.

Front-End Back-End

load Configuration

Initialize TBON Create Back-Ends Connect to TBON

load Modules

validate Configuration register Reader

Create monitoring thread

capture metrics

wait to next interval

start Monitoring

acknowledge Configuration

transmit Configuration

create listener thread

store metrics transmit metrics

Figure 4.1: The basic procedure of the monitoring process. The Front-End ini-
tializes the TBŌN, loads and transmits the configuration. The configuration is ac-
knowledged by the Back-End and validated on the Front-End. If the configuration is
valid the actual monitoring process is started. The Back-End captures and transmits
the metrics and the Front-End receives and stores the metrics into the database.

4.1 Front-end Daemon

The font-end daemon is the main application of the monitoring system. It should

run on a monitoring node and is responsible to control the monitoring system, for
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it’s start up and the configuration of the system. All captured monitoring data will

be send to the front-end daemon which will store the metric data into a MySQL

database.

The front-end program main source code file is rasmonfed.ccwhich contains

the main function and some functions to start the front-end application as a system

daemon. After the program start an Application object (see Section 4.7.1) is

instantiated. The Application class is implemented using the singleton design

pattern what makes it possible to access the Application object from every rou-

tine of the program by calling the static getInstance() method. Inside the

Application class all the functions to initialize and set up the monitoring sys-

tem, as well as the main loop to handle incoming packets are implemented.

The basic program flow of the front-end is divided into tree parts, initialization

and configuration of the TBŌN, receiving and processing of the monitoring data

and the shutdown of the monitoring system. The following sections will describe

these parts.

4.1.1 System Initialization & Configuration

To initialize the front-end the first step for the program is to create the programs

main object, the Application (see Section 4.7.1) instance and to parse and val-

idate the command line parameters. To parse the command line parameters the

main arguments are passed to the initialize(...) method of the Appli-

cation object (see Section 4.7.1). If all required parameters are provided, the

program continues otherwise a error message is written to the Log and the program

exits.

After parsing the command line parameters the program determines either if it

has to run as daemon or as interactive program. The default is to run as a daemon

and call the daemonize() function.

To run the program as a daemon, the first step is to fork a new process. While the

original process will exit, the new created process will call setsid() to detach

the process from its parent. To ensure that just one daemon is running the process

opens a lock file and tries to lock the file with the lockf(...) system call. If the

lock file can not be opened or locked the program exits.

The next step that is required for running as a daemon is to register the signals

that it wants to receive. When the system is quitting a program it sends a SIGTERM

to the program. If the configuration has to be reloaded a SIGHUP can be send.

To receive the signals and to handle them, the program has to register a callback

26



Detailed Software Design Swen Böhm

function to handle the signal. For simplicity there is only one signal handler in

the font-end signal_handler( int sig) function that handles all registered

signals.

When the front-end is set up the configuration files are parsed. The locations

of the two configuration files for the monitoring system are provided by command

line parameter and stored in variables in the Application object. One file will

describe all the necessary settings for the monitoring system itself and a second file

will describe the topology of the TBŌN and is needed by the MRNet library.

A call to the loadConfiguration(...) method loads and parses the sys-

tem configuration file utilizing the libconfig library [13] (see Section 3.1.7). The

file contains two main sections, one section for the front-end configuration and on

section for the metric configuration. The file format is described in the program

documentation (see appendix A).

If libconfig returns no errors, the next step for the Application class is to

setup the TBŌN. To set up the network MRNet requires a configuration file that

contains the description of the of the networks tree structure. The location to the

configuration file is passed to the network constructor. To set up the network the

Application class calls the setupNetwork() method.

After the network is set up, the metric configuration will be parsed and passed

to the back-ends. To represent the configuration and to send it to the back-ends the

front end builds a serializeable structure of the configuration. The following classes

are needed to represent the configuration:

• MetricSectionConfiguration

• MetricModuleConfiguration

• MetricConfiguration

• MetricSetting

The configuration is explained in detail in section 4.6.

If the configuration is parsed without error the object tree will be serialized and

send to all back-ends. The details of the communication through the TBŌN are

explained in section 4.3. After the configuration was sent, the front-end has to

wait for the back-ends to acknowledge the configuration and to return the ids of the

metrics. The ids are used to associate the package containing the class value to the

according metric.
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4.1.2 Processing Monitoring Data

Before the monitoring process is started, the front-end waits for the back-ends to

acknowledge the transferred configuration. The Acknowledgment is necessary to

verify that all back-ends have initialized the metric modules successfully and no

error has occurred during the initialization. Additionally the back-ends assign an id

to the metrics that have to be the same for all of them. If the verification shows any

differences or errors, the front-end writes an error message end will shut down.

If the verification succeeds the front-end initializes a new stream to transport

the metric data. The metric stream has a filter assigned to it, that is responsible to

merge the packets from its children to one single packet (for details see 4.5). Af-

ter the filter is loaded and the stream is created without errors, a PacketQueue

(see Section 4.7.22) and a PacketListener (see Section 4.7.21) are instanti-

ated. The PacketListener is started and the back-ends are notified to start the

monitoring. The notification is send through the metric stream. This is necessary

that the back-end can store and utilize the instance of the metric stream to send the

metric values.

As soon as the listener is started it monitors the network event provided by the

MRNet library. If a packet is send the event is triggered and the listener returns

from the pselect call, takes a time stamp and reads the available packet. The

time stamp and the packet are stored into a structure and the structure is added to a

queue.

The second thread is responsible to process the received messages.

Processing Packages

The processing is done by the main thread. After all initialization is done the

run() method of the Application object is called. The run method instan-

tiates the PacketListener and the PacketQueue objects, creates the metric

stream and sends the message to start the monitoring. After starting the Pack-

etListener thread, the application enters a infinite loop that determines if pack-

ets form the back-ends are available in the PacketQueue by calling the queues

getPacket() method. If a packet is available, the method returns the first packet

in the queue, otherwise it blocks the call until a new packet is available. This imple-

mentation ensures that it is not necessary to poll the queue for available packages.

The MRNet library requires to associate a packet with a tag, which are used to

determine the type of the packet. There are several types for different purposes,
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including the current packet to transfer the metric values from the back-ends to

the front end. Inside the loop the tag is used to determine the action by a switch

statement.

All packets have a tag, based on which the different packets can be distinguished.

The packet tags are defined in mrn-communicator.h and are used through all

programs.

4.1.3 System Shutdown

To trigger the shutdown of the system, the program has to receive either the SIGKILL,

if it is running as daemon, or the SIGINT signal if it is running in interactive mode.

The shutdown is handled in the signal handler that is registered for the according

signals.

To shutdown the system properly the front-end informs the back-end processes

by sending a quit message, to inform the BE that the system is going to shut down.

The back-ends stop the execution of the capture threads and exit. The front-end

stops the listener thread, empties the buffers and closes all open handles.

After all threads are stopped, allocated memory is cleaned up and the front-end

exits.

4.2 Back-end Daemon

The back-end daemons are going to run on all hosts that have to be monitored. In

the current implementation of the monitoring system they have to be started through

the frond-end process.

As well as the front-end, the back-end has to initialize the TBŌN using the MR-

Net library. Instead of passing a topology file to the network constructor, the back-

end needs a server address and a port number to initialize the network. These pa-

rameters are passed to the back-end during the start up. The connection parameters

are set with command line parameters, either by the MRNet internal mechanisms

for the network instantiation or by an administrator or resource manager if the sec-

ond startup mode is used.

After the network is set up, the back-end enters a infinite loop and listens on the

network for incoming packets. The incoming packets are categorized by their tag.

Inside the loop a switch statement controls the process flow. The current implemen-

tation differentiate three tags: RASMON_CONF, RASMON_START_MONITOR and

RASMON_EXIT.

The detailed actions to the packages with these tags are described in the follow-
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ing sections.

4.2.1 Configuration

After the back-end process joins the TBŌN it listens for incoming packets. If a

packet with the tag RASMON_CONF arrives the pointer to the stream associated

with the packet is stored in the mp_ControlStream variable and the setUp-

BackEnd(...) function is called and the packet containing the configuration

provided by the front-end is passed to it. The configuration message is described in

section 4.6.

The setUpBackEnd(...) function unpacks the packet and deserializes the

containing message using boost::archive::binary_iarchive. As a re-

sult the MetricSection (see Section 4.7.16) object is available in the back-end.

The metric section is passed to the loadModules(...) function.

To load the metric modules (see Section 4.4) the back-end processes utilizes

libltdl which is part of the GNU libtool project [14]. Before libltdl can be used,

a call to lt_dlinit() is required.

To load the modules the loadModules(...) function iterates through the

content of the MetricSection object. The MetricSection object contains

a MetricModuleConfiguration (see Section 4.6.2) object for each config-

ured module. The module filename scheme is mod<name>.la and the has to be

assembled by attaching the module name, that is included in the MetricModule-

Configuration object, to the “mod” prefix and appending the “.la” postfix (e.g.

modmemory.la).

A call to lt_dlopen(...) loads the module and returns a handle to the

module. With that a call to lt_dlsym( lt_dlhandle, “getInstance”)

can be used to receive a pointer to the function with the provided symbol, in this

case “getInstance”. A call to the function pointer initializes the module and returns

a pointer to the module object, that is stored in a std::map with the module name

as key. The function returns an integer value after all modules are loaded that is

indicating if an error has occurred.

After all modules are loaded successfully the metric readers for the according

metrics are instantiated by calling the registerReader(...) function and

passes the pointer to the MetricConfigurationSection to it.

The registerReader(...) function processes all configuration objects in

the MetricConifurationSection in an outer loop. The MetricModule-

Configuration object contains a set of MetricConfiguration that are
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processed in an inner loop. For each metric configured inside a particular module

configuration the getMetricReader(...) function of the according module

is called and the corresponding configuration is passed to it. As result a Metric-

ReaderCollection object containing the pointer to a MetricReaderInfo

(see Section 4.7.14) object (in case of the network module, the pointer to the Metric-

ReaderInfo objects for each configured network device) is returned.

The pointer to the MetricReaderInfo objects contained in the Metric-

ReaderCollection are stored into a multimap using the interval as the key.

When all MetricModuleConfiguration objects are processed, the function

returns, the configuration is send to the front-end for validation and the back-end

waits for a new message from the front-end.

4.2.2 Capturing Metric Values

When the back-end has initialized all metric reader objects and the metric config-

uration is send to the front-end, the back-end suspends its execution until a packet

is received. To start the monitoring, the BE waits for a packet that contains the

RASMON_START_MONITOR tag. The packet containing this tag is send by the FE

through the metric stream.

As soon as a back-end receives this packet the pointer to the stream is stored

to a dedicated variable and all metrics are send to the front-end using this stream.

To capture the metrics the back-end instantiates a MetricController (see Sec-

tion 4.7.5) object and assigns the network and the metric stream to the object.

The MetricController class is derived from Thread (see Section 4.7.23)

class and runs in a separate thread. After instantiating the MetricController

the start() method is called and the capturing of the metric values begins.

The MetricController executes an infinite loop that is capturing the met-

ric values. A detailed description of the MetricController can be found in

section 4.7.5. After the MetricController is started the main thread enters the

listening loop again and waits for new instructions.

4.2.3 Back-end Shutdown

To shut down the back-ends, the front-end will send a message that is tagged with

the RASMON_QUIT flag. If the quit message is received by the back-end it stops

the MetricController thread and waits until it joins the main thread. Subse-

quently the back-end frees all allocated resources and exits the receive loop.
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4.3 Communication

The MRNet library is implementing a TBŌN that connects all back-ends with the

front-end. To instantiate a network the library needs a configuration file, that con-

tains the layout of the network. After the network is set up, a communicator has to

be instantiated. A communicator is network specific and the creation methods are

are functions of a instantiated network. There are two ways to instantiate a com-

municator, either using new_Communicator to create an empty communicator

or the get_BroadcastCommunicator() function to create a communicator

containing all back-ends available in the network to the time of its call.

To send messages, the MRNet library uses streams. Streams are also network

specific and created by calling the new_Stream method of the network instance.

A stream is associated with a number of endpoints, that are expressed by a commu-

nicator passed to the new_Stream call. The filters are also associated to a stream

object and there are three more parameters to pass to the call, to set up the filters

that have to be used in the according stream.

MRNet defines three types of filter, the upstream filter that is applied to all data

flowing from the back-ends to the font end, the synchronization filter which deter-

mines whether a intermediate node of the network waits for all child nodes to send

their data or not and the downstream filter that is applied to all packets from the

front-end to the back-ends. The filter can either be associated by their filter id or

by using a string. Using the filter id applies the filter to all nodes in the described

by the communicator associated with the stream. Applying the filter with a string

offers the possibility to assign a filter to a subset of nodes in the stream.

4.3.1 Send Data

Data packets are send through a specific stream, so the MRNet library provides a

send method for a stream object. To send a packet a tag and a format string are

required. The tag is used to classify the data in the packet. It can be freely chosen

by the developer with the restriction that it is greater than or equal to the constant

FirstApplicationTag defined by MRNet (mrnet/Types.h). The format

string describes the containing packet data (see appendix B).

To ensure the that the packets are send immediately after the send method returns

without error a call to Stream::flush() commits a flush of all packets in the

buffer of the stream.

The monitoring system uses a wrapper to call the send operation. It is imple-
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mented as a static function in the MRNCommunicator class (see Section 4.7.19).

4.3.2 Receive Data

The MRNet library provides a network and a stream specific method to receive data

packets. Both methods return an integer value to indicate the return status of the

call and have to be provided with pointers to the variables that store the tag and the

packet and a flag to indicate if the call has to block or not. The network specific

read method additionally requires to pass a pointer to a variable to store the stream

where the packets have been read from.

The variable to store the tag is an integer value and has to be passed as a pointer.

To store the packet, the MRNet library provides a PacketPtr class to store the

content of a packet and has to be passed as reference.

4.4 Metric Modules

The metric modules are the part of the software solution that is actually responsible

to capture the monitoring data. Each module is a dynamic loadable module and

has designated capabilities. The modules are responsible to capture the monitoring

data from a specialized data source. Picture 4.4 depicts the basic layout of a metric

module.

The systems currently has 4 different metric modules (Network, Memory, Load-

Avg and Sensors). Each of this modules implements a set of metric reader specific

to the modules domain. The actual implementation of a single module varies with

the data source but the methods to access the module have to be consistent for all

modules.

Metric Module

Metric Reader
.
.
.

Metric Reader

Figure 4.2: A metric module is a dynamic loadable object. Each module contains
the methods to initialize the module and to return the metric reader that are con-
tained in the module.

To achieve this all modules provide a similar interface to access the internal

functionality by extending the Module class. The functionality of a module is
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hidden from the back-end process through a class hierarchy.

Each module implements a class that is derived from the Module class (see

Section 4.7.18). All modules are implemented by using a singleton design pattern

to ensure that only one instance of a certain module will exist during run time. The

abstract Module class defines a virtual function (getMetricReader(...)) to

instantiate the reader objects responsible to access the metric data provided by the

certain module.

The (getMetricReader(...)) needs a MetricConfiguration object

as parameter and returns a pointer to a MetricReaderInfoCollection ob-

ject. The information provided inside the MetricConfiguration is used to

determine which reader has to be instantiated. The MetricReaderInfoCol-

lection object is a container that allows to return more than one reader. This is

used by the network module. All reader objects returned are of the type Metric-

ReaderInfo, what allows the system to capture the metric values without know-

ing the actual implementation of the reader. The MetricReaderInfo object

contains the pointer to the actual metric reader, a pointer to the configuration of the

metric associated with this reader and some variables needed by the capture process

(see Section 4.7.5).

The class for a particular reader object derives from the abstract Metric-

Reader class which defines the interface for all metric reader. The reader classes

will be discussed in the following sections that are covering the 4 modules.

To instantiate the a module, the back-end has to call the getInstance() func-

tion that has to be implemented by every module. Since the modules are loaded

through libltdl the getInstance() function has to be enclosed by a ex-

tern "C" { ... } definition. The getInstance() function creates the

according module object and returns the object pointer.

4.4.1 Network Module

The network module is responsible to capture the metric values of the network

devices. It is defined in the module-sensor.h file. The implementation can be

found in the module-sensor.cc file. It contains the metric reader that return

the information provided by the kernel in the /proc/net/dev file.

Since there is a metric for each of the activated network devices it is necessary

to differentiate between the devices. This goal is achieved by adding another class

into the hierarchy, that has a method to set and store the according device for the

corresponding reader. The MetricNetReader class is derived from Metri-
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cReader but does not implement the methods defined in MetricReader.

For each of the metrics the module provides a class that is derived from the

MetricNetReader class. Each metric reader class in the module implements

the getMetricValue(...) method that is defined in MetricReader class

to return the current metric value to its caller.

To read the metric values from the proc file system the module provides a

NetProcFileReader class which does the actual work of gathering the met-

ric values. The NetProcFileReader is implemented using a singleton pattern.

This is done to avoid unnecessary overhead since the reader itself will query the

/proc/net/dev file only once in an certain interval and return the values valid

in this interval to each of the reader.

Metric Readers

The different network metric readers derive from the MetricNetReader (see

Section 4.7.10) class. They implement the getMetricValue(...) metho that

returns the current metric value.

The network module currently supports 6 metrics.

1. BytesTransmit

2. BytesReceive

3. PacketsTransmit

4. PacketsReceive

5. ErrorsTransmit

6. ErrorsReveive

4.4.2 Memory Module

The statistics for the system memory are gathered by the memory module. It is de-

fined in the module-sensor.h and implemented in the module-sensor.cc

file. It is a very basic module, that reads its data from the /proc/meminfo file

which contains very accurate statistics for the usage of the memory.

For each of these metrics a Reader is implemented deriving directly from the

MetricReader class. Again the data is read from the file and processed by a class

derived from FileReader, the MemoryProcFileReader which is using the

singleton pattern as well. To get the current metric values the reader searches the

35



Detailed Software Design Swen Böhm

content of the file, this time for the keywords associated with the according metric.

The keywords are defined in the header file module-memory.h.

MetricMemoryProcFileReader

To capture the memory metrics, the MetricMemoryProcFileReader reads

the information contained in the /proc/meminfo. The metric values are ordered

in lines. They start with the metric name followed by a colon and the value in kB. To

read the values the file content is read into a buffer (a std::string). The string is split

up on the line ending and each substring is again split up on the colon. The metric

name is used as a key to store the metric values for the current capture interval into

a std::map and the value is stored as a integer value.

Metric Readers

The current implementation for the memory modules supports the following 10

metrics:

MemFree The amount of physical RAM, in kilobytes, left unused by the system.

Buffers The amount of physical RAM, in kilobytes, used for file buffers.

Cached The amount of physical RAM, in kilobytes, used as cache memory.

SwapCached The amount of swap, in kilobytes, used as cache memory.

Active The total amount of buffer or page cache memory, in kilobytes, that is in

active use. This is memory that has been recently used and is usually not

reclaimed for other purposes.

Inactive The total amount of buffer or page cache memory, in kilobytes, that are

free and available. This is memory that has not been recently used and can be

reclaimed for other purposes.

SwapFree The total amount of swap free, in kilobytes.

Dirty The total amount of memory, in kilobytes, waiting to be written back to the

disk.

Writeback The total amount of memory, in kilobytes, actively being written back

to the disk.

Mapped The total amount of memory, in kilobytes, which have been used to map

devices, files, or libraries using the mmap command.
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4.4.3 LoadAvg Module

The LoadAvg module is implemented the same way as the two modules above. It

definition can be found in the module-loadavg.h and the implementation in

the module-loadavg.cc file. The LoadAvgModule class is derived from the

Module class. The module implements the module instantiation as well as the

getMetricReader(...) method to return the MetricReader objects for

the metrics provided by this module.

The module contains a LoadAvgProcFileReader class that is derived from

FileReader and implements the necessary functions to read the load average

values that are provided by the kernel in the /proc/loadavg file.

The getMetricValue(...) method, implemented in each of the reader

classes, calls the readMetricValues(...) method in the LoadAvgProc-

FileReader class and returns the current metric value.

MetricLoadAvgProcFileReader

The MetricLoadAvgProcFileReader class implements all the functionality

to extract the information to the load average out of the /proc/loadavg file in

the readMetricValues method. If it is called, the values for the three different

load average values are read from the file and stored in a float variable for each of

them using the sscanf function.

To receive the values a method for each of the three values is implemented

(getLoadAvgOne, getLoadAvgFive, getLoadAvgFifteen). The func-

tions compares the provided time stamp (value of type timepec) with the last

capture time value and if they are the same it simply return the value stored in the

corresponding variable. If the values are different the get function calls the read-

MetricValues method and returns the value after the new values where read

from the /proc/loadavg file.

Metric Readers

Again there is a reader class that derives from MetricReader for each metric

provided by the module:

• MetricLoadAvgOneReader

• MetricLoadAvgFiveReader

• MetricLoadAvgFifteenReader
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4.4.4 Sensors Module

The sensors module is different to the 3 modules above. The class definition can be

found in the module-sensor.h file, module-sensor.cc contains the imple-

mentation. The Sensors module can query the growing amount of hardware sensors

provided by libsensorslibsensors [17] a Linux hardware monitoring solution. Lib-

sensors provides an interface to query the different hardware sensors provided by

the system and configured in the according configuration file. It requires a working

installation of lm_sensors and is configured in the sensors section of the metric

configuration.

The sensors module initializes the interface to libsensors during its instanti-

ation. While the module is initialized it searches the system for available sen-

sors and the metrics provided by these. To find all available sensors, the mod-

ule calls the initSensors(...) method inside its own constructor. In the

initSensors(...) method the libsensors library is initialized by calling the

init_sensors(...) function. The function needs the path to the sensors con-

figuration file, that is currently hardcoded into the function. If the library is initial-

ized properly the module continues its work, otherwise the method returns.

To load the metrics the module has to find the available sensor chips. Therefore

the sensors_get_detected_chips(...) function is called in a while loop

as long as the function returns a sensor chip.

To detect the available "features", the libsensors equivalent to metric, of the cur-

rent sensor chip, the sensors_get_features(...) function has to be called

in another while loop. As long as a feature is returned it is stored in the sensor-

feature map. The different metrics are identified by a label that is defined in the

lm-sensors configuration.

The sensors module implements the class SensorMetricReader that is de-

rived from MetricReader. Again the different reader objects are instantiated

by a call to the getReader(...) method of the module. To instantiate a Sen-

sorMetricReader it is necessary to pass a sensorfeature structure to the con-

structor. The structure contains all necessary information to read the metric of the

according sensor. It can be received from the sensorfeature map by the label pro-

vided in the configuration.
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SensorMetricReader

The SensorMetricReader class is a generic class. All possible metrics pro-

vided by lm-sensores are covered by it. To instantiate an SensorMetricReader

object the sensorfeature structure has to be passed to the constructor. The

sensorfeature structure contains all information to query the current metric

value with a call to getMetricValue. The getMetricValue itself calls the

sensor_get_feature function, provided by the libsensors library. A call to

sensor_get_feature returns the current metric value. The value is of type

double. Since the current implementation of the monitoring system uses only inte-

ger and float data types, the value is casted to a float. It is not likely that a loss of

accuracy occurs with the cast.

4.5 Filter Plug-in

The filter plug-in is associated with the network stream that transports the moni-

toring data from the back-end daemons to the front-end. It is provided as a shared

object file and will be loaded by the intermediate children of the TBŌN. To load the

filter plug-in the frond-end has to call a method of the network object which returns

a filter id that afterwards can be associated with a network stream.

Since MRNet uses dlopen the all C++ symbols must be exported as C symbols

by surrounding the functions with extern "C" { and }.

The structure of a MRNet filter is explained in the MRNet documentation. A

filter function has to use the following signature:

vo id f i l t e r _ n a m e (

s t d : : v e c t o r < P a c k e t P t r > & p a c k e t s _ i n ,

s t d : : v e c t o r < P a c k e t P t r > & p a c k e t s _ o u t ,

s t d : : v e c t o r < P a c k e t P t r > & p a c k e t s _ o u t _ r e v e r s e ,

vo id ∗∗ f i l t e r _ s t a t e ,

P a c k e t P t r & params )

To recover from failures of IC the filter has to implement another function to set

the state of the children moved to its sub tree of the TBŌN. The signature of this

function has t be the following.

P a c k e t P t r f i l t e r _ n a m e _ g e t _ s t a t e (

vo id ∗∗ f i l t e r _ s t a t e ,

i n t s t r e a m _ i d ) ;
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The current task of the filter plug-in is to repack the metric data in the incoming

packets into a single new outgoing packet. this is done in a loop, that iterates over

all packets and extracts the metric data and adds it into a new packed that after the

processing is done is send to its parent in the TBŌN

4.6 Configuration of Metrics

All parts of the software that are used by more than one program of the solution (for

example by the Back- and Front-end daemon) are part of convenience libraries that

are linked to the corresponding program during the compilation process.

4.6.1 MetricConfigurationSection

This class is a container class that stores the configuration objects for all modules

that are configured in the configuration file. Internally it is using a std::vector

to store the module configuration objects. To serialize the object the class utilizes

the serialization provided by the boost c++ library.

The serialization library requires the implementation of a serialize function,

that is called by the boost serializer. The boost serializer itself uses a access class

to access the serialize(...) function of the configuration. To allow access

to the internal data of the class the boost::serialization::access class

needs to be declared as a friend class.

To add MetricModuleConfiguratio objects to the container class it im-

plements a add(...) function.

4.6.2 MetricModuleConfiguration

The MetricModuleConfiguration class is responsible to collect all configurations

for the metrics defined in a specific metric module. Again the class is a wrapper for

a vector that contains the objects with the configuration for the metrics associated

with this specific module.

4.6.3 MetricConfiguration

In this class all necessary informations to configure the according metric are stored.

It is a wrapper for a map container of the Standard Template Library (STL) which

contains the MetricSetting object with the according value and the associated key

for the setting defined in the configuration file.

It implements a function to set a value which requires the key and the MetricSet-

ting object and a function to receive the MetricSetting for the according key. Again
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a serialize function is implemented to meet the requirements of the serializer.

4.6.4 MetricSetting

This class contains the value of a setting, which can be an Integer, a Float, a String

or an array of the associated types. The class implements functions to set and to get

the corresponding value(s) to query the value type, the amount of the stored value(s)

and if the MetricSetting object is an array. The values itself are stored in a vector of

the STL.

4.7 Classes

This sections discusses all classes in detail that are part of the software and are not

discussed in a different section.

4.7.1 Application

The Application class is the main object of the front-end. It uses a singleton

pattern to enable the access to the object from every other class of the program

without passing the pointer to it. A reference to the instance can be received by

calling the getInstance() method, that returns the instance to the object. If

no instance is created the getInstance() method will call the class constructor

and create an instance. The pointer is stored in a static variable.

The application class implements the following methods:

void Error (string message)

bool daemonize ()

void initialize (int argc, char **argv)

void run ()

bool setupNetwork ()

bool setupBackEnds ()

void shutdown ()

static Application * getInstance ()

static void Log (string message)
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setupNetwork()

The network initialization is implemented in the setupNetwork() method. It

instantiates the network object provided by the MRNet library. Since the network

has two different ways to be set up, the function has to determine which instantiation

method has to be used. For the automatic instantiation of the network with back-end

start up the back-end executable file has to be specified as command line parameter

otherwise the back-ends will be started manually and the front-end process has to

wait for all back-ends to connect.

Automatic Back-end instantiation

If the parameter for the back-end executable is specified, the containing variable

stores the path to the executable file and the network has to be set up with back-end

instantiation. To do so the setupNetwork() method calls the network construc-

tor with the path to the topology file and the path to the back-end executable as

parameter. The MRNet library starts the back-ends and the intermediate children

automatically and returns the network instance on success.

Manual Back-end instantiation

If the parameter is not specified, the constructor is only called with the path to the

topology file and the front-end has to wait until all back-ends have connected to

the TBŌN. To provide the administrator or a automated system with the necessary

information for the start up of the back-end processes, the front-end writes all in-

formation to a file that contains the hostnames of the intermediate children and the

ports for the back-ends to connect. After the file is written the function determines

the number of nodes that have to connect to the TBŌN and enters a loop that only

stops if all back-ends have joined the network.

setupBackEnds()

To configure the back-ends, the front-end calls the method setupBackEnds().

It first serializes the MetricSection (see Section 4.7.16) object. To serialize the

object the method uses a binary archive provided by the boost serialization library.

The binary archive is stored in a std::string which is subsequently send to the

back-ends using the MRNCommunicator (see Section 4.7.19). After the serial-

ized configuration is send to the back-ends the method waits for a message from

each back-end, that have to acknowledge the configuration. After all back-ends

have acknowledged the configuration and the messages have no differences in the
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acknowledged configurations, the method returns with a true otherwise with a false.

Error()

The Error method is used to terminate the application due to an error. It logs the

message that is passed as parameter to the log file and adds a “Error: ” prefix to the

message. After logging the message, all objects currently in use are deleted and the

application terminates using the exit(...) function.

run()

This methods is the actual implementation of the message handling. After some

initializations, the method enters an infinite loop. The brake condition for the loop is

a bool value indicating if the application is still running or not. After the method has

entered the loop, it reads a packet out of the PacketQueue (see Section 4.7.22)

by calling the queues getPacket() method. This method suspends the thread

as long as no packet is available otherwise it returns the MRNPacketInfo structure

containing the packet.

After the getPacket() methods return, the returned pointer is checked for

validity, since in case the PacketListener (see Section 4.7.21) gets stopped it

has to return a last packet to release the getPacket() method. If the pointer is

valid, the packet can be processed. The tag of the packet is used to determine the

further actions in a switch statement, even though there currently are only packets

with metric values expected there it might be needed to process additional pack-

ets in the function. The metric packet is then stored into the database using the

insertPacket(...) method of the DBCommunicator (see Section 4.7.2)

object and the loop will start over again.

If the application has to be stopped, the running flag will be set to false and the

loop will stop its execution. After the loop is stopped, the run() method waits for

the PacketListener thread to stop its execution and calls the join() method.

The execution of the main thread is suspended until the called thread has joined.

When the PacketListener has joined, the application resume its execution and

exits the program.

4.7.2 DBCommunicator

The DBCommunicator is used to write the incoming metric packets to the database.

This is done with the insertPacket(...) method. To store the metric values,

the method is using a prepared SQL statement, that contains the SQL query and

placeholders for the actual values. The table format to store the metrics is rather
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simple. It stores a unique id, a time stamp, the rank of the host and the metric value

pairs for the current sample. The first three values are stored into integer fields

whereas the last one is stored into a binary large object (BLOB) field.

Before the metric values can be stored into the database, the metric packet has

to be read and the values have to be extracted. The data inside the metric packet

is structured. It contains a chunk for every host. These chunks again have a small

header, containing the rank of the host and a length value that contains the number

of metric values following the header. Subsequently to the header there is a pair of

two bytes for each metric value in the packet. The first byte represents the id of the

metric and the second byte the current metric class.

The rank and the number of values are stored into separate variables and the bytes

are stored as an unsigned char into a stringstream for each node in the mes-

sage. If all metric values for a node are read from the packet, the values are stored

into the database using the execute(...) method of the mysqlpp::Querry

object provided by libMySQL++. The execute method expects the parameters in

the order of the prepared statement.

4.7.3 FileReader

The FileReader call provides the functionality to read the contents of the pro-

vided files. It is the base class for the MetricNetProcFileReader (see Sec-

tion 4.7.9), the MetricMemoryProcFileReader (see Section 4.7.7) and the

MetricLoadAvgProcFileReader (see Section 4.7.6) classes.

It implements the read function that is used by all the reader mentioned above to

read the content of the according file in the proc file system. The file name has to be

provided and the function returns the file content as a C++ std::string. Addi-

tionally it implements a function to remove the leading spaces in a std::string.

4.7.4 MetricConfiguration

This class contains the actual configuration for a dedicated metric. It stores a set of

key value pairs that contain the configuration setting. There are three settings that

have to be set for each metric, the class count, the intervals for the different classes

and the capture interval. For the network and the sensor module an additional setting

is required (device for the network and label for the sensor module). Additionally

the metric name and the metric id are stored directly. (see Section 4.7.17) object that

can store one or more values of the different possible value types (Integer, floating

point and string values).
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It implements a set of methods to access the setting values. A setter and a getter

for the metric id and the metric name, that return the value stored in the object itself.

Methods that return the capture interval and the class count directly as integer value.

And methods to set and to get the stored setting objects.

4.7.5 MetricController

The MetricController class is derived from the Thread class (see Sec-

tion 4.7.23) and is implemented using a singleton pattern so that only one instance

of the metric controller is instantiated at any time. To create an instance of the

MetricController a call to the static function getInstance() is required.

To ensure that only one instance is available, the MetricController has an

instance variable holding the pointer to the instance and an instance flag of type

bool to indicate if an instance was created or not. A call to the getInstance()

function tests if the instance flag is set or not and returns either the pointer to the

object instance or calls the constructor to create an instance. If the object has to be

created, the instance flag is set to true and the pointer to the object is stored in the

instance variable and returned.

The setReaderMap(...) method stores the pointer to a std::multimap

that contains the pointers to the different metric reader objects (see Section 4.2.1)

in the mp_readerMap variable.

Run() method

If the start function of the MetricController is called, the Run() method is

executed in a separate thread. The Run function has to be implemented and is used

to capture the metric values based on a timer. After the declaration of the necessary

variables the function enters a loop that is only exited when the thread gets stopped.

To have a proper timing value all times used in the class are based on a time-

spec value that is defined in the time.h header file and stores the time in seconds

and nano seconds. The current time can be set using the clock_gettime func-

tion which also is defined in time.h.

After entering the loop the first operation is to receiving the current time and

store it in the starttime variable. Then the metric controller iterates over the

reader map, that stores the MetricReaderInfo (see Section 4.7.14) objects.

The MetricController decides whether to capture a metric or not based on

the nextRead value stored in the MetricReaderInfo class. The nextRead

is an integer value and acts as a counter that will be decreased by the last interval
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timeout value each time the metric controller is active. If the counter value in the

MetricReaderInfo object is 0, the metric has to be captured.

The capturing of the metric is done with a call to the getClass(...) method

that requires a pointer to a ReaderInfo object to capture the metric from. It

returns an unsigned char value that represents the current class of the metric

value. The current class is stored into a MetricPair structure, containing the

metric id and the class. If the class value is different to the value of the last capture

interval, the MetricPair is added to the MetricPacket

After capturing the current metric value, the nextRead field in the accord-

ing MetricReaderInfo object is decreased by the last capture interval and the

lastCaptureClass variable is set to the current class value.

To determine the capture timeout , the current value of the nextRead variable

is compared to an integer value that stores the time to the next capture interval in the

variable nextinterval. If the nextRead value is smaller then the current value

stored in nextinterval the value is updated to the new value. After the iteration

is finished, the interval in seconds to the next timeout is stored in nextinterval.

The MetricPacket is send to the front-end and the timeout is determined.

As timer function the thread uses the pselect(...) function, which is actu-

ally used to determine if a file descriptor is ready for usage. Without passing a file

descriptor to observe and based on the fact that pselect(...) is a blocking call,

it works as a timeout. After pselect(...) returns, the loop starts over again.

getClass(...) method

The getClass(...) method returns the current metric value class. It calls the

getMetricValue(...) method of the MetricReader object that is stored

in the MetricReaderInfo object that has to be passed to the method. The

MetricReaderInfo also contains the class value of the last capture interval.

The value returned by the getMetricValue(...) method is of the type

value_t. The current class is an unsigned char. The values are stored

in local variables. Then the interval configuration for the metric classes are re-

ceived from the configuration and stored in a MetricSetting object (see Sec-

tion 4.7.17). At this point all necessary information is available to classify the

current metric value.

To classify the current metric value the type of the MetricSetting is deter-

mined with a switch statement. This is necessary to receive the value either as an

integer value by calling the getIntValue method or as an float value by calling
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the getFloatValue.

The method to classify is the same for all possibilities of value pairs (integer

setting, integer value; integer setting, float value; float setting, in-

teger value; float setting, float value) but the implementations are a little

different since the values are received differently.

Assuming that a metric class is not changing frequently, the current metric value

is tested against the upper bounding of the class interval. Depending on the result

the metric value is then either tested against the lower bounding of the class if the

metric value is smaller then the upper interval bounding or the upper bounding of

the next higher class.

If the correct class is found the loop is stopped with a break and the class value

is returned.

4.7.6 MetricLoadAvgProcFileReader

This class implements all functions needed by the the readers of the LoadAvgMod-

ule to access the metrics. For a more detailed description see Section 4.4.3.

4.7.7 MetricMemoryProcFileReader

This class implements all functions needed by the the readers of the MemoryModule

to access the metrics. For a more detailed description see Section 4.4.2.

4.7.8 MetricModuleConfiguration

This class is used to store the necessary information regarding the configuration of a

metric module. The class is defined in metric-module-configuration.h

and implemented in the metric-module-configuration.cc file. It is a

container class that stores the module name and the MetricConfiguration

objects that corresponds to the respective module. The module name is stored in a

std::string and the objects for the metric configuration in a std::vector.

To serialize the object with the boost serialization library it implements a private

serialize method and declares the boost::serialization::access

class as a friend class. In the serialize method the required fields are added

to the archive, that is passed to the method. Similar to the MetricSection

class it implements a add(...) a begin() and a end() method to either

add a new object to the container or receive an iterator of the MetricModule-

ConfigurationIterator type. The iterator is defined in the classes header

file.
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4.7.9 MetricNetProcFileReader

The MetricNetProcFileReader is used by all metric readers of the network

module. It is responsible to read the content of the /proc/net/dev file that

contains detailed information for each network device installed in the system. It

implements a function for each supported metric that returns the current metric

value. These functions have two parameters, a string to specify the device for which

the value has to be returned and the time stamp of the current interval. The time

stamp is used to read the file content only once in an interval.

4.7.10 MetricNetReader

The MetricNetReader derives from the MetricReader class and is needed

in the network modules. It is used to bind the reader of the network module to a

network device. All reader in the network module derive from this class instead of

the MetricReader class.

4.7.11 MetricPacket

The MetricPacket class is a container class which stores all MetricInfo

structures generated during a capture interval and the rank of the back-end. A

MetricInfo structure contains two unsigned char fields to store the id associated

to a particular metric and the class for the value of the according capture interval.

Internally the metric packet uses a std::vector to hold the MetricInfo

structures. The rank of the back end is stored into an unsigned integer value.

4.7.12 MetricPair

MetricPair is a structure to associate a metric id and the corresponding class

value. The structure is used to insert the classified metric value and the correspond-

ing metric id into a MetricPacket.

4.7.13 MetricReader

MetricReader

value_t getMetricValue( timespec & currentTime)

Figure 4.3: The MetricReader defines the interface for all metric reader.

The MetricReader class is an abstract class that defines the interface for the
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back-end to read the metric value from a specific reader. All classes that return a

metric value have to derive from this class.

4.7.14 MetricReaderInfo

This class is used by the MetricController to determine the necessary infor-

mation to decide whether a metric value has to be captured or not and to access the

according MetricReader. Therefore it stores a pointer to the MetricReader

and the Metric class as well as a timespec structure with the last capture time

of the metric in public variables.

4.7.15 MetricReaderInfoCollection

This is a container class, that contains the metricReaderInfo objects that are

returned by the getReader(...) method of the metric modules.

4.7.16 MetricSection

This class is the root object for the metric configuration. The implementation can

be found in the metric-section.cc file and the definitions are stored in the

metric-section.h file. It represents the metric section of the configuration file

and stores a MetricModuleConfiguration object for each configured mod-

ule in a std::vector. It implements the serialize method that is required

by the boost serialization library. The method is a private method and therefore it is

necessary to declare the bosst::serialization::access class as a friend

class. The serialize(...) method is called by the access object, that passes

archive and the archive version to the serialization method. Inside the method all

required field are added to the archive.

Additionally there are implementations for a begin() and end() method that

return an iterator of the type MetricSectionIterator that is defined in the

metric-section.h header file and can be used to iterate over all Metric-

ModuleConfiguration objects stored in the object.

4.7.17 MetricSetting

The MetricSetting class is designed to store one or more integer, float or string

values. It uses a boost::variant class which stores the vector with the values. The

boost::variant class is a template class provided by the boost library. Once a value

is set, the data type is fixed to this value and can not be changed.

The class implements a getType(...) methods to determine what data type

of the stored value. To return the amount of values hold in the class a size() func-
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tion is implemented. To get and add values to the object methods for the supported

data types are implemented as well.

4.7.18 Module

Module is an abstract class to define the method that is used to define a interface

for the back-end to access the metric reader contained in the module. To instantiate

a MetricReader from an instantiated module, the getMetricReader(...)

method has to be called. The getMetricReader(...) has to be implemented

inside the specific module.

4.7.19 MRNCommunicator

The MRNCommunicator is defined in the mrn-communicator.h file. It im-

plements static methods to send the different packet types using a specified stream.

The Stream, Packet Tag and the data are provided by method parameter.

To send the data through the TBŌN the data structure is interpreted as a con-

tinuous stream of unsigned char values. This ensures, that any data type can be

transferred. Therefore the data that has to be transferred has to be accessible either

as array or a string.

The MRNCommunicator needs to determine the length of the data packet as a

multiple of 1 Byte. The length of the data stream as well as the pointer to the in

memory data structure is then passed to the wrapped MRN:Stream::send(...)

method. The return parameters are checked and in case of an error a message is writ-

ten to the log. The function itself returns a bool value to either indicate a success or

a failure.

There are three different implementations of the Send(...) method. In some

cases the monitoring system sends empty packets as trigger for a certain action. In

this cases it is not necessary to process any data. Therefor the MRNCommunicator

just needs to know the tag and the steam.

The first implemented send function simply sends a tag through the stream and

is used to send plain commands that do not contain any data.

The second command can be used to send generic packages. The use of the

std::string makes it possible to either send real strings but also to send binary in-

formation due to the fact that it is not null terminated. This ability is used to send

the serialized configuration object to the back-ends. The message interpreted as an

array of unsigned char values.

The third method is used to send the metrics for a certain capture interval to the
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front-end. It serializes the content of the MetricPacket (see Section 4.7.11) and

sends it as an array of unsigned char values. To serialize the MetricPacket the

method determines the size of the packet.

rank length metric id value class metric id value class...

Figure 4.4: The format of the transfered metric packet. The header contains the
rank of the back-end and the amount of metrics. The metrics are submitted as value
pair, the metric id identifies the metric, and the value class field contains the class
of the metric value.

The actual format of the packet send through the network has a header and a

body (picture 4.4 depicts the format of the transmitted packet). The header contains

two fields, the rank of the back-end and the amount of metric values send in this

package. The body contains the serialized MetricInfo structures.

After the length is known, the method allocates memory to store the data. Two

pointers are used to store the values to the allocated memory area. The first points

to the start of the memory area and is used to free it after the packet is send. The

second pointer is incremented after writing the corresponding value into the mem-

ory about the value size. The rank and the size of the body are stored directly and

the MetricInfo structures are stored in a loop.

After the content is written into the memory area, the data is send through the

stream as an array of unsigned integer values and the memory block for the packet

data is freed.

4.7.20 MRNPacketInfo

This structure is a container that contains a MRNet packet and the time when the

packet was received. It is used by the front-end receiver thread. The MRNPacket-

Info object is inserted into the PackedQueue. The times stamp is the time that is

inserted into the database.

4.7.21 PacketListener

The packet listener is implemented in the PacketListener class and is derived

from Thread (see Section 4.7.23). It listens to a MRNet stream for incoming

packets and stores the packets into a queue. To initialize the PacketListener

the pointer to the MRNet network object and to the stream has to be passed to the
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constructor. A call to the start() method starts the thread and calls its Run()

method, where the actual work is done.

To determine if a packet is available the class uses the event notification provided

by MRNet and the pselect() system call. The MRNet library returns a file de-

scriptor of a specified type with a call to the get_EventNotificationFd(...)

method. As the PacketListener is interested in data events the event type

is DATA_EVENT. The returned file descriptor is used with the pselect(...)

function to determine if packet is available.

The pselect(...) function is called inside a loop. The function is used

in a blocking mod and only if a packet is available. After the pselect(...)

returns the file descriptor that caused the return is determined and the according

action is taken. There are two possible events that can cause pselect(...) to

return. Either a packet is available in the network or the listener has to be stopped.

If the listener has to be stopped the program is either terminating or reloading the

configuration. If a packet is available in the network stream, it is read and sored into

a PacketInfo object which is then added to the packet queue.

4.7.22 PacketQueue

The PacketQueue is a thread safe wrapper to the std::queue container class.

It implements a function to add content and a function to remove a MetricInfo.

The class constructor instantiates a mutex that is used to lock the critical section of

adding and removing data and a condition variable that is used to.

The add function is secured by a mutex and returns after the packed was added

and the condition is signalized to the consuming thread. The get function removes

the first packet from the internal queue and returns unless the internal queue is

empty. If the internal queue is empty the calling thread is suspended by a call to

pthread_cond_wait until the condition for an available packet is signalized.

If a packet gets available, the consuming thread resumes the execution by returning

from the pthread_cond_wait call.

4.7.23 Thread

The thread class is an abstract wrapper class to the pthread library. It implements

a start, stop and a join method and defines a virtual Run() method that has to be

implemented in the child classes.

The Thread class stores three variables to manage the thread. The bool flag

running indicates if the tread is currently running or not, the thread ID stored in
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a pthread_t variable to hold the thread identifier and a mutex variable to lock the

access to the running flag.

The start method creates a pthread by calling the pthread_create func-

tion which requires four arguments. A pointer to the a variable of the type pthread_t

( defined in sys/types.h), a pointer to a pthread_attr_t variable, that can

be NULL, the pointer to the start routine of the thread and pointer to the thread

argument. As start routine a pointer to the ThreadEntry function is passed and

a pointer to the object instance as argument.

The isRunning method can be called to determine whether the thread is run-

ning or not. The method uses a mutex to ensure that the access to the running flag

is thread safe.

A call to the stopmethod sets the running flag to false to indicate that the thread

has to be stopped.

The ThreadEntry casts the pointer to the thread and calls the threads Run()

method.
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5 Conclusion
5.1 Evaluation

The implemented system shows that it is possible to significantly decrease the

amount of data produced by the monitoring system. The classification of the mon-

itoring data reduces the produced and stored amount of the monitoring data. A run

on the XTORC cluster (a 64 node system in the Computer Science and Mathematics

Division at the ORNL) produced a database file of 919,680 bytes and an index file

of 159,744 bytes for a 4 hour test run. This corresponds to an accumulation rate of

≈ 300 kB/h or ≈ 2.5 kB/interval. For the test run 32 compute nodes and the head

node of the cluster where used. The front-end application was executed on the head

node and the automatic startup was used. The test run was done considering the

worst case scenario (The classes are changing steadily). It included 18 metrics that

where sampled at an interval of of 30s. The configuration and topology file used for

the test can be found in the appendix (C and C).

To test the ability to recover from IC failures a IC was stopped using the kill

command. The ability to capture and store monitoring data was not affected by the

loss of a IC. As long as there is an adequate number of IC available to handle the

connections to all BEs the loss of IC does not disturb the monitoring. On the other

hand, loosing an IC leads to a higher load on the remaining ICs since they have to

process more packets and handle more client connections.

Killing BE processes did not affect the system either. The processes where re-

moved from the underlaying TBŌN and where simply not delivering data anymore.

The use of a TBŌN also prevents the monitoring system to reach a single systems

socket limits by the distribution of the communication layer to the different children

in the tree structure of the overlay network.

5.2 Future Work

There are several improvements for the programs that can be implemented in the

future. The first thing to improve is the error handling of the back-end and the

modules. Currently some failures do not produce an error message and in some rare

cases the back-end will have a segmentation fault due to an error.

Since there is currently no way to reintegrate leaf or intermediate nodes when
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they where removed from the TBŌN due to errors. To get all nodes back into the

monitoring system it has to be restarted. To implement the reintegration it would be

necessary to listen on a dedicated port where a back-end process can query the status

of the monitoring system and communicate its availability. Normally the topology

of the TBŌN is defined in the configuration file and setup during the network cre-

ation. But there are several ways to access the topology and add or remove nodes

“manually”. After the node is added to the network, the communicators and the

streams have to be reinitialized. Unfortunately the methods needed for this are not

documented in the MRNet documentation. The reintegration of intermediate nodes

seems to be more difficult. Since they are usually started by the front-end daemon

with the network creation and there is no official way to move child nodes to another

parent. The methods to add and remove sub-graphs are all private and an extension

of the MRNet library itself seems to be necessary to achieve the designated goal.

Another improvement is to deal with the different time drifts on different leaf

nodes. It is inevitable that the local timers on the leaf nodes that are used to de-

termine the timeouts for the capture intervals will drift over the monitoring time.

Since the filter wait for all their child nodes to send a metric packet, the node with

the biggest time drift will rule the time drift for the entire sub tree and the time drift

will accumulate when the packages flow up through the network. To correct this,

the intervals have to be monitored in the front-end and when they exceed a thresh-

old an action to adjust the drift will be taken. This can be done by sending a signal

to the back-end processes and they will subtract the threshold value from the next

timeout.

To be able to manage clusters that are using different host types it would be an

improvement to define metric configurations for different host groups. Therefore

the configuration would need a separate section to define the different groups and

the hosts of the groups. The Metric configuration will need another property to

define on which host group(s) the metric configuration should be applied.

If the fault prediction is examined in detail and the important metrics and the

according correlations to other metrics are known, it might be possible to move parts

of the prediction process to the filter plug-ins and therefore improve the reaction

time of a possible predictor even further since the prediction can be calculated closer

to the source of the metric values and avoid the latencies that are inevitable during

the transport through the TBŌN.

55



Bibliography

[1] MySQL++ - A C++ wrapper to the C MySQL API.

[2] D.C. Arnold, G.D. Pack, and B.P. Miller. Tree-based overlay networks for

scalable applications. In Parallel and Distributed Processing Symposium,

2006. IPDPS 2006. 20th International, pages 8 pp.–, April 2006.

[3] Jim M. Brandt, Bert J. Debusschere, Ann C. Gentile, Jackson R. Mayo,

Philippe P Pébay, David Thompson, and Matthew H. Wong. OVIS-2: A ro-

bust distributed architecture for scalable RAS. In Proceedings of the 22nd

IEEE International Parallel and Distributed Processing Symposium (IPDPS)

2008: 4th Workshop on System Management Techniques, Processes, and Ser-

vices (SMTPS) 2008, Miami, FL, USA, April 14-18, 2008. ACM Press, New

York, NY, USA.

[4] Darius Buntinas, Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence

Pilard, Ala Rezmerita, Eric Rodriguez, and Franck Cappello. Non-blocking

coordinated checkpointing for large-scale fault tolerant MPI. In Proceedings

of the IEEE/ACM International Conference on High Performance Comput-

ing, Networking, Storage and Analysis (SC) 2006, page 18, Tampa, FL, USA,

November 11-17, 2006. ACM Press, New York, NY, USA.

[5] John T. Daly. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computing Systems (FGCS), 22(3):303–

312, 2006.

[6] Elmootazbellah N. (Mootaz) Elnozahy and James S. Plank. Checkpointing

for peta-scale systems: A look into the future of practical rollback-recovery.

IEEE Transactions on Dependable and Secure Computing (TDSC), 1(2):97–

108, 2004.

[7] Christian Engelmann, Geoffroy R. Vallée, Thomas Naughton, and Stephen L.

Scott. Proactive fault tolerance using preemptive migration. In Proceedings

of the 17th Euromicro International Conference on Parallel, Distributed, and

network-based Processing (PDP) 2009, pages 252–257, Weimar, Germany,

February 18-20, 2009. IEEE Computer Society.

56



BIBLIOGRAPHY Swen Böhm

[8] Song Fu and Cheng-Zhong Xu. Exploring event correlation for failure predic-

tion in coalitions of clusters. In Proceedings of the IEEE/ACM International

Conference on High Performance Computing, Networking, Storage and Anal-

ysis (SC) 2007, pages 1–12, Reno, NV, USA, November 15-21, 2007. ACM

Press, New York, NY, USA.

[9] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. Trans-

parent, incremental checkpointing at kernel level: A foundation for fault tol-

erance for parallel computers. In Proceedings of the IEEE/ACM International

Conference on High Performance Computing and Networking (SC) 2005,

page 9, Seattle, WA, USA, November 12-18, 2005. IEEE Computer Society.

[10] GNU. An Introduction to the Autotools.

[11] HP. Cluster Management Utility.

[12] IBM. Cluster Management Utility.

[13] libconfig. libconfig - C/C++ Configuration File Library.

[14] libtool. GNU Libtool - The GNU Portable Library Tool.

[15] Antonina Litvinova, Christian Engelmann, and Stephen L. Scott. A proac-

tive fault tolerance framework for high-performance computing. In Proceed-

ings of the 28th IASTED International Conference on Parallel and Distributed

Computing and Networks (PDCN) 2010, Innsbruck, Austria, February 16-18,

2009. ACTA Press, Calgary, AB, Canada. Submitted.

[16] lm_sensors. Ganglia Monitoring System.

[17] lm_sensors. Linux hardware monitoring.

[18] Aroon Nataraj Allen D. Malony, Alan Morris, Dorian C. Arnold, and Barton P.

Miller. A Framework for Scalable, Parallel Performance Monitoring using

TAU and MRNet. International Workshop on Scalable Tools for High-End

Computing (STHEC 2008), June 2008.

[19] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia dis-

tributed monitoring system: design, implementation, and experience. Parallel

Computing, 30(7):817 – 840, 2004.

57



BIBLIOGRAPHY Swen Böhm

[20] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia dis-

tributed monitoring system: Design, implementation, and experience. Parallel

Computing, 30(7):817–840, 2004.

[21] Arun B. Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L.

Scott. Proactive fault tolerance for HPC with Xen virtualization. In Pro-

ceedings of the 21st ACM International Conference on Supercomputing (ICS)

2007, pages 23–32, Seattle, WA, USA, June 16-20, 2007. ACM Press, New

York, NY, USA.

[22] National Center for Computational Sciences, Oak Ridge, TN, USA. Jaguar,

2007.

[23] National Center for Computational Sciences, Oak Ridge, TN, USA. Jaguar

Cray XT system documentation, 2007.

[24] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam,

Maria Ruiz Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact

of checkpoints on next-generation systems. In Proceedings of the 24th IEEE

Conference on Mass Storage Systems and Technologies (MSST) 2007, pages

30–46, San Diego, CA, USA, September 24-27, 2007. IEEE Computer Soci-

ety.

[25] OpenIPMI. Open Intelligent Platform Management Interface.

[26] Oracle. MySQL Database Software.

[27] Paradyn Project, Computer Sciences Department, University of Wisconsin.

Multicast Reduction Network.

[28] Paradyn Project, Computer Sciences Department, University of Wisconsin.

Multicast Reduction Network Library (2.1) Documentation.

[29] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. "MRNet: A Software-

Based Multicast/Reduction Network for Scalable Tools". In Proceedings of

the ACM/IEEE International Conference on High Performance Computing

and Networking (SC) 2003, Phoenix, AZ, USA, November 15-21, 2003. IEEE

Computer Society.

58



BIBLIOGRAPHY Swen Böhm

[30] Stephen L. Scott, Christian Engelmann, Geoffroy R. Vallée, Thomas

Naughton, Anand Tikotekar, George Ostrouchov, Chokchai (Box) Leangsuk-

sun, Nichamon Naksinehaboon, Raja Nassar, Mihaela Paun, Frank Mueller,

Chao Wang, Arun B. Nagarajan, and Jyothish Varma. A tunable holistic re-

siliency approach for high-performance computing systems. Poster at the 14th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPoPP) 2009, Raleigh, NC, USA, February 14-18, 2009.

[31] Jon Stearley and Adam J. Oliner. Bad words: Finding faults in Spirit‘s sys-

logs. In Proceedings of the 8th IEEE International Symposium on Cluster

Computing and the Grid (CCGrid) 2008: Workshop on Resiliency in High

Performance Computing (Resilience) 2008, Lyon, France, May 19-22, 2008.

IEEE Computer Society.

[32] Geoffroy R. Vallée, Kulathep Charoenpornwattana, Christian Engelmann,

Anand Tikotekar, Chokchai (Box) Leangsuksun, Thomas Naughton, and

Stephen L. Scott. A framework for proactive fault tolerance. In Proceed-

ings of the 3rd International Conference on Availability, Reliability and Secu-

rity (ARES) 2008, pages 659–664, Barcelona, Spain, March 4-7, 2007. IEEE

Computer Society.

[33] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott.

Proactive process-level live migration in HPC environments. In Proceedings

of the IEEE/ACM International Conference on High Performance Comput-

ing, Networking, Storage and Analysis (SC) 2008, Austin, TX, USA, Novem-

ber 15-21, 2008. ACM Press, New York, NY, USA.

59



A Software Documentation
A.1 Front-end
A.1.1 Command Line Parameters

The front-end is started by running the rasmonfed program. The least two necessary

options are the location of the configuration file and the location to the topologie file.

Usually it starts the back-end processes autonomously and the back-end executable

has to be specified for this mode. If no back-end executable is specified, the front-

end assumes that it has to run in the second mode and therefore waits for the number

of back-ends to connect that are specified per command line parameter (see below).

The front-end has several command line parameters:

-t this parameter is used to specify the location of the topology file

-c this parameter is used to specify the location of the configuration file

-b this parameter is used to specify the location of the back-end executable file

-C defines the number of back-ends that have to connect

-i this switch is used to start the front-end in interactive mode

A.1.2 Configuration File Format

The configuration currently consists of two sections. One section for the database

configuration and another section to configure the metrics. The sections are defined

by a section name followed by a colon and are enclosed into curly brackets. The

following example shows a section definition:

db : {}

The section name may consist only of alphanumeric characters, dashes ("‘-"’), un-

derscores ("‘_"’), and asterisks ("‘*"’), and must begin with a letter or asterisk. A

section can contain additional sections or key, value pairs of configuration parame-

ters. The configuration distinguishes different value types:

Strings are enclosed in quotes ("‘a string"’)

Integer Values are just digits (1, 2, 3, ...)

Float Values have to have o point in the number (0.1, 11.0, ...)
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Arrays are enclosed in box brackets and can contain every of the values above. But

the values have to be strict. ( ["‘a"’, "‘valid"’, "‘array"’], [ 1, "‘this"’, "‘is"’,

"‘not"’, "‘valid"’])

A detailed example can be found in Appendix C

Database Configuration

To configure the database is called "‘db"’, the following parameters have to be pro-

vided:

server hostname to connect to

db = the database

user = the user

password = the password

Metric Configuration

The metrics are configured in the "‘metrics"’ section. The metric section contains a

sub section for each module. Currently the following 4 modules are supported by

the monitoring system: memory, loadavg, network, sensors.

All module sections have to contain the following keys: interval, classes, classIn-

tervals. The "‘interval"’ value is used to specify the capture interval of the according

metric. "‘classes"’ contains the number of classes and "‘classIntervals"’ the values

of the borders of the different classes. The lower bound of the first and the upper

bound of the last class have not to be specified.

The network module requires to specify the network device for the metric as a

string. This can either be a single device or an array of different devices. As third

option an "‘*"’ defines all available devices (including the loopback device)

The sensor module requires a label field to specify the metric that has to be read.

The label is the same, that is used by lmsensors. To receive a list of the available

sensor metrics a call to the sensors program, that is part of lmsensors, shows all

configured sensors.

A.1.3 Topology File Format

The topology file describes the network layout of the TBŌN. It contains all hosts

that are participating in the monitoring system for the normal startup (with back-

end instantiation). If the back-ends should not be started by the front-end, it only

contains the root node and the intermediate nodes.
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The structure of the topology file is very simple. Beginning with the root of the

tree (the head node) the connections to the nodes in the first level of the tree are

described. A configuration line has always the following form:

hostname1 : 0 => hostname1 : 1 hostname1 : 2 ;

meaning a process on hostname1 with MRNet id 0 has two children, with MRNet

ids 1 and 2, running on the same host. A specification line may span one or more

physical lines in the topology file:

hostname1 : 0 =>

hostname1 : 1

hostname1 : 2

;

Listing A.1 shows a more complex example with .

Listing A.1: Topology file example with 4 intermediate and 16 back-end nodes.

r o o t−node : 0 =>

i n t e r m e d i a t e −node1 : 1

i n t e r m e d i a t e −node2 : 2

i n t e r m e d i a t e −node3 : 3

i n t e r m e d i a t e −node4 : 4

i n t e r m e d i a t e −node1 =>

c l u s t e r −node1 : 5

c l u s t e r −node2 : 6

c l u s t e r −node3 : 7

c l u s t e r −node4 : 8 ;

i n t e r m e d i a t e −node2 =>

c l u s t e r −node5 : 9

c l u s t e r −node6 : 1 0

c l u s t e r −node7 : 1 1

c l u s t e r −node8 : 1 2 ;

i n t e r m e d i a t e −node3 =>

c l u s t e r −node1 : 1 3

c l u s t e r −node2 : 1 4

c l u s t e r −node3 : 1 5

c l u s t e r −node4 : 1 6 ;

i n t e r m e d i a t e −node4 =>

c l u s t e r −node5 : 1 7

c l u s t e r −node6 : 1 8
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c l u s t e r −node7 : 1 9

c l u s t e r −node8 : 2 0 ;

A.1.4 Topology File Generator

The MRNet library comes with a topology file generator that can create the topology

file. The following description is taken from the MRNet documentation [28]:

When the MRNet test programs are built, a topology generator

program, $MRNET_ROOT/bin/$MRNET_ARCH/mrnet_topgen,

will also be created. The usage of this program is:

mrnet_topgen [OPTIONS] TOPOLOGY_SPEC [INFILE]

[OUTFILE]

Create a MRNet topology from the machines listed in [INFILE],

or standard input, and writes output to [OUTFILE], or standard out-

put.

The format of the input machine list is one machine specification

per line, where each specification is of the form "host[:num-processors]".

Note that the first machine listed should be the host where the front-end

should be run.

OPTIONS:

-m max-host-procs, –maxprocs=max-host-procs

Specify the maximum number of processes to place on any ma-

chine, in which case the number of processes allocated to a machine

will be the minimum of its processor count and "max-host-procs".

TOPOLOGIES:

-b topology, –balanced=topology

Create a balanced tree using "topology" specification. The specifi-

cation is in the format FD̂, where F is the fan-out (or out-degree) and D

is the tree depth. The number of tree leaves (or back-ends) will be FD̂.

An alternative specification is FxFxF, where the fan-out at each level is

specified explicitly and can differ between levels.

Example: "163̂" is a tree of depth 3 with fan-out 16, with 4096

leaves. Example: "2x4x8" is a tree of depth 3 with 64 leaves.

-k topology, –knomial=topology

Create a k-nomial tree using "topology" specification. The specifi-

cation is in the format K@N, where K is the k-factor (≥2) and N is the
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total number of tree nodes. The number of tree leaves (or back-ends)

will be (N/K)*(K-1).

Example: "2@128" is a binomial tree of 128 nodes, with 64 leaves.

Example: "3@27" is a trinomial tree of 27 nodes, with 18 leaves.

-o topology, –other=topology

Create a generic tree using "topology" specification. The specifica-

tion for this option is (the agreeably complicated) N:N,N,N:... where N

is the number of children, ’,’ distinguishes nodes on the same level, and

’:’ separates the tree into levels.

Example: "2:8,4" is a tree where the root has 2 children, the 1st

child has 8 children, and the 2nd child has 4 children.

A.2 Back-end
A.2.1 Command Line Parameters

The back-end is usually started by the front-end and does not need to be started

directly. For the second startup mode however it is necessary to start the back-end

either by hand or by utilizing a job submission system.

The back-end expects 5 parameters in the correct order to start and connect to the

monitoring system. The following command line is used for the back-end startup:

rasmonbed <parent_hostname> <parent_port> <parent_rank> <my_hostname> <my_rank>

The parent_hostname, parent_port and parent_rank are needed to

tell the back-end where to find its parent process in the TBŌN. The front-end creates

a file that contains these informations, when it is executed in the second startup

mode. The my_hostname is the hostname of the host the back-end is executed on

and the my_rank is used internally by the to identify the back-end.
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After the % character that introduces a conversion, there may be a number of flag

characters. u, h, l, and a are special modifiers meaning unsigned, short, long and

array, respectivley. The full set of conversions are:

c signed 8-bit character

uc unsigned 8-bit character

ac array of signed 8-bit characters

auc array of unsigned 8-bit characters

hd signed 16-bit decimal integer

uhd unsigned 16-bit decimal integer

ahd array of signed 16-bit decimal integers

auhd array of unsigned 16-bit decimal integers

d signed 32-bit decimal integer

ud unsigned 32-bit decimal integer

ad array of signed 32-bit decimal integers

aud array of unsigned 32-bit decimal integers

ld signed 64-bit decimal integer

uld unsigned 64-bit decimal integer

ald array of signed 64-bit decimal integers

auld array of unsigned 64-bit decimal integers

f 32-bit floating-point number

af array of 32-bit floating-point numbers

lf 64-bit floating-point number

alf array of 64-bit floating-point numbers

s null-terminated character string.

as array of null-terminated character strings.
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# Example r a s m o n i t o r c o n f i g u r a t i o n f i l e

# A l l names a r e case−s e n s i t i v e . They may c o n s i s t on ly o f

a l p h a n u m e r i c

# c h a r a c t e r s , d a s h e s ( ’ − ’) , u n d e r s c o r e s ( ’ _ ’ ) , and a s t e r i s k s

( ’∗ ’ ) , and must

# b e g i n wi th a l e t t e r o r a s t e r i s k . No o t h e r c h a r a c t e r s a r e

a l l o w e d .

# example :

# name = v a l u e ;

# o r :

# name : v a l u e ;

# d a t a b a s e c o n f i g u r a t i o n

db :

{

s e r v e r = " l o c a l h o s t " ;

db = " Rasmon " ;

u s e r = " m o n i t o r " ;

password = " " ;

} ;

# D e f i n i t i o n s f o r t h e m e t r i c s t o g a t h e r

m e t r i c s :

{

# sys tem m e t r i c s

# t h i s p a r t o f t h e c o n f i g u r a t i o n i s d e v i d e d i n t o a

c o n f i g u r a t i o n s e c t i o n f o r

# each module ( memory , loadavg , ne t , s e n s o r s , . . . )

# memory r e l a t e d m e t r i c s

memory :

{

MemFree :

{
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i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 1024 , 2048 , 3192 ] ;

} ;

} ;

# l o a d r e l a t e d m e t r i c s

l o a d a v g :

{

LoadAvg1 :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 0 . 5 , 1 . 0 , 2 . 0 ] ;

} ;

LoadAvg5 :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 0 . 5 , 1 . 0 , 2 . 0 ] ;

} ;

LoadAvg15 :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 0 . 5 , 1 . 0 , 2 . 0 ] ;

} ;

} ;

# ne twork r e l a t e d m e t r i c s

ne twork :

{

B y t e s T r a n s m i t :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 1024 , 2048 , 3072 ] ;
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# s p e c i f i e s a s u b m e t r i c f o r t h e d e v i c e s f o r wich a

m e t r i c w i l l be g a t h e r e d

# ∗ f o r a l l d e v i c e s , a d e v i c e name or comma s e p e r a t e d

l i s t o f names

d e v i c e s = [ " e t h 0 " ] ;

} ;

B y t e s R e c e i v e :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s s = [ 1024 , 2048 , 3072 ] ;

d e v i c e s = [ " e t h 0 " ] ;

} ;

P a c k e t s T r a n s m i t :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 1024 , 2048 , 3072 ] ;

d e v i c e s = [ " e t h 0 " ] ;

} ;

P a c k e t s R e c e i v e :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 1024 , 2048 , 3072 ] ;

d e v i c e s = [ " e t h 0 " ] ;

} ;

E r r o r s T r a n s m i t :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;

c l a s s I n t e r v a l s = [ 10 , 50 , 100 ] ;

d e v i c e s = [ " e t h 0 " ] ;

} ;

E r r o r s R e c e i v e :

{

i n t e r v a l = 3 0 ;

c l a s s e s = 4 ;
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c l a s s I n t e r v a l s = [ 10 , 50 , 100 ] ;

d e v i c e s = [ " e t h 0 " ] ;

} ;

} ;

# s e n s o r m e t r i c s

# a working l i b s e n s o r s i n s t a l l a t i o n i s n e s a s s a r y f o r t h e s e

m e t r i c s

# t h e m e t r i c name can be anny va lue , t h e s e n s o r s w i l l be

i d e n t i f i e d by

# t h e l a b e l f i e l d .

s e n s o r s :

{

f a n : {

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = " fan2 " ;

} ;

V2_5 : { # +2 .5V: ( min = +2.25 V, max = +2.75 V)

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = " + 2 . 5V" ;

} ;

VCore : { # VCore : ( min = +1.66 V, max = +1.84 V)

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = " VCore " ;

} ;

V3_3 : { # +3 .3V: ( min = +2.97 V, max = +3.63 V)

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;
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c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = " + 3 . 3V" ;

} ;

V5 : { # +5V: ( min = +4.50 V, max = +5.50 V)

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = "+5V" ;

} ;

VCC: { # VCC: ( min = +2.97 V, max = +3.63 V)

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 100 , 250 , 500 , 1000 ,

1500 , 2000 , 2500 ] ;

l a b e l = "VCC" ;

} ;

CoreTemp : {

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 , 4 0 . 0 ,

5 0 . 0 , 6 0 . 0 , 7 0 . 0 ] ;

l a b e l = "CPU Temp " ;

} ;

MBTemp: {

i n t e r v a l = 3 0 ;

c l a s s e s = 8 ;

c l a s s I n t e r v a l s = [ 1 0 . 0 , 2 0 . 0 , 3 0 . 0 , 4 0 . 0 ,

5 0 . 0 , 6 0 . 0 , 7 0 . 0 ] ;

l a b e l = "M/ B Temp " ;

} ;

} ;

} ;

[caption=Metric Configuration File for the evaluation tests on xtorc]

node0 : 0 =>

node1 : 0
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node9 : 0

node20 : 0

node28 : 0 ;

node1 : 0 =>

node1 : 1

node2 : 0

node3 : 0

node4 : 0

node5 : 0

node6 : 0

node7 : 0

node8 : 0 ;

node9 : 0 =>

node9 : 1

node10 : 0

node11 : 0

node12 : 0

node14 : 0

node17 : 0

node18 : 0

node19 : 0 ;

node20 : 0 =>

node20 : 1

node21 : 0

node22 : 0

node23 : 0

node24 : 0

node25 : 0

node26 : 0

node27 : 0 ;

node28 : 0 =>

node28 : 1

node29 : 0

node32 : 0

node36 : 0

node40 : 0

node41 : 0

node42 : 0
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node44 : 0 ;

[caption=Topology File for the evaluation tests on xtorc]
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Listing D.1: Ganglia Monitor Output for localhost with Ganglias standard metrics.

Additional metrics can be added trough configuration and will generate a new line

in the HOST section in the XML output.
<? xml v e r s i o n ="1.0" e n c o d i n g ="ISO-8859-1" s t a n d a l o n e ="yes"?>
< !DOCTYPE GANGLIA_XML [

<!ELEMENT GANGLIA_XML (GRID)∗>
< !ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>
< !ATTLIST GANGLIA_XML SOURCE CDATA #REQUIRED>

< !ELEMENT GRID (CLUSTER | GRID | HOSTS | METRICS)∗>
< !ATTLIST GRID NAME CDATA #REQUIRED>
< !ATTLIST GRID AUTHORITY CDATA #REQUIRED>
< !ATTLIST GRID LOCALTIME CDATA #IMPLIED>

< !ELEMENT CLUSTER (HOST | HOSTS | METRICS)∗>
< !ATTLIST CLUSTER NAME CDATA #REQUIRED>
< !ATTLIST CLUSTER OWNER CDATA #IMPLIED>
< !ATTLIST CLUSTER LATLONG CDATA #IMPLIED>
< !ATTLIST CLUSTER URL CDATA #IMPLIED>
< !ATTLIST CLUSTER LOCALTIME CDATA #REQUIRED>

< !ELEMENT HOST (METRIC)∗>
< !ATTLIST HOST NAME CDATA #REQUIRED>
< !ATTLIST HOST IP CDATA #REQUIRED>
< !ATTLIST HOST LOCATION CDATA #IMPLIED>
< !ATTLIST HOST REPORTED CDATA #REQUIRED>
< !ATTLIST HOST TN CDATA #IMPLIED>
< !ATTLIST HOST TMAX CDATA #IMPLIED>
< !ATTLIST HOST DMAX CDATA #IMPLIED>
< !ATTLIST HOST GMOND_STARTED CDATA #IMPLIED>

< !ELEMENT METRIC EMPTY>
< !ATTLIST METRIC NAME CDATA #REQUIRED>
< !ATTLIST METRIC VAL CDATA #REQUIRED>
< !ATTLIST METRIC TYPE ( s t r i n g | i n t 8 | u i n t 8 | i n t 1 6 | u i n t 1 6 | i n t 3 2 | u i n t 3 2 | f l o a t | d ou b l e |

t imes t amp ) #REQUIRED>
< !ATTLIST METRIC UNITS CDATA #IMPLIED>
< !ATTLIST METRIC TN CDATA #IMPLIED>
< !ATTLIST METRIC TMAX CDATA #IMPLIED>
< !ATTLIST METRIC DMAX CDATA #IMPLIED>
< !ATTLIST METRIC SLOPE ( z e r o | p o s i t i v e | n e g a t i v e | bo th | u n s p e c i f i e d ) #IMPLIED>
< !ATTLIST METRIC SOURCE ( gmond | g m e t r i c ) #REQUIRED>

< !ELEMENT HOSTS EMPTY>
< !ATTLIST HOSTS UP CDATA #REQUIRED>
< !ATTLIST HOSTS DOWN CDATA #REQUIRED>
< !ATTLIST HOSTS SOURCE ( gmond | g m e t r i c | gmetad ) #REQUIRED>

< !ELEMENT METRICS EMPTY>
< !ATTLIST METRICS NAME CDATA #REQUIRED>
< !ATTLIST METRICS SUM CDATA #REQUIRED>
< !ATTLIST METRICS NUM CDATA #REQUIRED>
< !ATTLIST METRICS TYPE ( s t r i n g | i n t 8 | u i n t 8 | i n t 1 6 | u i n t 1 6 | i n t 3 2 | u i n t 3 2 | f l o a t | dou b l e |

t imes t amp ) #REQUIRED>
< !ATTLIST METRICS UNITS CDATA #IMPLIED>
< !ATTLIST METRICS SLOPE ( z e r o | p o s i t i v e | n e g a t i v e | bo th | u n s p e c i f i e d ) #IMPLIED>
< !ATTLIST METRICS SOURCE ( gmond | g m e t r i c ) #REQUIRED>

] >
<GANGLIA_XML VERSION="2.5.7" SOURCE="gmond">
<CLUSTER NAME="my cluster" LOCALTIME="1254766201" OWNER="unspecified" LATLONG="unspecified" URL="unspecified">
<HOST NAME="localhost" IP="127.0.0.1" REPORTED="1254766188" TN="13" TMAX="20" DMAX="0" LOCATION="unspecified"

GMOND_STARTED="1254766188">
<METRIC NAME="cpu_nice" VAL="0.0" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond

" / >
<METRIC NAME="cpu_user" VAL="0.7" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond

" / >
<METRIC NAME="proc_total" VAL="237" TYPE="uint32" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="

gmond" / >
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<METRIC NAME="proc_run" VAL="2" TYPE="uint32" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="gmond"
/ >

<METRIC NAME="load_fifteen" VAL="0.04" TYPE="float" UNITS="" TN="13" TMAX="950" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="pkts_in" VAL="0.00" TYPE="float" UNITS="packets/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="swap_total" VAL="9936160" TYPE="uint32" UNITS="KB" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" / >

<METRIC NAME="load_five" VAL="0.11" TYPE="float" UNITS="" TN="13" TMAX="325" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="machine_type" VAL="x86_64" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" / >

<METRIC NAME="disk_total" VAL="236.061" TYPE="double" UNITS="GB" TN="13" TMAX="1200" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="mem_buffers" VAL="206532" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="mem_total" VAL="3556980" TYPE="uint32" UNITS="KB" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" / >

<METRIC NAME="bytes_in" VAL="0.24" TYPE="float" UNITS="bytes/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="load_one" VAL="0.05" TYPE="float" UNITS="" TN="13" TMAX="70" DMAX="0" SLOPE="both" SOURCE="gmond
" / >

<METRIC NAME="sys_clock" VAL="1254766188" TYPE="timestamp" UNITS="s" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" / >

<METRIC NAME="mem_free" VAL="1225576" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE
="gmond" / >

<METRIC NAME="mtu" VAL="1500" TYPE="uint32" UNITS="B" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"
/ >

<METRIC NAME="mem_shared" VAL="0" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="cpu_aidle" VAL="99.0" TYPE="float" UNITS="%" TN="13" TMAX="3800" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="cpu_idle" VAL="99.0" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="cpu_speed" VAL="3391" TYPE="uint32" UNITS="MHz" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE
="gmond" / >

<METRIC NAME="mem_cached" VAL="1181740" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="cpu_num" VAL="2" TYPE="uint16" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"
/ >

<METRIC NAME="part_max_used" VAL="7.1" TYPE="float" UNITS="%" TN="13" TMAX="180" DMAX="0" SLOPE="both" SOURCE=
"gmond" / >

<METRIC NAME="bytes_out" VAL="0.03" TYPE="float" UNITS="bytes/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="os_release" VAL="2.6.28-15-generic" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="
zero" SOURCE="gmond" / >

<METRIC NAME="gexec" VAL="OFF" TYPE="string" UNITS="" TN="13" TMAX="300" DMAX="0" SLOPE="zero" SOURCE="gmond" /
>

<METRIC NAME="disk_free" VAL="219.277" TYPE="double" UNITS="GB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="cpu_system" VAL="0.3" TYPE="float" UNITS="%" TN="13" TMAX="90" DMAX="0" SLOPE="both" SOURCE="
gmond" / >

<METRIC NAME="boottime" VAL="1254230677" TYPE="timestamp" UNITS="s" TN="13" TMAX="1200" DMAX="0" SLOPE="zero"
SOURCE="gmond" / >

<METRIC NAME="swap_free" VAL="9936160" TYPE="uint32" UNITS="KB" TN="13" TMAX="180" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

<METRIC NAME="os_name" VAL="Linux" TYPE="string" UNITS="" TN="13" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="
gmond" / >

<METRIC NAME="pkts_out" VAL="0.00" TYPE="float" UNITS="packets/sec" TN="13" TMAX="300" DMAX="0" SLOPE="both"
SOURCE="gmond" / >

< /HOST>
< / CLUSTER>
< /GANGLIA_XML>
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