
File I/O for MPI Applications in Redundant Execution Scenarios

Swen Böhm and Christian Engelmann
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

bohms@ornl.gov,engelmannc@ornl.gov

Abstract—As multi-petascale and exa-scale high-
performance computing (HPC) systems inevitably have
to deal with a number of resilience challenges, such as a
significant growth in component count and smaller circuit
sizes with lower circuit voltages, redundancy may offer an
acceptable level of resilience that traditional fault tolerance
techniques, such as checkpoint/restart, do not. Although
redundancy in HPC is quite controversial due to the associated
cost for redundant components, the constantly increasing
number of cores-per-processor is tilting this cost calculation
toward a system design where computation, such as for
redundancy, is much cheaper and communication, needed for
checkpoint/restart, is much more expensive. Recent research
and development activities in redundancy for Message Passing
Interface (MPI) applications focused on availability/reliability
models and replication algorithms. This paper takes a first
step toward solving an open research problem associated with
running a parallel application redundantly, which is file I/O
under redundancy. The approach intercepts file I/O calls made
by a redundant application to employ coordination protocols
that execute file I/O operations in a redundancy-oblivious
fashion when accessing a node-local file system, or in a
redundancy-aware fashion when accessing a shared networked
file system. A proof-of concept prototype is presented and
a number of coordination protocols are described and
evaluated. The results show the performance impact for
redundantly accessing a shared networked file system, but also
demonstrate the capability to regain performance by utilizing
MPI communication between replicas and parallel file I/O.

Keywords-high-performance computing; fault tolerance; re-
silience; redundancy; Message Passing Interface;

I. INTRODUCTION

Resilience in computing systems, i.e., providing efficiency
and correctness of a in the presence of faults, errors, and
failures, can be achieved through avoidance, masking, and
recovery. Redundancy is a particular resilience method that
provides masking of unexpected system behavior, such as
failures, through the use of multiple redundant systems and
a fail-over mechanism, in case of active/standby, or a voting
technique, in case of active/active. While redundancy has
been used in mission critical systems for decades [1], it has
not been used in parallel and distributed systems due to the
associated costs for redundant hardware. With the constantly
increasing number of cores per processor, it may be time to
reconsider redundancy as an alternative resilience approach.

Today’s high-performance computing (HPC) systems as-
sure resilience against hard errors in the same way since
the early 1990s using application-level checkpoint/restart
to/from a parallel file system [2]. Similarly, they ensure
resilience against soft errors in the same way since the early
1980s using error correcting code (ECC) throughout the
memory hierarchy [2]. The path of technological progression
toward multi-petascale and exa-scale scientific computing
systems involves a number of challenges [3], [4], [5], [6]. In
terms of resilience, these challenges include the significant
growth in component count (1,000,000 nodes with 1,000
cores/node for an exascale system [7]) and the resulting
higher hard error rates, as well as, smaller circuit sizes
(22.5 nm) in conjunction with lower circuit voltages and
the resulting higher soft error rates. As these error rates
increase, today’s HPC resilience technologies may not be
able to provide adequate correctness at reasonable efficiency,
i.e., an acceptable level of resilience [2], [8], [9].

Redundancy, although quite controversial, may offer an
acceptable level of resilience in an extreme-scale HPC
system. Recent investigations (see Section II) focused on
models and early implementations of redundancy solutions
for Message Passing Interface (MPI) applications. While the
models targeted an analysis of the impact in terms of over-
head increase and resilience gain in comparison to traditional
checkpoint/restart, the implementations aimed at exploring
different redundancy algorithms and various positions of
the replication layer in the software stack. All of this prior
work relies on state machine (or active) replication [10] for
the communicating processes of a parallel application. Each
process of the application, or only a subset, is involved in
a communication (message) replication algorithm requiring
deterministic behavior of the parallel application.

As redundancy for MPI applications is an ongoing re-
search topic, this paper takes a first step toward solving
certain open research problems associated with running a
parallel application redundantly. Apart from the complexities
of process replication itself, interfacing replicated processes
that represent a single redundant entity with the outside
world adds another level of complexity. This includes user
interaction at the command line interface, as well as, file
input/output (I/O) to/from a file or storage system.

This paper presents an initial solution for file I/O in



redundant parallel application scenarios. It considers the two
common use cases in HPC: (1) file I/O to a node-local
file system, such as for temporary files, and (2) file I/O
to a shared file system, such as for input/output data. The
approach interposes Portable Operating System Interface
for Unix (POSIX) file I/O system calls between the MPI
application and the operating system (OS) to intercept file
I/O operations invoked by the parallel application and to
implement them in a redundancy-aware fashion if needed.
The implementation offers different algorithms for redundant
or unified file I/O that are in part able to take advantage
of low-latency/high-bandwidth MPI communication between
redundant processes to improve file I/O performance.

This paper is structured as follows. Section II discusses
related work in redundancy for MPI applications. Section III
illustrates the approach and Section IV provides design
details of the proof-of-concept implementation. Section V
shows the results obtained from an experimental study, while
Section VI concludes the paper with a short summary of the
presented work and a brief discussion of future work.

II. RELATED WORK

rMPI [11] is a prototype for redundant execution of MPI
applications. It is a library that gets inserted during link time
between an application and the MPI library using MPI’s
profiling interface (PMPI). Using rMPI, an MPI application
is started on up to 2n nodes and sees ranks 0 . . . n − 1.
rMPI transparently provides redundancy using the remaining
nodes. It maintains each redundant node and duplicates the
work of its active partner. In case of a failure, the redundant
node continues without interruption. The application fails
only when two corresponding replicas fail. The synchroniza-
tion protocols and the additional messages incur overhead
that is significant in low-level, point-to-point benchmarks.
The impact on actual applications is for the most part
negligible. The overhead for LAMMPS is less than 4%, for
SAGE less than 10%, for CTH less than 20% at 2,048 nodes,
and for HPCCG less than 5%.

The modular-redundant MPI (MR-MPI) [12] is a similar
solution for transparently executing HPC applications in a
redundant fashion. It also utilizes PMPI to transparently
intercept MPI calls from an application and to hide all
redundancy-related mechanisms. In MR-MPI, messages are
replicated between redundant nodes and partial replication
for tunable resilience is supported. The results show the
negative impact of the O(m2) messages between replicas.
For low-level, point-to-point benchmarks, the impact can be
as high as the replication degree, i.e., 100% overhead for
dual and 200% for triple redundancy. In realistic scenarios,
the overhead can be 0% for embarrassingly parallel or up to
70-90% for communication-intensive applications in a dual-
redundant configuration.

RedMPI [13], is a recent effort that combines the achieve-
ments of the rMPI and MR-MPI projects, is additionally

capable of silent data corruption (SDC) online detection
and correction without requiring any changes to scientific
application source code. Using a more efficient replication
mechanism, redMPI transparently detects corrupt MPI mes-
sages originating from an SDC-affected MPI process. While
a detected SDC event results in an application abort (and
possible restart from a non-corrupted checkpoint) under dual
redundancy, redMPI further offers SDC correction using a
voting mechanism under triple redundancy.

VolpexMPI [14] is an MPI library implemented from
scratch that offers redundancy internally. It uses a polling
mechanism by the receiver of point-to-point messages to
avoid message replication. If a polled sender fails to respond,
a different sender is chosen until the receive is successful.
Messages are matched with a logical timestamp to allow
for late message retrieval. VolpexMPI achieves close to
80% of Open MPI’s point-to-point message bandwidth,
while the latency of small message increases from 0.5ms
to 1.8ms. Using the NAS Parallel Benchmark [15], there
is no overhead for BT and EP for 8 and 16 processes. SP
shows a significant overhead of 45% for 16 processes. The
overhead for CG, FT and IS is considerably higher as these
benchmarks feature intense communication.

None of these redundant MPI approaches consider file
I/O during redundant execution with one small exception.
VolpexMPI does provide the capability for one replica to
perform file I/O writes, while the other replicas skip this
operation. Intuition suggests that performance gains may be
achieved by rotating the responsibility to write out from one
replica to the next, while letting the non-writing replicas
to go ahead. However, these performance gains may be
easily negated by synchronizing replication protocols and
collective MPI communication.

III. TECHNICAL APPROACH

File I/O in redundant computing scenarios needs to deal
with the fact that there are multiple replicas of the same
process and that each of them may fail at any point in time.
The first challenge is do devise appropriate algorithms to
either unify file I/O by redundant processes, such that only
one file is read or written, or to fully support redundant file
I/O, such that each replica reads in the same non-replicated
or its corresponding replicated file (as multiple files) and
writes out a replicated file (as multiple files). The second
challenge involves fault tolerance, i.e., compensating for the
loss of a replica outside and during file I/O operations.

HPC system file I/O typically involves the compute-node
local file system, such as for temporary files, and a shared
networked file system, e.g., for input/output data. The use
case in a replicated execution scenario in both instances is
completely different. While the node-local file I/O approach
operates completely oblivious to any employed redundancy,
shared networked file I/O needs to consider the implications



of redundant processes accessing the same shared file sys-
tem. In addition to a redundancy-aware networked file I/O
that resolves redundant file system access, a redundancy-
aware file I/O scheduling algorithm is potentially able to
improve performance by utilizing inter-node communication
in addition to networked file I/O.

The technical approach taken in the presented work is
applicable to any of the described redundant MPI solutions
(see Section II). The core assumption is that there is a
set of replicated processes that needs to perform node-
local or shared network file I/O. The presented solution is
independent from the replication mechanism. It is assumed
that all replicated processes are deterministic and execute
exactly the same POSIX file I/O operations. Our solution
either executes these file I/O operations in a redundancy-
oblivious fashion when accessing a node-local file system,
or in a redundancy-aware fashion employing a coordination
protocol when accessing a shared networked file system.
In order to take advantage of low-latency/high-bandwidth
communication between redundant processes, MPI commu-
nication is used for the coordination protocol and optionally
for data distribution in the more advanced redundancy-aware
file I/O protocols. MPI-IO, a file I/O layer with MPI support
for parallel file system access, is not used or supported at
this point due to the inherent complexities involving MPI-IO
and missing MPI-IO fault tolerance capabilities.

IV. DESIGN

The general design of the presented solution relies on
a library that interposes POSIX file I/O system calls, like
open(), read(), write() and close(), such that
these calls are intercepted by the library when coming from
an application, execute the needed coordination protocol,
and perform related file I/O using the original POSIX system
calls. The mechanism to intercept the system calls may rely
on (1) compile-time redirection using #define preproces-
sor statements in code parsed by the C preprocessor, (2) run-
time redirection by symbol overloading via a shared library
using the LD_PRELOAD mechanism of the dynamic linker,
or (3) run-time redirection by symbol overloading via the
-Wl,--wrap option of the GNU linker (not available for
Mac OS due to BSD linker). The implemented prototype
uses -Wl,--wrap whenever possible and provides support
for the other methods as fall-back.

The redundant file I/O library interfaces with a redundant
MPI layer as it requires certain runtime information, such
as the redundancy degree and replica mapping, to execute
the coordination protocol among replicas. The implemented
prototype uses MR-MPI (see Section II) for running MPI
applications redundantly as the authors where granted access
to the source code by the MR-MPI developers. MR-MPI
itself was not modified, instead the redundant file I/O library
accesses data structures and basic functions within MR-
MPI to identify the redundancy degree and replica mapping.

The experimental evaluation of the implemented proof-of-
concept prototype (see Section V) uses the latest MR-MPI
version, before it was merged with rMPI into redMPI (see
Section II). Modifying the redundant file I/O library to use
a different redundant MPI layer, such as rMPI, redMPI or
VolpexMPI, is relatively simple as each redundancy solution
needs to maintain this information internally.

Since the POSIX file I/O calls use file descriptors as
handles, the redundant file I/O library maintains a mapping
between “virtual” file descriptors given out to the application
and actual file descriptors used by the library for file I/O.
Note that depending on the coordination protocol (explained
in the following) a replica may not have an actual file
descriptor associated with each “virtual” file descriptor as
the data may come from and/or go to a different replica.
The redundant file I/O library also supports the f...()
file I/O calls, such as fopen(), fread(), fwrite()
and fclose(). The corresponding FILE handle is dealt
with in a similar way. The redundant file I/O library does rec-
ognize non-redundant descriptors/handles and executes the
corresponding system call without invoking a coordination
protocol in a pass-through fashion.

A. Coordination Protocols

In the following, individual coordination protocols for
redundancy-oblivious and redundancy-aware file I/O are
described. Each protocol has its own advantages and dis-
advantages in terms of performance and resilience. It is
assumed that the file I/O subsystem itself assures fault
notification in case of file I/O hard errors, such as a failing
networked file system service, or file I/O soft errors, like
data corruption. Detection of file I/O hard errors is typically
employed in hardware, while detection of file I/O soft errors
is normally implemented in software, e.g., with checksums
or Hamming codes. The coordination protocols are separate
for read and write operations to provide better performance.

None: As mentioned earlier, there is a significant
distinction between accessing a node-local vs. a shared
networked file system. As node-local files are not intended
to be shared between processes of a parallel application, the
presented redundant file I/O library does not interfere with
any file I/O involving node-local storage. The previously
described system call pass-through capability is employed
for node-local file I/O based on the file path given by the
application and the knowledge of the redundant file I/O
library about shared file system mounts. Any file I/O error is
handled like a normal file I/O error, while any replica fault
is handled by the redundant MPI layer and does not impact
the node-local file I/O of the surviving replica(s).

Simple Read: The most basic coordination for file
I/O read operations, Simple Read (see Figure 1), allows
each replica to read the same file content at the same
time from a shared network file system. As each replica
reads its data separately from the file system, the resulting



Figure 1. The Simple Read protocol.

Figure 2. The Extended Simple Read protocol.

performance impact due to contention at the storage system
and/or I/O network can be quite significant. An advantage,
however, is that data is read redundantly, i.e., an additional
protocol that calculates checksums over the read data and
exchanges the checksums reliably between the replicas adds
more comprehensive soft error resilience. Any file I/O error
is handled using an additional coordination between the
replicas and consistently reported to the application. Any
replica fault is handled by the redundant MPI layer and does
not impact the file I/O of the surviving replica(s). This is the
only read protocol that does not involve coordination by the
redundant file I/O library for replica faults.

Extended Simple Read: In the Extended Simple Read
protocol (see Figure 2), only a subset of the replicas reads
in the same file content at the same time from a shared
network file system. The other replicas receive the data
from this subset. In a triple redundant scenario, for example,
two replicas read the file content and the third receives it
from one of the two (or both). In contrast to the Simple
Read protocol, less data is transferred from the shared
network file system, which results in less contention and
higher performance for file I/O. However, the additional
step for sending the data to the other replica(s) does add
latency. Similar to the Simple Read protocol, an additional
protocol calculating and exchanging checksums adds more
comprehensive soft error resilience. Any file I/O error is
coordinated between replicas and consistently reported to the
application. Any replica fault is handled by the redundant
MPI layer and the coordination protocol that includes an
optional fall back to the Simple Read protocol.

Read & Distribute: The Read & Distribute protocol
(see Figure 3) is a special variant of the Extended Simple

Figure 3. The Read & Distribute protocol.

Figure 4. The Chained Read protocol.

Read protocol. Only one master replica is reading the file
content and distributing it to the other replica(s). Depending
on the inter-node network, the performance impact can be
quite extensive as the data needs to be multicast to the
other replica(s) using point-to-point messages or a native
multicast. While this adds a significant latency, pressure at
the shared networked file system is reduced. Further, as the
data is only read once, soft error resilience is not provided
by this protocol and needs to be supplied by the file I/O
and MPI layers. Any file I/O error is coordinated between
replicas and consistently reported to the application. Any
replica fault is handled by the redundant MPI layer and the
coordination protocol that includes a fail-over of the master.

Chained Read: The Chained Read protocol (see Fig-
ure 4) is a special variant of the Read & Distribute protocol.
The multicast mechanism is a point-to-point chain, which
incurs the highest latency. Failure handling is performed as
in the Read & Distribute protocol. This protocol is only
described as a progression step toward the next protocol.

Chunked & Chained Read: The Chunked & Chained
Read protocol (see Figure 5) reduces the latency of the
Chained Read protocol by cutting the data buffer to be read
into multiple chunks and reading/distributing each chunk
separately. Performance is gained due to the overlapping file
I/O and replica messaging. Although a tree-based multicast
may seem to be an intuitively better fit for distributing
the chunks, the message scheduling among the replica(s)
is actually an optimal pipeline using the chained multicast.
File I/O and replica failure handling is performed in this
protocol as in the Read & Distribute protocol.



Figure 5. The Chunked & Chained Read protocol.

Figure 6. The Distributed Chunked Read protocol.

Distributed Chunked Read: The Distributed Chunked
Read protocol (see Figure 5) is an extension of the Chunked
& Chained Read protocol, in which each replica reads in a
different chunk and distributes it to the others. This proto-
col has the potential to improve throughput and decrease
latency as individual chunks may be located on different
storage servers in a networked shared file system and the
data distribution among the replicas may take advantage
of the low-latency/high-bandwidth communication between
replicas. File I/O failure handling is performed as in the
Read & Distribute protocol. Any replica fault is handled by
the redundant MPI layer and the coordination protocol that
includes a fail-over of the master replica with the difference
that there is a different master for each data chunk.

Simple Write: In the Simple Write protocol (see Fig-
ure 7) a master replica writes out the file I/O buffer
and communicates the result (bytes written and possibly a
checksum) to the remaining replicas. As only one replica
performs file I/O and minimal result data is communicated
between replicas, the performance of this protocol is quite
high. It does offer soft error resilience using checksum
exchanges between replicas. Any file I/O error is coordinated

Figure 7. The Simple Write protocol.

Figure 8. The Distributed Write protocol.

between replicas and consistently reported. Any replica fault
is handled by the redundant MPI layer and the coordination
protocol that includes a fail-over of the master.

Distributed Write: The Distributed Write protocol (see
Figure 8) allows each replica to write out a specific chunk
of the data and to communicate the result (bytes writ-
ten and possibly a checksum) to the other replicas. This
rather complex operation not only requires support from the
networked shared file system for multiple clients writing
different parts of a file, but also a very careful handling
of any failures. This protocol does offer soft error resilience
using checksums. Any file I/O error is coordinated between
replicas and consistently reported to the application. Similar
to the Distributed Chunked Read protocol, the Distributed
Write protocol protocol may offer better performance as
individual chunks may be located on different storage servers
in a networked shared file system.

Distributed Separate Write: The last protocol described
is the Distributed Separate Write (see Figure 9). It is a
variant of the Distributed Write protocol with a mechanism
that writes each chunk coming from a replica into a separate
file. While this protocol requires post-processing to join
these files, this operation may be as simple as joining
metadata records without moving file content in an advanced
networked shared file system. In this case, performance may
be even better than using the Distributed Write protocol,
depending on the capabilities of the networked shared file
system. Failure handling is performed as in the Distributed
Write protocol.



Figure 9. The Distributed Separate Write protocol.

V. EXPERIMENTAL EVALUATION

The developed proof-of-concept prototype was deployed
on a 16-node cluster together with the latest version of MR-
MPI and a set of MPI micro benchmarks performing file
I/O. Each node has two 2.4GHz AMD Opteron processors
with 4-cores each, i.e., 8 cores per node, and 8GB RAM,
i.e., 1GB per core. The system has a total of 128 cores
and 128 GB RAM. The network interconnect is Gigabit
Ethernet with a central non-blocking switch. The cluster is
running Ubuntu 10.04.1 LTS Linux and Open MPI 1.5.3.
Tests were performed to the local file system as well as using
Network File System (NFS) mounts. To show the impact on
accessing a single shared vs. a distributed shared file system,
a single and multiple NFS mounts (one for each replica)
were employed to simulate the effect of parallel file I/O.
Each performance test was executed 10 times.

Simple Read and Distributed Chunked Read: The first
evaluation focused on the file read performance of the Sim-
ple Read and Distributed Chunked Read protocols without
(1x), with double (2x) and with triple (3x) redundancy in
comparison to the non-redundant native (1x) performance
exemplified by the None protocol. An MPI micro benchmark
was developed and executed as one non-, dual- or triple-
redundant MPI process that reads the data and measures the
file read throughput.

An 8 GB file was read from a single NFS server with
various read buffer sizes (see Figure 10). The chunk size
for the Distributed Chunked Read protocol was determined
by dividing the read buffer by the number of replicas. The
results are quite interesting. The first to note is that with
read buffer sizes of 2 GB and below, the performance is
better than the theoretical bandwidth of the Gigabit Ethernet
(120 MB/s). This can be entirely attributed to read-ahead
and caching by the OS that was purposely not disabled
to demonstrate performance under realistic conditions. At
4 GB read buffer size, these effects subside as the total
node memory is 8 GB and the OS is throttling read-ahead
and caching to conserve resources. Without redundancy, the
Simple Read (1x) protocol performs slightly worse in the
read-ahead and caching zone than the None (1x) protocol
due to the added internal bookkeeping disturbing these

Figure 10. The None, Simple Read and Chunked & Chained Read
protocols reading an 8 GB file from a single NFS server with various block
sizes and without (1x), with double (2x) and with triple (3x) redundancy.

Figure 11. The None, Simple Read and Distributed Chunked Read
protocols reading an 8 GB file from multiple NFS servers with various block
sizes and without (1x), with double (2x) and with triple (3x) redundancy.

effects. At 4 GB read buffer size, the performance is the
same. With double redundancy, the Distributed Chunked
Read (2x) protocol performs worse in the read-ahead and
caching zone than the Simple Read (2x) protocol due to the
added coordination and data distribution between replicas
using MPI disturbing these effects. At 4 GB read buffer
size, the performance is the same. With triple redundancy,
both protocols perform similar in the read-ahead and caching
zone. The performance of the Distributed Chunked Read
(3x) drops off significantly at 2 GB read buffer size. As the
network performance between nodes is the same as to the
single NFS server, the data distribution of the Distributed
Chunked Read (3x) causes this performance penalty.

To evaluate the performance of the Simple Read and
Distributed Chunked Read protocols when accessing a par-
allel networked file system with multiple storage servers
using RAID, the number of NFS servers was increased with
the degree of redundancy and each replica read from its
corresponding NFS server. While the single NFS scenario



Figure 12. The None, Simple Write and Distributed Write protocols
writing an 8GB file to a single NFS server with various block sizes and
without (1x), with double (2x) and with triple (3x) redundancy.

provided lower performance bound, this scenario offers an
upper performance bound. The results (see Figure 11) show
the same read-ahead and caching effects. However, the
None (1x) protocol is outperformed by all other protocols,
except for the non-redundant Simple Read (1x) protocol. In
this performance evaluation, redundancy actually provides
a performance gain as data is read for each replica from
a different storage server. The Distributed Chunked Read
outperforms the Simple Read under both redundancy con-
figurations (1x and 2x).

Simple Write and Distributed Write: The next eval-
uation aimed at the file write performance of the Simple
Write and Distributed Write protocol without (1x), with
double (2x) and with triple (3x) redundancy in comparison
to the non-redundant Simple Write (1x) protocol and native
(1x) performance exemplified by the None protocol. The
redundant Simple Write protocols (2x and 3x) were omitted
for clarity as there is only one writer as in the non-redundant
Simple Write (1x) protocol. An MPI micro benchmark
was developed and executed as one non-, dual- or triple-
redundant MPI process that writes the data and measures
the file write throughput.

An 8 GB file was written to a single NFS server with
various write buffer sizes (see Figure 12). The results show
a better performance for the non-redundant Simple Write
(1x) than for the non-redundant None (1x) protocol. This
may be caused by slight performance interruptions the
interposing file I/O library introduces that ultimately reduce
the network pressure created at the NFS server. The results
also demonstrate the significant impact of the Distributed
Write (2x and 3x) on the single NFS server as different
parts of a file are written by each replica at the same time,
creating contention at the NFS server.

In a corresponding series of write tests the number of NFS
servers was increased with the degree of redundancy and
each replica wrote to its NFS server. Similar to the file read
performance evaluation, the file write results (see Figure 13)

Figure 13. The None, Simple Write and Distributed Write protocols
writing an 8GB file to multiple NFS servers with various block sizes and
without (1x), with double (2x) and with triple (3x) redundancy.

show again a performance increase under redundancy. All
redundancy protocols perform close to or slightly better than
the non-redundant Simple Write (1x). The non-redundant
None (1x) suffers again from creating too much network
pressure at the NFS server.

VI. SUMMARY AND FUTURE WORK

With the research and development presented in this
paper, we offered a first step beyond availability/reliability
models and process replication protocols in the relatively
new area of redundancy for MPI applications. The issue of
file I/O under redundancy is quite important as MPI appli-
cations do perform file I/O, mostly for input/output data.
The described proof-of-concept prototype intercepts file I/O
calls from the MPI application and employs the needed
coordination protocols to enable redundancy-oblivious or
redundancy-aware file I/O, depending on the targeted file
system. While the proof-of-concept prototype and the ex-
perimental evaluation relies on MR-MPI, which the authors
were granted source code access to, using a different redun-
dant MPI layer is as simple as rewriting the redundant file
I/O library calls to identify the redundancy degree and the
replica mapping.

The performance evaluation focused on the Simple Read,
Distributed Chunked Read, Simple Write and Distributed
Write protocols with various block sizes and without, with
double and with triple redundancy. The results clearly
indicate the performance impact under redundancy when
accessing a single networked file system. They also demon-
strate the capability to offset this performance impact in a
parallel networked file system using parallel file I/O and
MPI communication between replicas for data distribution.

Looking beyond the presented work, we will target a
more comprehensive evaluation using HPC applications and
larger-scale systems. Future work not only includes a more
mature implementation that can be used in production, but



also dynamic protocol selection based on application de-
mands and system capabilities. The current proof-of-concept
prototype only supports static protocol switching separately
for each application run. For more efficient protocol selec-
tion, a dynamic redundant file I/O implementation would
consider runtime information, such as file size and access
patterns/frequency, system configuration, like network la-
tencies/bandwidths and I/O bottlenecks, application config-
uration parameters, such as node count and location, and,
most importantly, application user guidance. Further work
may focus on built-in support for redundant applications
in advanced parallel file systems, such as Lustre [16] and
PVFS [17], especially considering the fact that these file
systems do employ redundancy protocols for Redundant
Array of Independent Disks (RAID) mechanisms across
storage servers.

VII. ACKNOWLEDGMENT

This research is sponsored by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy.
The work was performed at the Oak Ridge National Labora-
tory, which is managed by UT-Battelle, LLC under Contract
No. De-AC05-00OR22725. The United States Government
retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

REFERENCES

[1] D. P. Siemwiorek, “Architecture of fault-tolerant computers:
An historical perspective,” Proceedings of the IEEE, vol. 79,
no. 12, pp. 1710–1734, 1991.

[2] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C. En-
gelmann, and B. Harrod, “High-end computing resilience:
Analysis of issues facing the HEC community and path-
forward for research and development,” Whitepaper, 2009.

[3] E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. God-
frey, A. Hoisie, K. McKinley, R. Melhem, J. S. Plank, P. Ran-
ganathan, and J. Simons, “System resilience at extreme scale,”
Defense Advanced Research Project Agency (DARPA), Tech.
Rep., 2008.

[4] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill,
J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
and K. Yelick, “ExaScale computing study: Technology chal-
lenges in achieving exascale systems,” Defense Advanced
Research Project Agency (DARPA) Information Processing
Techniques Office (IPTO), Tech. Rep., 2008.

[5] F. Cappello, A. Geist, W. D. B. Gropp, L. V. S. Kale, W. T.
C. B. Kramer, and M. Snir, “Toward exascale resilience,”
University of Illinois at Urbana-Champaign (UIUC) - Institut
National de Recherche en Informatique et en Automatique
(INRIA) Joint Laboratory on PetaScale Computing, Tech.
Rep. TR-JLPC-09-01, 2009.

[6] A. Geist and R. F. Lucas, “Major computer science challenges
at exascale,” International Exascale Software Project, Tech.
Rep., 2009, whitepaper.

[7] J. Dongarra, P. Beckman, T. Moore, J.-C. Andre, J.-Y.
Berthou, T. Boku, F. Cappello, B. Chapman, X. Chi,
A. Choudhary, S. Dosanjh, A. Geist, B. Gropp, R. Harrison,
M. Hereld, M. Heroux, A. Hoisie, K. Hotta, Y. Ishikawa,
F. Johnson, S. Kale, R. Kenway, B. Kramer, J. Labarta,
B. Lucas, B. Maccabe, S. Matsuoka, P. Messina, B. Mohr,
M. Mueller, W. Nagel, H. Nakashima, M. E. Papka, D. Reed,
M. Sato, E. Seidel, J. Shalf, D. Skinner, T. Sterling,
R. Stevens, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Snir, A. van der Steen, F. Streitz, B. Sugar, S. Sumi-
moto, J. Vetter, R. Wisniewski, and K. Yelick, “International
exascale software project roadmap (draft 0.93),” 2009.

[8] B. Schroeder and G. A. Gibson, “Understanding failures
in petascale computers,” in Journal of Physics: Scientific
Discovery through Advanced Computing Program (SciDAC)
Conference, vol. 78, 2007, pp. 2022–2032.

[9] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Michalak, “Ap-
plication MTTFE vs. platform MTTF: A fresh perspective
on system reliability and application throughput for compu-
tations at scale,” in IEEE International Symposium on Cluster
Computing and the Grid (CCGrid): Workshop on Resiliency
in High Performance Computing (Resilience), 2008.

[10] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys (CSUR), vol. 22, no. 4, pp. 299–319, 1990.

[11] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros,
K. Pedretti, R. Brightwell, and T. Kordenbrock, “Increasing
fault resiliency in a message-passing environment,” Sandia
National Laboratories, Technical report SAND2009-6753,
2009.

[12] C. Engelmann and S. Böhm, “Redundant execution of HPC
applications with MR-MPI,” in IASTED International Con-
ference on Parallel and Distributed Computing and Networks
(PDCN), 2011, pp. 31–38.

[13] D. Fiala, “Detection and correction of silent data corruption
for large-scale high-performance computing,” Poster at the
25th IEEE International Parallel and Distributed Processing
Symposium (IPDPS) 2011, Anchorage, AK, USA, 2011.

[14] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok,
“Volpexmpi: An MPI library for execution of parallel ap-
plications on volatile nodes,” in Lecture Notes in Computer
Science: European PVM/MPI Users‘ Group Meeting (Eu-
roPVM/MPI), vol. 5759, 2009, pp. 124–133.

[15] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks,” The
International Journal of Supercomputer Applications, vol. 5,
no. 3, pp. 63–73, 1991.

[16] Sun Microsystems, Inc., Santa Clara, CA, USA, “Lustre file
system – High-performance storage architecture and scalable
cluster file system,” 2007, white paper.

[17] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “PVFS:
A parallel file system for linux clusters,” in Annual Linux
Showcase and Conference, 2000, pp. 317–327.


