
A Diskless Checkpointing Algorithm for Super-scale
Architectures Applied to the Fast Fourier Transform∗†

Christian Engelmann and Al Geist
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA
{engelmannc,gst}@ornl.gov

Abstract

This paper discusses the issue of fault-tolerance in dis-
tributed computer systems with tens or hundreds of thou-
sands of diskless processor units. Such systems, like the
IBM BlueGene/L, are predicted to be deployed in the next
five to ten years. Since a 100,000-processor system is go-
ing to be less reliable, scientific applications need to be
able to recover from occurring failures more efficiently.
In this paper, we adapt the present technique of diskless
checkpointing to such huge distributed systems in order
to equip existing scientific algorithms with super-scalable
fault-tolerance. First, we discuss the method of diskless
checkpointing, then we adapt this technique to super-scale
architectures and finally we present results from an im-
plementation of the Fast Fourier Transform that uses the
adapted technique to achieve super-scale fault-tolerance.

1 Introduction

In the past four decades, the raw computational power
of computer systems increased steadily affirming the ini-
tial prediction of Gordon Moore from 1965 that the number
of transistors, i.e. the raw computational power, on a chip
doubles every eighteen months. With the introduction of
parallel computing Moore’s Law was even topped by dou-
bling the computational performance of parallel computer
systems every 12 months. This trend is not only driven by

∗This research was supported in part by an appointment to the ORNL
Postmasters Research Participation Program which is sponsored by Oak
Ridge National Laboratory and administered jointly by Oak Ridge Na-
tional Laboratory and by the Oak Ridge Institute for Science and Ed-
ucation under contract numbers DE-AC05-00OR22725 and DE-AC05-
00OR22750, respectively.

†All opinions expressed in this papaer are the author’s and not neces-
sarily reflect policies and views of the U.S. Department of Energy or the
Oak Ridge Institute for Science and Education.

the achievements in processor technology but also by con-
necting more and more processors together using low la-
tency/high bandwidth interconnects. The current top sys-
tem, the Earth Simulator in Japan, has 5120 processors con-
nected with a single stage crossbar (16 GB/s cross section
bandwidth) and achieves up to 40 Tera FLOPS.

In the next five to ten years the number of processors in
distributed computer systems will rise to tens and even hun-
dreds of thousands in order to keep up with the pace. While
the vision of such super-scalable computer systems, like the
IBM BlueGene/L [1, 2], attracts more and more scientists
for research in areas like climate modeling and nanotech-
nolgy, existing deficiencies in scalability and fault-tolerance
of scientific algorithms need to be addressed soon. Am-
dahl’s Law shows how efficiency drops off as the number
of processors increases. A lot of scientific algorithms still
do not scale well. Furthermore, the mean time to failure be-
comes shorter and shorter. A failure may occur every couple
of minutes in a system with 100,000 processors. Addition-
ally, computing processors will not have local disk storage
any longer due to associated costs, failure sensitivity and
maintenance. Network bottlenecks and latencies to stable
storage make frequent disk checkpointing (every hour) of
applications for fault-tolerance impossible.

In this paper, we describe a super-scalable diskless
checkpointing algorithm that can be used to provide sci-
entific algorithms with fault-tolerance for distributed com-
puter systems beyond the 10,000-processor barrier. First we
will discuss the existing technique of diskless checkpointing
and then its adaptation to super-scale architectures. Finally,
we use the Fast Fourier Transform algorithm to demonstrate
the super-scalable diskless checkpointing.

2 Diskless checkpointing

Existing techniques of diskless checkpointing [10, 11]
are based on a coordinated backup procedure of the global



application state, which consists of the state of each process
and a log of all in-flight messages. This application state
is stored in the memory of dedicated checkpoint processes
using common encoding semantics, such as RAID. By elim-
inating stable storage, diskless checkpointing reduces over-
head and latency allowing more frequent checkpoints and
shorter application running time. To avoid the absence of
any stable storage backup for long application runs, a two
level approach with frequent memory and infrequent disk
checkpointing has been used.

In case of single or multiple process failures in a system
using diskless checkpointing, all correct processes rollback
to their last checkpoint state using either a locally main-
tained copy or the stored backup from the checkpoint pro-
cesses. All failed processes are restarted using their last
checkpoint states from the checkpoint processes. If no spare
processors are available, two or more processes may be as-
signed to one processor or a dedicated checkpoint processor
may become a replacement processor. New checkpoint or
spare processors can be added to the system dynamically
during runtime when they become available.

Super-scale distributed systems with tens or hundreds of
thousands of diskless processor units will likely have short
mean times to failure. Checkpointing and restart algorithms
will need to recover fast and to progress even while other
failures occur. Additionally, complete system backups to
remote stable storage may only be performed very infre-
quently due to I/O limitations. The following adaptation of
diskless checkpointing is able to address these problems by
embedding a distributed memory checkpointing and restart
algorithm into application algorithms.

3 Super-scalable self-healing algorithms

Naturally fault-tolerant algorithms for super-scale archi-
tectures [7] are able tolerate failures without requiring no-
tification or recovery from previously saved state. They do
this through the mathematical properties of the algorithms
themselves. A simple example is an iterative method that
requires a little longer to converge if a failure occurs. In this
section we describe how algorithms without such properties
can be equipped with a scalable replication scheme similar
to diskless checkpointing in order to provide a self-healing
capability for fault-tolerance.

In a super-scalable self-healing algorithm, every pro-
cess is only responsible to replicate its own local state to
a set of neighbor processes using encoding, such as RAID.
The neighbor processes themselves are also replicating their
own local state each to different sets of neighbor processes.
In contrast to the traditional diskless checkpointing with
its global separation of current and backup state, a scal-
able peer-to-peer infrastructure of checkpointing processes
is formed with local separation of current and backup states

Process A

Current State

Last Checkpoint

Checkpoint RAID

Process B

Current State

Last Checkpoint

Checkpoint RAID

Process D

Current State

Last Checkpoint

Checkpoint RAID

Process C

Current State

Last Checkpoint

Checkpoint RAID

Process E

Current State

Last Checkpoint

Checkpoint RAID

Memory RAID of Process A: Checkpoints of B, C, D, E
Memory RAID of Processes B, C, D, E: Checkpoints of A, ..

Figure 1. Peer-to-peer infrastructure of check-
pointing processes

(see example in figure 1). The amount of additional infor-
mation each process needs to hold in its memory is only
dependent on the encoding algorithm and on the number of
neighbors involved in the replication of the state of one pro-
cess, i.e. the system-wide degree of fault-tolerance.

The set of neighbor processes may be derived from the
physical network infrastructure, e.g. the set of processors
connected to, where it may also be greater than the number
of direct connections, e.g. based on a maximum number
of hops. The second variant ensures a greater degree of
fault-tolerance, while both ensure a minimum of latency and
a maximum of bandwidth. However, the probability of a
failure involving physical neighbors, e.g. node failures, may
be greater than the probability of a failure involving a set of
random or far away neighbors.

The set of neighbor processes may also be derived from
the logical network infrastructure defined by the applica-
tion algorithm the checkpointing is embedded in. If the al-
gorithm requires the exchange of process state anyway, why
not use it as a replication scheme provided that the states are
replicated at multiple processes. This solution has a greater
latency and smaller bandwidth if the neighbor processes are
not physical neighbors.

Furthermore, the neighborhood of a process may change
in case of a failure and restart, since the physical location
of the restarted process may be different. In order to pro-
vide fault-tolerance, process state needs to be replicated at
different physical locations.

Synchronization of checkpointing processes (individual
checkpoints) is not necessary if they do not communicate



with each other at all or if they do not communicate between
synchronizing checkpoints. Once they send each other mes-
sages, synchronization is necessary to make sure that pro-
cess restarts are consistent with the algorithm state (coordi-
tated checkpoints). There are two methods for backup coor-
dination: the snapshot method with global synchronization
and the record keeping of in-flight messages with local syn-
chronization.

The traditional snapshot method can be used to synchro-
nize the checkpoints of all processes at once. Global bar-
riers are set at a specific algorithm state after a checkpoint
was performed requiring each process to wait until all other
processes reach the barrier. All process checkpoints are de-
clared valid only after passing the barrier, so that the old
checkpoints are valid until all processes have completed
their new checkpoints.

When a failure occurs, all correct processes rollback to
their last checkpoint state using a locally maintained copy
or the remote backup in the neighbor processes. All failed
processes are replaced using their last checkpoint states
from their neighbor processes. There are no additional
group communication algorithms, such as reliable broad-
cast, needed to ensure the replication procedure, since the
global barrier also validates the new checkpoints and there-
fore acts as an acknowledgement for the replication mes-
sages. This method produces p times k replication mes-
sages, where p is the total number of processes and k is the
degree of fault-tolerance (the average number of neighbors
assigned to one process).

The record keeping of in-flight messages is a method to
synchronize the checkpoints only of dependent processes.
A message is called in-flight once it is sent out and until
the receiver returned an acknowledgement. It is stored in
the process state for that period. The receiver sends an ac-
knowledgement if it does not need the message anymore to
reconstruct its current state from its replicated backup state
(usually after a checkpoint).

In case of a failure, all correct processes continue to
work. All failed processes are replaced using their last
checkpoint states from the neighbor processes. A restarted
process may request from another (correct or restarted) pro-
cess to resend a lost message. Since messages are part of
the process state and only deleted once they are not needed
anymore, the restart is consistent even if multiple dependent
processes fail at once.

In order to ensure the correctness of the replication pro-
cedure, the state replication needs group communication al-
gorithms, such as reliable broadcast. This method produces
p times k group communication for the replication process,
while it doubles the number of application algorithm mes-
sages for the record keeping. It should only be used if an
application algorithm has very infrequent messages that do
not synchronize all processes.

Variations of this algorithm may handle some parts more
efficiently. For example, unprocessed received messages
may be stored immediately with a checkpoint to release the
copies on the sending site. The sending site may automat-
ically resend all unacknowledged messages in the same or-
der after a restart. The restarted process may access its local
copy of the replicated state of the sending site to retrieve the
message without networking.

Both methods have their advantages and disadvantages.
The global system snapshot is easy to implement, but every
coordinated checkpoint and every failure results in a system
wide synchronization. The record keeping of in-flight mes-
sages is asynchronous, but doubles the number of algorithm
messages and involves localized group communication al-
gorithms between neighbors.

Existing fault-tolerant message passing software, such as
FT-MPI [4] and PVM [6], do support the needed partial sys-
tem recovery due to their dynamic management of system
global message addressing and routing.

In the following sections we are going to show how two
different versions of the parallel Fast Fourier Transform
can be equipped with the introduced super-scale diskless
checkpoint and restart to provide a self-healing capability
for fault-tolerance.

4 Parallel FFT

The Fast Fourier Transform (FFT) plays an important
role in scientific research areas, such as climate modeling
[3, 5]. Scientific applications for large-scale distributed sys-
tems widely use parallel variants [8, 9] of the serial algo-
rithm despite the fact that a huge communication overhead,
about 50%, may be involved. The FFT algorithm is not nat-
urally fault-tolerant, since all intermediate values are criti-
cal to the calculation of the final result. A single process
failure affects more than one output value and cannot be re-
covered without using a previously replicated backup of the
process state.

The serial FFT is a very fast algorithm for computing a
1-D Fourier transform in nlog(n) steps. Multi-dimensional
FFTs can be performed in a sequence of 1-D transforms
by applying them in every dimension. For example, n 1-
D transforms of the length m with the stride 1 and m 1-D
transforms of the length n with the stride m are carried out
for a 2-D transform of an m by n array. The second set of
1-D transforms is basically applied to the transposed result
of the first set of 1-D transforms.

There are two common parallel variants of the FFT. The
distributed FFT is a parallel version of the 1-D transform.
It splits the inner loop over multiple processes and involves
crosswise message exchanges between processes for some
stages of the FFT. The transposed FFT is a parallel version
of a multidimensional transform. It literally transposes the



Stage 1 Stage 2 Stage 3 Stage 4

Y[8]

Y[9]

Y[10]

Y[11]

Y[12]

Y[13]

Y[14]

Y[15]

y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

P2

P3

P0

P1

Possible
Individual

Checkpoints

Possible
Coordinated
Checkpoints

Figure 2. Distributed FFT

array between local 1-D FFT runs over the rows.

5 Fault-tolerant distributed FFT

The serial FFT has log(n) stages of n operators. Before
every stage, a crosswise exchange of values is performed
between values that are 2log(n)-stage apart. Assuming a
distribution of n values over p processes the communica-
tion for n/p values are process-local in the last log(n/p)
stages. The distributed FFT consists of two phases (see ex-
ample in figure 2). The first phase involves the crosswise
messaging before every stage resulting in high inter-process
dependency. The second phase consists of totally indepen-
dent computation at all processes and exists only if more
than one value is assigned to one process (n/p > 1).

In the first phase of the distributed FFT, processes are
highly dependent on each other due to the crosswise mes-
saging. A coordinated checkpointing and restart in case of
a failure is needed to ensure consistency. The coordination
can be performed using either the snapshot method or the
record keeping of in-flight messages. However, since heavy
messaging by the application algorithm is involved we can
show that the record keeping of in-flight messages should
not be used in this case.

The traditional snapshot method can be used to regularly
checkpoint the global system state at once after a specific
number of stages are computed. A global barrier is set after
every mth stage is computed and the set of values is repli-
cated. Once every process reaches that barrier the replicated
sets of values become valid and the old ones are discarded.
In case of a failure, all processes fall back to the last check-

point using a locally maintained copy or the backup in their
neighbors.

Can the record keeping of in-flight messages also be used
as an alterative asynchronous coordination method? Yes,
since messages are exchanged crosswise before every stage,
another exchange of messages after completing a stage can
be used to implement the acknowledgement of messages en-
abling the sending site to delete the message from its mem-
ory. All unacknowledged messages and the set of values are
replicated at a checkpoint. Processes are free to checkpoint
individually.

In case of a failure, correct processes continue to work
while failed processes are restarted with their last check-
point, i.e. with their last set of values. A restarted process
always needs to restore lost messages, since the FFT algo-
rithm progresses only after receiving a message. Request
messages are sent to processes to retrieve messages until
the restarted process is in sync.

Since the record keeping of in-flight messages doubles
all application messages to satisfy the acknowledgement
scheme and the distributed FFT is a communication bound
algorithm, the traditional snapshot method is the way to go
in the first phase. Additionally, a race condition exists for
restarted processes due to the high volume of messaging and
short computation periods. A restarted process may never
get in sync and may always request messages. In the worst-
case scenario, the original amount of messages is going to
be tripled for every faulty process after a restart. Automated
sending of lost messages by the sender site can eliminate
this race condition.

Since processes do not depend on each other in the sec-
ond phase of the distributed FFT, individual checkpointing
of the current values using a group communication algo-
rithm at the set of neighbor processes can be used. In case
of a failure, correct processes continue to work while failed
processes are restarted with their last checkpoint.

A simplification of checkpointing and restart may also
just implement regular application global snapshots using
barriers. A synchronized global checkpoint may still be
faster than p times asynchronous replication procedures us-
ing group communication.

Variations of the distributed FFT [9] dynamically mod-
ify the value assignment to gain multiple blocks of contin-
uous independent parallel computation each followed and
preceded by global shuffle communication. Sets of values,
each only with internal crosswise exchanges, are assigned
to processors due to the value shuffling. Since the global
shuffle communication involves synchronization anyway, a
system-wide snapshot can be done after each global shuffle
and individual checkpoints can be done regularly during the
independent computation and right before the next global
shuffle. The global shuffle can be combined with the state
replication to save communication costs. The barrier for the



X[2,0]

X[2,1]

X[2,2]

X[2,3]

X[3,0]

X[3,1]

X[3,2]

X[3,3]

X[0,0]

X[0,1]

X[0,2]

X[0,3]

X[1,0]

X[1,1]

X[1,2]

X[1,3]

P2

P3

P0

P1

Y[0,2]

Y[1,2]

Y[2,2]

Y[3,2]

Y[0,3]

Y[1,3]

Y[2,3]

Y[3,3]

Y[0,0]

Y[1,0]

Y[2,0]

Y[3,0]

Y[0,1]

Y[1,1]

Y[2,1]

Y[3,1]

Local FFTs Local FFTsTranspose 

Possible
Coordinated
Checkpoint

Possible
Individual
Checkpoints

Possible
Individual
Checkpoints

Figure 3. Transposed FFT

snapshot after the global shuffle ensures the complete com-
munication step.

6 Fault-tolerant transposed FFT

Multi-dimensional Fourier transforms can be performed
as a sequence of 1-D transforms by applying them in every
dimension (see example in figure 3). Each processor is as-
signed to one or more row vectors and runs the serial 1-D
FFT. A global matrix transpose is executed to realign the
row vectors, so that the next set of 1-D transforms runs over
the columns. Sets of serial 1-D FFT transforms are executed
in parallel with a matrix transpose for every dimension.

Similar to the shuffled distributed FFT, blocks of inde-
pendent computation are enclosed by global communica-
tion. The computation involves a local serial FFT without
any communication. A system-wide snapshot can be taken
after each matrix transpose and individual checkpoints can
be performed regularly during the independent computation
and right before the next matrix transpose.

In case of a failure, all processes fall back to the last
checkpoint using a locally maintained copy or the backup
in their neighbors. Since an individual checkpoint is taken
right before and a snapshot is performed right after the
global matrix transpose, any failure during that global com-
munication phase results in a fallback to the state of the fin-
ished local FFT. The computation results are already repli-
cated individually and only the global matrix transpose is
restarted again. More interestingly, the global matrix trans-
pose can be combined with the state replication to save com-
munication costs.

7 Conclusions

In continuation of our initial research at the Oak Ridge
National Laboratory on naturally fault-tolerant algorithms
for super-scale distributed systems with 100,000 or more
processors, this paper goes a step further and describes
how existing scientific algorithms can be equipped with a
self-healing capability in order to provide scalable fault-
tolerance in such huge computer systems. In the absence
of local stable storage and the limited bandwidth to remote
stable storage, a peer-to-peer diskless checkpointing algo-
rithm was used to replicate process state at the memory
of neighbor processes. The neighbor processes themselves
were also replicating their own local state each to different
sets of neighbor processes. The fixed number of neighbor
processes and their physical location determined the degree
of fault-tolerance. Different techniques were illustrated for
the checkpointing coordination. Individual checkpointing
by processes could only be used if there is no messaging
involved. Synchronized checkpointing coordination based
on a global application state snapshot proved to be easy to
use, while asynchronous checkpointing coordination based
record keeping of in-flight messages involved additional
messaging overhead. We showed how different versions of
the parallel Fast Fourier Transform (distributed and trans-
posed) could be equipped with the introduced super-scale
diskless checkpointing algorithm. As a result, scientific ap-
plications may be able to run fault-tolerant on super-scale
distributed systems. Until the delivery of these systems and
the deployment of such software, many open questions re-
main. We will continue to do research in this area with an
emphasis on the further development of application oriented
super-scale fault-tolerant algorithms.

References

[1] The ASCII BlueGene/L Computing Platform. Lawrence Liv-
ermore National Laboratory, Livermore, CA, USA. Avail-
able at http://www.llnl.gov/asci/platforms/bluegenel.

[2] N. R. Adiga et al. An overview of the BlueGene/L super-
computer. Proceedings of SC2002, also IBM research report
RC22570 (W0209-033), 2002.

[3] J. B. Drake, I. T. Foster, J. G. Michalakes, B. R. Toonen,
and P. H. Worley. Design and performance of a scalable
parallel community climate model. Parallel Computing,
21(10):1571–1591, 1995.

[4] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Harness and
fault tolerant MPI. Parallel Computing, 27(11):1479–1495,
2001.

[5] I. T. Foster and P. H. Worley. Parallel algorithms for the
spectral transform method. SIAM Journal on Scientific Com-
puting, 18(3):806–837, 1997.

[6] G. A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang,
R. Manchek, and V. S. Sunderam. PVM: Parallel Virtual



Machine: A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, MA, USA, 1994.

[7] G. A. Geist and C. Engelmann. Development of naturally
fault tolerant algorithms for computing on 100,000 proces-
sors. Parallel and Distributed Computing, 2002. to be pub-
lished.

[8] A. Gupta and V. Kumar. The scalability of FFT on parallel
computers. IEEE Transactions on Parallel and Distributed
Systems, 4(8):922–932, 1993.

[9] C. F. V. Loan. Computational Frameworks for the Fast
Fourier Transform. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1992.

[10] J. S. Plank, Y. Kim, and J. J. Dongarra. Fault tolerant
matrix operations for networks of workstations using disk-
less checkpointing. Parallel and Distributed Computing,
43(2):125–138, 1997.

[11] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpoint-
ing. IEEE Transactions on Parallel and Distributed Systems,
9(10):972–986, 1998.


