Februrary 2003

Diskless Checkpointing ““%%
on Super-scale Architectures

Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist

Oak Ridge National Laboratory
.

/R

Super-scale Architectures

Current tera-scale supercomputers have up to
10,000 processors.

@ Next generation peta-scale systems will have

100,000 processors and more.

Such machines may easily scale up to
1,000,000 processors in the next decade.

@ IBM currently builds the BlueGene\L at
Lawrence Livermore National Laboratory.

/R

IBM BlueGene\L at LLNL

@ Up to 64K diskless nodes with 2 processors per node.

4 Only 256MB RAM per processor.
Additional service nodes (I/0).
@ Estimated 360 Tera FLOPS.

Nodke Boerd
{32 chips, 4xdx2)
16 Conputte Cards

@ Over 150k processors.
@ Global tree network.
@ 3-D torus network.

@ Gigabit Ethernet.

@ Operational in 2005.

Compute Card
(2chips,
1ext)

Chip
(2 processars)
2957 TFis

0180 GF/s

se112Grs SCGBOR

05GBLOR

2856GF/s
4NMB

System
(64 cabinets, 64X32¢32)
EEEEEEEN
I1 11 I‘ I‘ Iq Iianss
)
s ns'ss'n's

l1 I‘ l‘] I‘ I‘ min
o e b e e

a'wsn's s

DL

256 GBDOR

Scalability Issues

/R

How to make use of 100,000 processors?
@ System scale jumps by a magnitude.

@ Current algorithms do not scale well on
existing 10,000-processor systems.

@ Next generation peta-scale systems are
useless if efficiency drops by a magnitude.

A

10° 101 102 103 104 10° 106

Fault-tolerance Issues

/R

@ How to survive on 100,000 processors?
@ Failure rate grows with the system size.

Mean time between failures may be a few
hours or just a few minutes.

@ Current solutions for fault-tolerance rely on
checkpoint/restart mechanisms.

Checkpointing 100,000 processors to central
stable storage is not feasible anymore.

ORNL/IBM Collaboration

/R

@ Development of biology and material science
applications for super-scale systems.

@ Exploration of super-scalable algorithms.
= Natural fault-tolerance.
s Scale invariance.

4 Focus on test and demonstration tool.

@ Get scientists to think about scalability and
fault-tolerance in super-scale systems!

Cellular Architecture Simulator

/R

@ Developed at ORNL in Java with native C and
Fortran application support using JNI.

@ Runs as standalone or distributed application.

Lightweight framework simulates up to
1,000,000 processes on 9 real processors.

Standard and experimental networks:
= Multi-dimensional mesh/torus.
= Nearest/Random neighbors.

@ Message driven simulation is not in real-time.
@ Primitive fault-tolerant MPI support.

ORNL JCAS - Laplace's Equation

Earth
Simulator

Cheetah at ORNL

S

Each dot is a full
processor/0S

768 IBM Power 4
5 Tera FLOPS

/R

Super-scalable Fault-tolerance

@ For non-naturally fault tolerant algorithms.

@ Does it makes sense to restart all 100,000
processors because one failed?

@ The mean time between failures is likely to be
a few hours or just a few minutes.

Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

» The failure rate is going to outrun the
recovery and the checkpointing rate.

/R

Diskless Checkpointing

@ Decentralized peer-to-peer checkpointing.
@ Processors hold backups of neighbors.
Local checkpoint and restart algorithm.

@ Coordination of local checkpoints.

/R

Diskless Checkpointing

In case of a failure:
= Rollback to local memory backup if necessary.
= Restart from remote memory backup.

Encoding semantics, such as RAID, trade off
storage size vs. degree of fault tolerance.

@ Very infrequent checkpointing to central
stable storage (disk/tape).

@ Checkpoint and application processes may be
the same or different.

@ Possible OS support via library/service.

/R

Choosing Neighbors

@ Physically near neighbors:
= Low latency, fast backup and recovery.

@ Physically far neighbors:

= Recoverable multiprocessor node failures.

4 Random neighbors:
= Medium latency and bandwidth.
= Acceptable backup and recovery time.

@ Optimum: Pseudorandom neighbors based on
system communication infrastructure.

/R

Backup Coordination

@ All peer-to-peer checkpoints need to be
consistent with the global application state.

Includes local states and in-flight messages.

@ No backup coordination for checkpoints with
no communication since the last one or start.
Coordination techniques:
= Global synchronization.
= Local synchronization.

Global Synchronization

@ Global application snapshot (e.g. barrier) at

stable global application state.
Synchronous backup of all local states.

@ Synchronizes complete application.

f

\V

@ Preferred method for communication

intensive applications.

Easy to implement.

/R

Local Synchronization

@ Asynchronous backup of local state and in-
flight messages (extensive message logging).

@ Acknowledgements for messages to keep

accurate records of in-flight messages.
Additional local group communication.

Different methods to retrieve missed
messages from neighbors (replay/lookup).

@ Preferred method for less communication
intensive applications.

@ More complicated to implement.

Application to FFT

/R

Distributed and transposed FFT:
= Not naturally fault-tolerant.
= Every process is important.
= Not scale invariant.
= Mixture of local and global communication.
= Well known algorithm behavior.

Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.

@ They are not considered here.

/R

Individual checkpoints
with no synchronization.

Coordinated checkpoints
with global sync. due to
heavy message load.

4 Number of coordinated
checkpoints depends on
coefficients/processor.

How to checkpoint DFFT?

Stage 1 Stage 2 Stage 3 Stage 4
X[0] \ E\ P> y[0]
X[1] Y[1]
PO
X[2] Y[2]
X[3] Y[3]
X[4] Y[4]
X[5] Y[5]
Pl
X[6] Y[6]
X[7] P Y[7]
X[8] P Y[8)
X[9] Y[9]
P2
X[10] Y[10]
X[11] Y[11]
X[12] Y[12]
X[13] Y[13]
P3
X[14] Y[14]
X[15] P P Y[15]
N 7 N 7
Possible Possible
Coordinated Individual
Checkpoints Checkpoints

How to checkpoint TFFT?

Local FFTs Transpose Local FFTs

/R

Individual checkpoints
with no synchronization.

Coordinated checkpoints
with local sync. due to
light message load.

Coordinated checkpoints
only after transpose.

» More efficient than DFFT.

N7y
Possible Possible Possible

Individual Coordinated Individual
Checkpoints Checkpoint Checkpoints

/R

Observations

@ Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

@ Synchronization methods have different
strengths and weaknesses.

Timing, latency and bandwidth data
impossible to obtain from simulator.

@ Real-time tests with different applications are

needed for furt

@ Final real-worlc
super-scalable

ner ¢
imp

-1-M

Iscussion.
ementation requires

°[or PVM.

Conclusions

@ Super-scale systems with 100,000 and more

processors become reality very soon.
@ Diskless peer-to-peer checkpointing provides

an alternative to natural fault-tolerance.
@ A lot of research still needs to be done.

f

\V

Februrary 2003

Diskless Checkpointing ““%%
on Super-scale Architectures

Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist

Oak Ridge National Laboratory
.

