
Diskless Checkpointing
on Super-scale Architectures
Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist
Oak Ridge National Laboratory

Februrary, 2003

Super-scale Architectures

Current tera-scale supercomputers have up to
10,000 processors.
Next generation peta-scale systems will have
100,000 processors and more.
Such machines may easily scale up to
1,000,000 processors in the next decade.
IBM currently builds the BlueGene\L at
Lawrence Livermore National Laboratory.

IBM BlueGene\L at LLNL
Up to 64K diskless nodes with 2 processors per node.
Only 256MB RAM per processor.
Additional service nodes (I/O).
Estimated 360 Tera FLOPS.
Over 150k processors.
Global tree network.
3-D torus network.
Gigabit Ethernet.
Operational in 2005.

Scalability Issues

How to make use of 100,000 processors?
System scale jumps by a magnitude.
Current algorithms do not scale well on
existing 10,000-processor systems.
Next generation peta-scale systems are
useless if efficiency drops by a magnitude.

101100 102 103 104 105 106

Fault-tolerance Issues

How to survive on 100,000 processors?
Failure rate grows with the system size.
Mean time between failures may be a few
hours or just a few minutes.
Current solutions for fault-tolerance rely on
checkpoint/restart mechanisms.
Checkpointing 100,000 processors to central
stable storage is not feasible anymore.

ORNL/IBM Collaboration
Development of biology and material science
applications for super-scale systems.
Exploration of super-scalable algorithms.
 Natural fault-tolerance.
 Scale invariance.

Focus on test and demonstration tool.

Get scientists to think about scalability and
fault-tolerance in super-scale systems!

Cellular Architecture Simulator
Developed at ORNL in Java with native C and
Fortran application support using JNI.
Runs as standalone or distributed application.
Lightweight framework simulates up to
1,000,000 processes on 9 real processors.
Standard and experimental networks:
 Multi-dimensional mesh/torus.
 Nearest/Random neighbors.

Message driven simulation is not in real-time.
Primitive fault-tolerant MPI support.

Cheetah at ORNL

Each dot is a full
processor/OS

768 IBM Power 4
5 Tera FLOPS

Earth
Simulator

Super-scalable Fault-tolerance
For non-naturally fault tolerant algorithms.
Does it makes sense to restart all 100,000
processors because one failed?
The mean time between failures is likely to be
a few hours or just a few minutes.
Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

The failure rate is going to outrun the
recovery and the checkpointing rate.

Diskless Checkpointing

Decentralized peer-to-peer checkpointing.
Processors hold backups of neighbors.
Local checkpoint and restart algorithm.
Coordination of local checkpoints.

Local Backup

Program Data

Program

Neighbors List
Neighbors Backup

Diskless Checkpointing
In case of a failure:
 Rollback to local memory backup if necessary.
 Restart from remote memory backup.

Encoding semantics, such as RAID, trade off
storage size vs. degree of fault tolerance.
Very infrequent checkpointing to central
stable storage (disk/tape).
Checkpoint and application processes may be
the same or different.
Possible OS support via library/service.

Choosing Neighbors
Physically near neighbors:
 Low latency, fast backup and recovery.

Physically far neighbors:
 Recoverable multiprocessor node failures.

Random neighbors:
 Medium latency and bandwidth.
 Acceptable backup and recovery time.

Optimum: Pseudorandom neighbors based on
system communication infrastructure.

Backup Coordination

All peer-to-peer checkpoints need to be
consistent with the global application state.
Includes local states and in-flight messages.
No backup coordination for checkpoints with
no communication since the last one or start.
Coordination techniques:
 Global synchronization.
 Local synchronization.

Global Synchronization

Global application snapshot (e.g. barrier) at
stable global application state.
Synchronous backup of all local states.
Synchronizes complete application.
Preferred method for communication
intensive applications.
Easy to implement.

Local Synchronization
Asynchronous backup of local state and in-
flight messages (extensive message logging).
Acknowledgements for messages to keep
accurate records of in-flight messages.
Additional local group communication.
Different methods to retrieve missed
messages from neighbors (replay/lookup).
Preferred method for less communication
intensive applications.
More complicated to implement.

Application to FFT
Distributed and transposed FFT:
 Not naturally fault-tolerant.
 Every process is important.
 Not scale invariant.
 Mixture of local and global communication.
 Well known algorithm behavior.

Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.
They are not considered here.

How to checkpoint DFFT?
Individual checkpoints
with no synchronization.
Coordinated checkpoints
with global sync. due to
heavy message load.
Number of coordinated
checkpoints depends on
coefficients/processor.

How to checkpoint TFFT?
Individual checkpoints
with no synchronization.
Coordinated checkpoints
with local sync. due to
light message load.
Coordinated checkpoints
only after transpose.

 More efficient than DFFT.

Observations
Diskless peer-to-peer checkpointing on super-
scale architectures is possible.
Synchronization methods have different
strengths and weaknesses.
Timing, latency and bandwidth data
impossible to obtain from simulator.
Real-time tests with different applications are
needed for further discussion.
Final real-world implementation requires
super-scalable FT-MPI or PVM.

Conclusions

Super-scale systems with 100,000 and more
processors become reality very soon.
Diskless peer-to-peer checkpointing provides
an alternative to natural fault-tolerance.
A lot of research still needs to be done.

Diskless Checkpointing
on Super-scale Architectures
Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist
Oak Ridge National Laboratory

Februrary, 2003

