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Abstract

Cost-effective, flexible and efficient scientific simulations
in cutting-edge research areas utilize huge high-end com-
puting resources with thousands of processors. In the next
five to ten years the number of processors in such computer
systems will rise to tens of thousands, while scientific ap-
plication running times are expected to increase further be-
yond the Mean-Time-To-Interrupt (MTTI) of hardware and
system software components. This paper describes the on-
going research in heterogeneous adaptable reconfigurable
networked systems (Harness) and its recent achievements
in the area of high availability distributed virtual machine
environments for parallel and distributed scientific comput-
ing. It shows how a distributed control algorithm is able to
steer a distributed virtual machine process in virtual syn-
chrony while maintaining consistent replication for high
availability. It briefly illustrates ongoing work in heteroge-
neous reconfigurable communication frameworks and secu-
rity mechanisms. The paper continues with a short overview
of similar research in reliable group communication frame-
works, fault-tolerant process groups and highly available
distributed virtual processes. It closes with a brief discus-
sion of possible future research directions.

1 Introduction

Cost-effective, flexible and efficient scientific simula-
tions in cutting-edge research areas, such as fusion energy,
nano-technology and protein folding, utilize huge high-end
computing resources with thousands of processors. In the
next five to ten years the number of processors in such com-
puter systems will rise to tens of thousands in order to keep
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up with performance demands. Furthermore, scientific ap-
plication running times are expected to increase further de-
spite or even because of the availability of such enormous
computing power. For example, a real-time earthquake
forecast just for the U.S. state of California using thou-
sands of seismic detectors would need not only a gigantic
amount of sustained computational performance, but would
also need 24x7 availability in order to save lives and protect
property by broadcasting warning messages and preemp-
tively cutting off gas and fuel pipelines of affected areas.
Another example deals with long (for six months) running
climate simulations. Such data intensive applications per-
form regular backups (checkpoints) of huge amounts of data
that is only ever read to restore processes during a recov-
ery from expected or unexpected system interrupts (write-
once/read-never backups in a failure-free case). These data
backups significantly reduce efficiency.

The Mean-Time-To-Interrupt (MTTI) of hardware and
system software components is still the dominant factor of
scientific application running times today. Unexpected fail-
ures and scheduled maintenance are causing complete or
partial system outages, which seriously affects availability
and efficiency of scientific applications. High availability
software environments for parallel and distributed scien-
tific computing will try to counter such system interrupts
by allowing scientific applications to dynamically adapt to
changing system configurations caused by single or multi-
ple node (processor) outages. A more resilient middleware
layer provides high availability for parallel computing ser-
vices, such as message passing, event notification and re-
source management. It automatically detects and recovers
from partial system outages using dynamic reconfiguration
without the need to reboot all nodes, thus improving avail-
ability and increasing efficiency of scientific applications.

This paper first describes the ongoing research in hetero-
geneous adaptable reconfigurable networked systems (Har-
ness) and then documents its recent achievements in the
area of high availability distributed virtual machine environ-
ments for parallel and distributed scientific computing. It



continues with a short overview of similar past and ongoing
research projects in reliable group communication frame-
works, fault-tolerant process group protocols and highly
available distributed virtual processes. It closes with a brief
discussion of possible future research directions.

2 Harness

The research in Harness is an ongoing collaborative ef-
fort between the Oak Ridge National Laboratory, the Uni-
versity of Tennessee and the Emory University. It primar-
ily focuses on providing a pluggable light-weight heteroge-
neous distributed virtual machine (or DVM) environment,
where clusters of PCs, workstations, and ”big iron” comput-
ers can all be used together as one giant, high-performance
computer (in the spirit of its widely-used predecessor, ”Par-
allel Virtual Machine” - PVM [17]).

A variety of experiments and system prototypes are
involved to explore lightweight pluggable frameworks,
adaptive reconfigurable runtime environments, assembly
of scientific applications from plug-ins, parallel plug-in
paradigms, highly available DVMs, fault-tolerant mes-
sage passing, fine-grain security mechanisms and dynamic
heterogeneous reconfigurable communication frameworks.
Currently, there are three system prototypes, each concen-
trating on different research issues. The teams at the Oak
Ridge National Laboratory [11, 13, 22] and at the Univer-
sity of Tennessee [14, 15, 23] provide different C variants,
while the team at Emory University [21, 24, 25, 27] main-
tains a Java-based alternative.

In general, the Harness software (figure 1) consists of
two major parts: a runtime environment (kernel) and a set of
plug-ins. A multi-threaded user-space kernel manages a set
of non-, single and/or multi-threaded dynamically loadable
plug-ins (i.e. native shared libraries or Java classes). While
the kernel provides only basic functions, such as plug-in
management and child process control, plug-ins may pro-
vide a wide variety of services needed in fault-tolerant par-
allel and distributed scientific computing, such as messag-
ing, scientific algorithms and resource management. Mul-
tiple kernels can be aggregated to form a DVM that acts as
one distributed multi-threaded kernel.

3 Distributed Control in Harness

Scientific simulations usually run much longer than the
expected MTTI of hardware and system software compo-
nents. Various checkpoint/restart schemes can provide cer-
tain levels of fault-tolerance that may involve losing recent
computation in case of a failure and high backup communi-
cation costs. This is essentially caused by the inability of the
middleware layer (e.g. message passing, resource manage-
ment, etc.) to adapt to unexpected failures, to continue to

Figure 1. Harness Architecture

run in a degraded mode and to inform the application of its
configuration changes caused by failures. For example, any
failure usually requires a complete restart of all computa-
tional processes of a job. In contrast, fault-tolerant message
passing, like in FT-MPI [15, 16], has the capability to recon-
figure and to continue despite failures, while the application
just needs to restore the faulty process.

The Harness research at the Oak Ridge National Labo-
ratory mainly focuses on a highly available, adaptive and
reconfigurable DVM environment capable of detecting and
surviving failures in a dynamic and consistent fashion with-
out the need to restart and rollback to a backup state. A
highly available DVM service provides an encapsulation of
a few hundred to a few thousand multi-threaded Harness
kernel processes in one distributed heterogeneous virtual
Harness kernel process. High availability is achieved by
replication of the DVM service state on multiple server pro-
cesses. If one or more server processes fails, the surviv-
ing ones continue to provide the DVM service because they
know the state. The Harness DVM will continue to exist
while at least one server process is still alive.

Since every server process of a DVM is itself part of the
global DVM state and is able to change it, distributed con-
trol [13] is needed to consistently manage state changes,
state replication, failure detection and recovery.

Distributed control is the ability to steer a distributed
virtual process, that is composed of multiple distributed
real processes connected by some way of communication
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Figure 2. Reliable Broadcast in a Ring

A

B

D

E

C

1

2

3

4

5

1

11

1 1

A1

A

B

D

E

C

6

7

8

9

10

A1

Message
Received

Message Pending

Acknowledgements
Received

Message
Atomically

Broadcasted

Message
Non-Existing

Reliably Broadcasted

First of all
in same State

Figure 3. Atomic Broadcast in a Ring

(TCP/IP, shared memory, etc), in virtual synchrony, like one
real process. While each real process has its own local pro-
cess state, all local process states together form the global
state of the distributed virtual process.

The global state is actively replicated to all real processes
to ensure high availability of the distributed virtual process.
All real processes receive global state change requests in
the same order. They change their local state and their lo-
cal copy of the global state as directed by the state change
request. Global state change results may also need to be
replicated if those real processes that do not have to change
their local states cannot predict the outcome of a local state
change of other real processes. In this case, all real pro-
cesses receive global state change results in the same order
they received global state change requests.

In contrast to distributed control, distributed locking [9]
uses a database abstraction model to perform global state
changes. A global state database is replicated to all real
processes on change and a global lock needs to be acquired
by a real process to change the global state. The locking
mechanism may be a token that is passed around to all real
processes or just to those that require the lock.

Both models use group communication [7, 8, 26], such
as Reliable Broadcast and Atomic Broadcast, for fault-
tolerant message delivery and for global message ordering.
A Reliable Broadcast ensures message delivery using ac-
knowledgment schemes with timeouts or via more sophis-
ticated failure detectors. An Atomic Broadcast additionally
ensures global message order using lockstep token pass-
ing mechanisms or more refined message numbering algo-
rithms. Both, Reliable and Atomic Broadcast, are based on
message broadcast primitives that can range from TCP/IP
multicast to ring or tree based peer-to-peer systems.

The distributed control in Harness [13] relies on a ring
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Figure 4. State Change Transaction Types

based TCP/IP peer-to-peer network (figures 2 and 3). Send-
ing a message around the ring twice performs a Reliable
Broadcast. A message is considered unstable, when it is
received the first time, and stable when it is seen a second
time. The algorithm terminates when any member receives
it a third time. Detecting link failures and reconnecting the
ring guarantees fault-tolerance, while the algorithm does
not rely on the originating node to perform message state
transitions. The Atomic Broadcast additionally involves a
message numbering scheme that uses the deterministic mes-
sage order on the ring and node priorities to order simulta-
neous messages. A Distributed Agreement algorithm uses
collective communication to determine the final result in
case of a global state change that involves local state change
results of more than one Harness kernel (figure 4).

Several system prototypes of the distributed control for
Harness exist to demonstrate its behavior and to allow ex-
periments with the algorithms. For example, one proto-
type is able to communicate in both directions in the ring
trading off bandwidth to reduce the latency of sending a
message around the ring. We experienced inconsistencies
while using the state change conditions from the unidirec-
tional ring. This was partially due to the anticipated fact
that state changes of messages occur always on two nodes
in the ring. After further examination, it was determined
that the state change conditions do not consider those cases
in which messages in one direction of the ring may advance
significantly faster than in the other direction. More exten-
sive research is needed here to develop state transitions that
cover all possible message phase combinations.

One of the current research efforts targets the incorpo-
ration of recent advances in heterogeneous multi-protocol
remote method invocation (RMI). RMIX [25] is a dynamic
heterogeneous reconfigurable communication framework,
initially developed by the Harness team at Emory Univer-
sity, that allows Java and C applications to communicate
via TCP/IP using various RMI/RPC protocols, like Sun
RPC, Java RMI and SOAP. In addition to standard syn-
chronous RMI/RPC mechanisms, RMIX also allows sup-
port for asynchronous and one-way invocations, which suits
the messaging needs of the peer-to-peer distributed control
in Harness. The RMIX framework itself uses Harness plug-
in loading technology and consists of a base library and



a set of runtime protocol provider plug-ins. The provider
plug-ins are responsible for the protocol as well as for the
TCP/IP communication. In the future, provider plug-ins
may support different inter-process communication meth-
ods, e.g. pipes and shared memory, or even more alternative
ways of communication, such as e-mail.

Ongoing work also includes security mechanisms that go
beyond simple autorization and authentication by providing
an adjustable control of security levels ranging from basic
to fine grain. This work mostly focuses on the Java solution
for Harness (H2O [27]). It is also based on a one-to-one re-
lationship model, not supporting more advanced group se-
curity mechanisms, such as group keys [2].

4 Related Work

There are several past and ongoing research projects
[1, 3, 4, 5, 6, 10, 28] in the area of group communica-
tion, fault-tolerant process groups and highly available dis-
tributed virtual processes. Their application background
usually involves two different networked computing areas:
distributed computing, such as high availability middleware
frameworks for scientific parallel computing, and solutions
for closely coupled systems, such as highly available air
traffic control and stock market trading.

Group communication systems in distributed computing
rely on Internet standards (TCP, UDP) and try to reduce syn-
chronous communication to counter latencies in wide area
networks. The grade of consistency may vary from strong,
with ultimate synchrony, to weak, accepting inconsistencies
in case of failures or even during normal operation, since re-
covering from infrequent inconsistencies may be more effi-
cient than always maintaining strong consistency. Another
model embraces the distributed agreement paradigm, where
all members of a group finally agree on a consistent state
(equilibrium) after a period of uncertainty.

In contrast, solutions for highly available closely coupled
systems can take advantage of predictable low latencies.
Proprietary communication standards and global clock syn-
chronization can improve the overall system performance
and robustness up to the point of providing real-time ca-
pabilities despite failures and recoveries. Distributed agree-
ment mechanisms are here only used for mission critical ap-
plications to counter incorrect information from false sensor
readings or errant computation.

Some group communication solutions provide config-
urable frameworks, such as Coyote [4] and Ensemble [5],
where different protocol layers/modules can be stacked or
just simply plugged together. In this case, the group com-
munication layer can be configured to fit application re-
quirements and hardware features, which is similar to the
Harness plug-in concept. However, the combination of pro-
tocols can be very complex and a deep protocol stack may

result in a significant performance impact. Furthermore,
such solutions tend to support only TCP and UDP as com-
munication methods. Memory communication (distributed
shared, global addressable) and other networking technol-
ogy that is not IP-based and/or has additional features for
performance tuning are not supported.

Security mechanisms range from non-existent for com-
pletely enclosed systems to common collaborative tech-
niques, such as secure socket layer (SSL) and public key
infrastructure (PKI), for frameworks that communicate over
wide-area networks. Most solutions are peer-to-peer based,
i.e. rely on multiple one-to-one connections. Recent re-
search in a more advanced secure group layer (SGL) [2]
bundles a reliable group communication system, a group
access control mechanism and a group Diffie-Hellman pro-
tocol to provide a comprehensive and practical secure group
communication platform. A group key agreement protocol
ensures secure communication.

5 What Next

In our experience, research in group communication,
fault-tolerant process groups and highly available dis-
tributed virtual processes has mostly been focused on spe-
cific applications and/or communication technologies. Im-
plementations that are directly wired into applications are
making it really hard to reproduce successes and require
application programmers to understand the details of the
communication algorithms and protocols. Modular, config-
urable frameworks provide more flexible support with dif-
ferent protocols, but current solutions are limited to very
specific communication technologies, such as TCP/IP. Fur-
thermore, each framework is based on its own abstraction
model and uses different core technologies, such as Harness
plug-in loading, with proprietary APIs.

For example, todays high-end computing systems are
usually composed out of a single head node and hundreds
or thousands of compute nodes. The head node provides
parallel computing system services, such as a job sched-
uler, while the compute nodes run scientific applications.
More advanced platforms, like Cray Red Storm or IBM
BlueGene/L, additionally move local system services (file
system I/O, etc.) from compute nodes to separate service
nodes. This significantly reduces the amount of ”OS noise”,
i.e. system interrupts. However, head nodes and service
nodes are single points of failure and control. Failures or
maintenance of these nodes can render a partition or even
the complete system unaccessible and unmanageable with
otherwise healthy compute nodes.

Multiple head and service nodes can solve this prob-
lem by providing some kind of high availability. Tra-
ditional active/hot-standby variants, such as HA-OSCAR
[18, 19, 20], double up head and service nodes using shared



reliable disk storage and IP cloning or a redundant net-
work. This leaves standby nodes idle and the fail-over/fail-
back procedures are not without cost. In contrast, the
active/active model of highly available distributed virtual
processes, like the Harness DVM, utilizes all head/service
nodes and provides more efficient high availability.

Service applications, like the job scheduler, have to be
modified in order to implement active/hot-standby or ac-
tive/active high availability. Each service might end up with
a different model, algorithm and communication mecha-
nism if directly implemented. So, which group communica-
tion framework, heterogeneous computing platform or mid-
dleware layer should be used to accomplish head/service
node high availability? Is this high availability framework
available on all common HPC platforms? Does the API re-
flect only one particular high availability model?

A high availability software framework is needed, that is
extremely light-weight, modular and portable with a com-
mon API that supports different high availability models, al-
gorithms and communication mechanisms. The main objec-
tive should be to enable existing proprietary solutions with
different communication models and different distributed
locking and control models to be moved out of their mid-
dleware layer into this framework as pluggable modules.
Module implementations with various data replication and
distributed control strategies using the common API would
then allow adaptation to system properties and high avail-
ability needs. While applications can take advantage of data
replication and distributed control algorithms without the
need to implement them directly, the modular architecture
also enables other researchers to easily contribute their so-
lutions based on the common API. This will also support
further research in efficient ultra-scale compute node repli-
cation strategies [12] for systems with hundreds of thou-
sands of processors, where application checkpoint/restart to
central storage is not feasible anymore.
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