January, 2003

N
L/

Super-scalable Algorithms -

Next Generation Supercomputing on
100,000 and more Processors

Christian Engelmann

(1.
N




/R

Overview

@ Super-scale architectures.
# Scalability and fault-tolerance issues.
@ Cellular algorithms theory.

4 ORNL/IBM collaboration.

# IBM BlueGene\L emulators.

4 ORNL cellular architecture simulator.
@ Super-scalable algorithms.

@ Super-scalable diskless checkpointing.
@ Conclusions and ideas for the future.




/R

Super-scale Architectures

# Current tera-scale supercomputers have up to
10,000 processors.

@ Next generation peta-scale systems will have

100,000 processors and more.

# Such machines may easily scale up to
1,000,000 processors in the next decade.

@ IBM currently builds the BlueGene\L at
Lawrence Livermore National Laboratory.




/R

IBM BlueGene\L at LLNL

@ Up to 64K diskless nodes with 2 processors per node.

4 Only 256MB RAM per processor.
# Additional service nodes (I/0).
@ Estimated 360 Tera FLOPS.

Nodke Boerd
{32 chips, 4xdx2)
16 Conputte Cards

@ Over 150k processors.
@ Global tree network.
@ 3-D torus network.

@ Gigabit Ethernet.

@ Operational in 2005.

Compute Card
(2chips,
1ext)

Chip
(2 processars)
2957 TFis

0180 GF/s

se112Grs  SCGBOR

05GBLOR

2856GF/s
4NMB

System
(64 cabinets, 64X32¢32)
EEEEEEEN
I1 11 I‘ I‘ Iq Iianss
)
s ns'ss'n's

l1 I‘ l‘ ] I‘ I‘ min
o e b e e

a'wsn's s

DL

256 GBDOR



Scalability Issues

/R

# How to make use of 100,000 processors?
@ System scale jumps by a magnitude.

@ Current algorithms do not scale well on
existing 10,000-processor systems.

@ Next generation peta-scale systems are
useless if efficiency drops by a magnitude.

A

10° 101 102 103 104 10° 106




Fault-tolerance Issues

/R

@ How to survive on 100,000 processors?
@ Failure rate grows with the system size.

# Mean time between failures may be a few
hours or just a few minutes.

@ Current solutions for fault-tolerance rely on
checkpoint/restart mechanisms.

# Checkpointing 100,000 processors to central
stable storage is not feasible anymore.




Cellular Algorithms Theory

/R

# Processes have only limited knowledge mostly
about other processes in their neighborhood.

# Application is composed of local algorithms.

# Less inter-process dependencies, e.g not
everyone needs to know when a process dies.

@ Peer-to-peer communication with overlapping
neighborhoods promotes scalability.




///#7\\\

Data

G 3} FVT sy

@ In the future embedded computers with a
radio device get as small as a pigment.

@ Supercomputers can be easily assembled by
painting a wall of embedded computers.

@ Applications are driven by cellular algorithms.

Paintable Computing at MIT

f
\V




in board.

t MIT

s .o

T, O O

G - L

O o

S

2 5 U=

E ©

" = © O

) ) m_IuC

(0)p) .

7)) O

E O s =<

S £ . m¢%

@, . 2350

Q

Q 0 S 55

- <© 2 a®

O o J 5=

) O QO O w

- o QL
o N <C
(O ® @

al
NP,




ORNL/IBM Collaboration

/R

@ Development of biology and material science
applications for super-scale systems.

@ Exploration of super-scalable algorithms.
= Natural fault-tolerance.
s Scale invariance.

4 Focus on test and demonstration tool.

@ Get scientists to think about scalability and
fault-tolerance in super-scale systems!




ORNL Research Group

#Al Geist (PI).

@ Christian Engelmann (simulator).

#Kasidid Chanchio (global max problem).
#Ryan Adamson (async. multigrid).

@ Bill Shelton (LSMS port).
@ Pratul Agarwal (MD port).

f

\V




BlueGene\L Emulators

/R

@ IBM Research:
= Processor emulation with OS in a Linux process.

@ Caltech:

= MPI trace file analysis for performance prediction.
@ UIUC:

= Object-oriented message driven emulation of
logical system architecture in Converse/Charm++.

= Adaptive MPI emulation on top of Charm++.
= Scalability and performance issues in prototypes.
= Emulation fixed on BlueGene\L architecture.




Cellular Architecture Simulator

/R

@ Developed at ORNL in Java with native C and
Fortran application support using JNI.

@ Runs as standalone or distributed application.

# Lightweight framework simulates up to
1,000,000 processes on 9 real processors.

# Standard and experimental networks:
= Multi-dimensional mesh/torus.
= Nearest/Random neighbors.

@ Message driven simulation is not in real-time.
@ Primitive fault-tolerant MPI support.




/R

Cellular Architecture Simulator

—_—— - - —

Receiver Thread — Queue —| Server Thread

Receive ‘ Send | Deliver
; cel | i
i | ISend |
| Sender i
o | Y ¥ § S

@ Every cell has its own code, memory and neighbors list.
@ Server hosts cells and initiates the context switch.
@ Cells communicate asynchronously using messages.



ORNL JCAS - Laplace's Equation

Earth
Simulator

Cheetah at ORNL

S

Each dot is a full
processor/0S

768 IBM Power 4
5 Tera FLOPS




System Laplace (Java) Help




Super-scalable Algorithms

# Extending the cellular algorithms theory to

real world scientific applications.
@ Exploring super-scale properties

Invariance

s Scale

f

\V

= Natural fault-tolerance.

@® Ga

iINng models

INING eXperience In programm

for 100,000-processor machines.



Scale invariance

/R

# Linear scalability.

@ Peer-to-peer communication patterns are
pased on a small set of neighbor processes.

# Neighbors are random, far away or nearby.

# Global application state is composed of many
interdependent local neighborhood states.




Natural Fault-tolerance

/R

@ Ability to get the correct answer despite task
failures and without checkpointing.

# May involve redundant computation.

@ 0,1% failure rate (100 of 100,000 processors)
is still acceptable with 0,5% redundancy.

@ Failures detected by hardware and ignored or
accepted by neighbor processes.

@ Failed processes may be restarted by
“inserting” new ones at anytime.




Researched Algorithms

/R

@ Local information exchange:
= Local peer-to-peer updates of values.
= Mesh-free chaotic relaxation (Laplace/Poisson).
» Finite difference/element methods.
= Dynamic adaptive refinement at runtime.

= Asynchronous multi-grid with controlled or
independent updates between different layers.

@ Global information exchange:
= Global peer-to-peer broadcasts of values.
= Global maximum/optimum search.




/R

Ported Applications

@ Material Science:

= Magnetism simulation using the locally self-
consistent multiple scattering (LSMS) method for
understanding the interactions between electrons

and atoms in magnetic materials (Bill Shelton).

# Computational Biology:

= Molecular dynamics (MD) simulation of biological
molecules (DNA sequences) for understanding the

protein-DNA interactions (Pratul Agarwal).




Observations

/R

@ Partially non-deterministic algorithm behavior.

@ Unpredictable application running time.

# Chaotic relaxation does not always converge.

@ No exact replay without full message trace.

4 Communication bound algorithms that require
high point-to-point bandwidth.

# Asynchronous message driven programming
model similar to discrete event simulations.

@ Message queues with overwrite.




/R

Super-scalable Fault-tolerance

@ For non-naturally fault tolerant algorithms.

@ Does it makes sense to restart all 100,000
processors because one failed?

@ The mean time between failures is likely to be
a few hours or just a few minutes.

# Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

» The failure rate is going to outrun the
recovery and the checkpointing rate.




/R

Diskless Checkpointing

@ Decentralized peer-to-peer checkpointing.
@ Processors hold backups of neighbors.
# Local checkpoint and restart algorithm.

@ Coordination of local checkpoints.




/R

Diskless Checkpointing

# In case of a failure:
= Rollback to local memory backup if necessary.
= Restart from remote memory backup.

# Encoding semantics, such as RAID, trade off
storage size vs. degree of fault tolerance.

@ Very infrequent checkpointing to central
stable storage (disk/tape).

@ Checkpoint and application processes may be
the same or different.

@ Possible OS support via library/service.




/R

Choosing Neighbors

@ Physically near neighbors:
= Low latency, fast backup and recovery.

@ Physically far neighbors:

= Recoverable multiprocessor node failures.

4 Random neighbors:
= Medium latency and bandwidth.
= Acceptable backup and recovery time.

@ Optimum: Pseudorandom neighbors based on
system communication infrastructure.




/R

Backup Coordination

# All checkpoints need to be consistent with the
global application state.

@ Local states and in-flight messages.

@ No coordination for checkpoints with no
communication since last or since start.

# Coordination techniques:
= Global synchronization.
= Local synchronization.




Global Synchronization

@ Global application snapshot (e.g. barrier) at

stable global application state.
# Synchronous backup of all local states.

# Easy to implement.

f

\V

@ Synchronizes complete application.

@ Preferred method for communication

intensive applications.



/R

Local Synchronization

@ Asynchronous backup of local state and in-
flight messages (message logging).

@ Acknowledgements for messages to keep

accurate records of in-flight messages.
# Additional local group communication.

@ Different methods to retrieve missed
messages from neighbors.

@ More complicated to implement.

@ Preferred method for less communication
intensive applications.




/R

Observations

@ Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

@ Synchronization methods have different
strengths and weaknesses.

# Timing, latency and bandwidth data
impossible to obtain from simulator.

@ Real-time tests with different applications are

needed for furt

@ Final real-worlc
super-scalable

ner ¢
imp

-1-M

Iscussion.
ementation requires

°[ or PVM.




Conclusions

/R

@ Super-scale systems with 100,000 and more
processors become reality very soon.

@ Super-scalable algorithms that are scale
invariant and naturally fault-tolerant do exist.

@ Diskless peer-to-peer checkpointing provides
an alternative to natural fault-tolerance.

@ A lot of research still needs to be done.




Ideas for the Future

/R

@ Research in OS and/or middleware supported
super-scale diskless checkpointing.

# Development of super-scalable fault-tolerant
MPI implementation with localized recovery.

@ Development of super-scalable algorithms for
specific applications in computational biology,
material science, climate research ...



January, 2003

N
L/

Super-scalable Algorithms -

Next Generation Supercomputing on
100,000 and more Processors

Christian Engelmann

(1.
N




