
High Availability for Ultra-Scale High-End Scientific
Computing ∗

Christian Engelmann
Computer Science and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6164, USA
Phone: +1 865 574 3132, Fax: +1 865 576 5491

Department of Computer Science
The University of Reading

P.O. Box 217, Reading, RG6 6AH, UK

engelmannc@ornl.gov

Stephen L. Scott
Computer Science and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6367, USA
Phone: +1 865 574 3144, Fax: +1 865 576 5491

scottsl@ornl.gov

ABSTRACT
Ultra-scale architectures for scientific high-end computing
with tens to hundreds of thousands of processors, such as
the IBM Blue Gene/L and the Cray X1, suffer from avail-
ability deficiencies, which impact the efficiency of running
computational jobs by forcing frequent checkpointing of ap-
plications. Most systems are unable to handle runtime sys-
tem configuration changes caused by failures and require a
complete restart of essential system services, such as the job
scheduler or MPI, or even of the entire machine. In this pa-
per, we present a flexible, pluggable and component-based
high availability framework that expands today‘s effort in
high availability computing of keeping a single server alive
to include all machines cooperating in a high-end scientific
computing environment, while allowing adaptation to sys-
tem properties and application needs.

Keywords
Scientific computing, high availability, virtual synchrony,
distributed control, group communication

1. MOTIVATION
A major concern in efficiently exploiting ultra-scale archi-
tectures for scientific high-end computing (HEC) with tens
to hundreds of thousands of processors, such as the IBM
Blue Gene/L [2, 4, 27], the Cray X1 [39] or the Cray XT3
[41], is the potential inability to identify problems and take
preemptive action before a failure impacts a running job. In
fact, in systems of this scale, predictions estimate the mean

∗Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Labo-
ratory (ORNL), managed by UT-Battelle, LLC for the U.
S. Department of Energy under Contract No. DE-AC05-
00OR22725.

time to interrupt (MTTI) in terms of hours. Timely and cur-
rent propagation and interpretation of important events will
improve system management through tuning, scheduling,
resource usage, and self-adaptation for unexpected events,
such as node failures.

Current solutions for fault-tolerance in HEC focus on deal-
ing with the result of a failure. However, most are unable
to handle runtime system configuration changes caused by
failures and require a complete restart of essential system
services, such as the job scheduler or MPI, or even of the
entire machine. High availability (HA) computing strives to
avoid the problems of unexpected failures through preemp-
tive measures. Today‘s effort in HA computing is mostly
directed toward keeping a single server alive. This effort
needs to be expanded to include all machines cooperating in
a HEC environment.

There are various techniques [37] to implement high avail-
ability for computing services. They include active/hot-
standby and active/active. Active/hot-standby high avail-
ability follows the fail-over model. Process state is saved
regularly to some shared stable storage. Upon failure, a
new process is restarted or an idle process takes over with
the most recent or even current state. This implies a short
interruption of service for the time of the fail-over and may
involve a rollback to an old backup.

Asymmetric active/active high availability further improves
the reliability, availability and serviceability (RAS) proper-
ties of a system. In this model, two or more processes offer
the same service without coordination, while an idle process
is ready to take over in case of a failure. This technique
allows continuous availability with improved performance.
However, it has limited use cases due to the missing coordi-
nation between participating processes.

Symmetric active/active high availability offers a continuous
service provided by two or more processes that run the same
service and maintain a common global process state using
distributed control [18] or extended virtual synchrony [30].
The symmetric active/active model is superior in many ar-
eas including throughput, availability, and responsiveness,
but is significantly more complex.



While there are major architectural differences between in-
dividual HEC systems, like vector machines vs. massively
parallel processing systems vs. Beowulf clusters, they all
have similar high availability deficiencies, i.e. single points
of failure (SPoF) and single points of control (SPoC).

A failure at a SPoF impacts the complete system and usually
requires a full or partial system restart. A failure at a SPoC
additionally renders the system useless until the failure is
fixed. A recovery from a failure at a SPoC always involves
repair or replacement of the failed component, i.e. human
intervention. Compute nodes are typical single points of
failure. Head and service nodes are typical single points of
failure and control.

The overall goal of our research is to expand today‘s effort
in HA for HEC, so that systems that have the ability to
hot-swap hardware components can be kept alive by an OS
runtime environment that understands the concept of dy-
namic system configuration. With the aim of addressing
the future challenges of high availability in ultra-scale HEC,
our project intends to develop a proof-of-concept implemen-
tation of an active/active high availability system software
framework that removes typical single points of failure and
single points of control.

For example, cluster head nodes may be added or removed
by the system administrator at any time. Services, such as
scheduler and load balancer, automatically adjust to system
configuration changes. Head nodes may be removed auto-
matically upon failure or even preemptively when a system
health monitor registers unusual readings for hard drive or
CPU temperatures. Multiple highly available head nodes
will also ensure access to compute nodes. As long as one
head node survives, computational jobs can continue to run
without interruption.

2. RELATED WORK
Related past and ongoing research can be separated into two
paths: solutions for fault-tolerance and for high availabil-
ity. Conceptually, fault tolerant computing enables recovery
from failures with an accepted loss of recent computation ac-
tivity and an accepted interruption of service. In contrast,
high availability computing provides an instant failure recov-
ery with little or no loss and with little or no interruption.
The grade of availability is defined by the overall downtime,
i.e. the interruption (outage) time plus the time it takes
to catch-up to the state when the failure occurred. Addi-
tional overhead during normal system operation, such as for
checkpointing and message logging, also exists and needs
to be counted as downtime. There are no fixed boundaries
between both research paths.

Research in the area of fault tolerant scientific computing
includes fault tolerant message passing layers, such as PVM
[23, 36] and FT-MPI [19, 20, 21], message logging systems
and checkpoint/restart facilities, like MPICH-V [31] and
BLCR [29]. Advanced technologies in this area deal with
diskless checkpointing [10, 15, 35] and fault tolerant scien-
tific algorithms [7, 17].

High availability computing has its roots in military, fi-
nancial, medical and business computing services, where

real-time computing resources, such as air traffic control
and stock exchange, or data bases, like patient or employee
records, need to be protected from catastrophic failures. Re-
search in this area includes process state and data base repli-
cation with various real-time capabilities.

Active/hot-standby high availability is the de facto stan-
dard for business and telecommunication services, such as
Web-servers. Solutions for Beowulf-type systems are also
available for high-end scientific computing. Examples are
HA-OSCAR [25, 26] and Carrier Grade Linux [9].

Furthermore, recent solutions for ultra-scale architectures
include the Cray RAS and Management System (CRMS
[41]) of the Cray XT3. The CRMS integrates hardware and
software components to provide system monitoring, fault
identification, and recovery. By using the PBSPro [33, 34]
job management system, the CRMS is capable of provid-
ing a seamless failover procedure without interrupting the
currently running job. Redundancy is built in for critical
components and single points of failure are minimized. For
example, the system could lose an I/O PE, without losing
the job that was using it.

Asymmetric active/active high availability is being used for
stateless services, such as read/search-only database server
farms. Ongoing research in this area for scientific high-end
computing focuses on a multiple head node solution for high
throughput Linux clusters.

Research in symmetric active/active high availability con-
centrates on distributed control and extended virtual syn-
chrony algorithms based on process group communication
[1, 11, 12]. Many group communication algorithms and sev-
eral software frameworks, such as Ensemble [6], Transis [13],
Xpand [40], Coyote [5] and Spread [38] have been developed,
but most target a specific network technology/protocol (e.g.
UDP) and/or group communication algorithm (e.g. Totem
[3]). Only very few allow easy modification of the group
communication algorithm itself via micro-protocol layers or
micro-protocol state-machines.

3. TECHNICAL APPROACH
In order to provide active/active as well as active/hot-standby
high availability for ultra-scale high-end scientific comput-
ing, we are in the process of developing a flexible, modular,
pluggable high availability component framework that al-
lows adaptation to system properties, like network technol-
ogy and system scale; and application needs, such as pro-
gramming model and consistency requirements.

Our high availability framework (Figure 1) consists of four
major layers; 1-to-1 and 1-to-n communication drivers, a
group (n-to-n) communication system, virtual synchrony in-
terfaces and applications.

At the lowest layer, communication drivers provide single-
cast and multicast messaging capability. They may also
provide messaging related failure detection. The group com-
munication layer offers group membership management, ex-
ternal failure detectors, reliable multicast mechanisms and
atomic multicast algorithms. The virtual synchrony layer
builds a bridge between the group communication system



Figure 1: High Availability Framework

and applications using easy-to-use interfaces common to ap-
plication programmers.

Our high availability framework itself is component-based,
.i.e. individual modules within each layer may be replaced
with other modules providing different properties for the
same service. Our framework allows exchanging software
modules using plug-in technology previously developed in
the Harness project [14, 16, 24].

In the following sections, we describe each of the four high
availability framework layers in more detail.

3.1 Communication Drivers
Today‘s high-end computing systems come with a variety
of different network technologies, such as Myrinet, Elan4,
Infiniband and Ethernet. Our high availability framework
is capable of supporting vendor supplied network technolo-

gies as well as established standards, such as TCP and UDP,
using communication drivers, thus enabling efficient commu-
nication between participating processes running in virtual
synchrony within an application.

The concept of using communication drivers to adapt spe-
cific APIs of different network technologies to a unified com-
munication API in order to make them interchangeable and
interoperable is not new. For example, Open MPI [22, 32]
uses a component-based framework and encapsulates com-
munication drivers using interchangeable and interoperable
components.

We are currently investigating if our high availability frame-
work is able to profit from Open MPI communication driver
technology by using the Open MPI framework. This also
provides an opportunity for Open MPI to benefit from our
high availability framework using active/active high avail-
ability for essential Open MPI services.

Furthermore, we are also going to consider heterogeneity as-
pects, such as byte ordering and high-level protocols. For
the moment, communication drivers offer an interface that
deals with raw data packets only. The use of high-level pro-
tocols is managed in the group communication layer. Fu-
ture work in this area will also reuse recent research in
adaptive, heterogeneous and reconfigurable communication
frameworks, such as RMIX [28].

3.2 Group Communication Layer
The group communication layer contains all essential pro-
tocols and services to run virtual synchronous processes for
active/active high availability. It also offers necessary ser-
vices for active/hot-standby high availability with multiple
standby processes using coherent replication. The group
communication layer provides group membership manage-
ment, external failure detectors, reliable multicast mecha-
nisms and atomic multicast algorithms.

Many (60+) group communication algorithms/systems can
be found in literature. Our pluggable component-based high
availability framework provides an experimental platform
for comparing existing solutions and for developing new ones.
Implementations with various replication and control strate-
gies using a common API allow adaptation to system prop-
erties and application needs. The modular architecture also
enables other researchers to contribute their solutions based
on the common API.

We will also incorporate previous research in adaptive group
communication frameworks using micro-protocol layers and
micro-protocol state-machines.

3.3 Virtual Synchrony Layer
The supported APIs at the virtual synchrony layer are based
on application properties. Deterministic and fully symmet-
rically replicated applications may use replication interfaces
for memory, files, state-machines and databases. Nondeter-
ministic or asymmetrically replicated applications may use
replication interfaces for distributed control and replicated
remote procedure calls.

These application properties are entirely based on the group



communication systems point of view and its limited knowl-
edge about the application.

For example, a batch job scheduler that runs on multiple
head nodes in a Beowulf-type cluster maintains a global
application state among the participating processes. Each
scheduler process has the same application state and receives
state changes in the same (total) order. A job scheduling re-
quest sent to one of these processes results in a state change
that schedules the job on all processes. Multiple requests are
ordered and their state changes are executed in the same or-
der. The job scheduler‘s behavior is obviously deterministic
from the group communication system point of view and the
state-machine interface can be used.

However, only one participating scheduler process is actively
starting jobs in our example, while the others only accept
job scheduling requests from users. Conceptually, the job
start part of the entire job management system is organized
in a fail-over chain, while the job scheduling part is provided
in a symmetric fashion by all head nodes.

A job is started using a replicated RPC that goes out to all
participating processes, but executes the job start only on
one node. The other processes wait for the replicated RPC
return in order to decide whether the job start was successful
or not. The job start and its result are based on locality as
the application is not operating entirely symmetric.

In case of failure, the surviving job scheduler processes con-
tinue to provide their service and a new leader process may
be elected to start future jobs. However, a failure of the
leader process during a job launch may require clean-up
procedures on compute nodes depending on the distributed
process model (e.g. bproc [8]) used. Also, currently running
jobs need to be associated with the new leader process.

The job scheduler‘s mode of operation may be optimized by
load balancing job starts among the participating processes.
This may significantly increase performance if the job sched-
uler is capable to start individual computational processes
directly.

As we can see from this simple batch job scheduler example,
the active/active high availability model is inherently com-
plex. An API that allows an application to be viewed as
a state-machine or that provides a replicated RPC facility
significantly improves usability.

3.4 Applications
There are many, very different, applications for our high
availability framework. Typical single points of failure and
control involve head and service nodes. We previously de-
scribed the active/active job scheduler example. Other ap-
plications include: essential fault-tolerant MPI services (e.g.
name server), parallel file system services (e.g. metadata
server) and services collecting data from compute nodes (e.g.
system monitoring).

Another application area is more deeply involved with the
OS kernel itself. For example, single system image (SSI)
solutions run one virtual OS on many processors in SMP
mode. Memory page replication is needed for a highly avail-

able SSI. A similar challenge poses global addressable mem-
ory, like in the Cray X1 system. Both applications target
head and service nodes as well as compute nodes.

Applications on compute nodes include: super-scalable disk-
less checkpointing, localized MPI recovery and coherent caching
of checkpoints on multiple service nodes. High availability
on compute nodes will become more important in the fu-
ture due to the growing size of high-end computing systems.
An example is the recently deployed IBM Blue Gene/L with
its 130,000 processors on compute nodes and several thou-
sand processors on service nodes. The mean time to failure
is going to outrun the mean time to recover without high
availability capabilities.

Our high availability framework will be implemented using
a set of shared and static libraries. Depending on the appli-
cation area it may be used within the application by direct
linking, via a daemon process by network access, or via an
OS interface, such as /sys or /dev.

4. PROTOTYPE IMPLEMENTATION
We are currently in the process of implementing an initial
prototype using the lightweight Harness kernel [16] as a flex-
ible and pluggable backbone (Figure 2) for the described
software components.

Figure 2: Pluggable Lightweight Harness Kernel

Conceptually, the Harness software architecture consists of
two major parts: a runtime environment (kernel) and a
set of plug-in software modules. The multi-threaded user-
space kernel daemon manages the set of dynamically load-
able plug-ins. While the kernel provides only basic func-
tions, plug-ins may provide a wide variety of services.

In fact, our previous research in Harness already targeted
a group communication system to manage a symmetrically
distributed virtual machine environment (DVM) using dis-
tributed control as a form of RPC-based virtual synchrony.
The Harness distributed control plug-in provides virtual syn-
chrony services to the Harness DVM plug-in, which main-
tains a symmetrically replicated global state database for
high availability. The accomplishments and limitations of
Harness and other group communication middleware projects



were the basis for the flexible, pluggable and component-
based high availability framework.

Furthermore, we are also currently investigating different
group communication protocols for large-scale applications,
such as SSI on compute nodes. Since the virtual synchrony
model is based on an all-to-all broadcast problem, scalabil-
ity is an issue that needs to be addressed. The performance
impact for small-scale applications, such as a scheduler run-
ning on multiple head nodes, is negligible, but large-scale
and/or distributed process groups need to deal with latency
and bandwidth limitations.

5. CONCLUSIONS
We presented a flexible, pluggable and component-based
high availability framework that expands today‘s effort in
high availability computing of keeping a single server alive
to include all machines cooperating in a high-end scien-
tific computing environment. The framework mainly targets
symmetric active/active high availability, but also supports
other high availability techniques.

Our high availability framework is a proof-of-concept imple-
mentation that aims to remove typical single points of failure
and single points of control from high-end computing sys-
tems, such as single head and service nodes, while adapting
to system properties and application needs. It uses plug-
gable communication drivers to allow seamless adaptation to
different vendor supplied network technologies as well as es-
tablished standards. Its pluggable component-based group
communication layer provides an experimental platform for
comparing existing group communication solutions and for
developing new ones. Furthermore, its virtual synchrony
layer provides adaptation to different application properties,
such as asymmetric behavior.

We target applications that usually provide services on sin-
gle head and service nodes, such as schedulers and essen-
tial message passing layer services. We also target compute
node applications, such as the message passing layer itself
and super-scalable high availability technologies for 100,000
processors and beyond.

6. REFERENCES
[1] Special issue on group communications systems.

Communications of the ACM, 39(4), 1996.

[2] N. R. Adiga et al. An overview of the Blue Gene/L
supercomputer. Proceedings of SC, also IBM research
report RC22570 (W0209-033), 2002.

[3] D. Agarwal. Totem: A reliable ordered delivery
protocol for interconnected local-area networks. PhD
Thesis, University of CA, Santa Barbara, 1994.

[4] ASCII Blue Gene/L Computing Platform at Lawrence
Livermore National Laboratory, Livermore, CA, USA.
http://www.llnl.gov/asci/platforms/bluegenel.

[5] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and
W. Chiu. Coyote: a system for constructing fine-grain
configurable communication services. ACM
Transactions on Computer Systems, 16(4):321–366,
1998.

[6] K. Birman, B. Constable, M. Hayden, J. Hickey,
C. Kreitz, R. van Renesse, O. Rodeh, and W. Vogels.
The Horus and Ensemble projects: accomplishments
and limitations. Proceedings of DISCEX, 1:149–161,
2000.

[7] G. Bosilca, Z. Chen, J. Dongarra, and J. Langou.
Recovery patterns for iterative methods in a parallel
unstable environment. Submitted to SIAM Journal on
Scientific Computing, 2005.

[8] BProc: Beowulf Distributed Process Space at
Sourceforge.net. http://bproc.sourceforge.net.

[9] Carrier Grade Linux Project at Open Source
Development Labs (OSDL), Beaverton, OR, USA.
http://www.osdl.org/lab activities/carrier grade linux.

[10] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,
T. Angskun, G. Bosilca, and J. Dongarra. Building
fault survivable MPI programs with FTMPI using
diskless checkpointing. Submitted to PPoPP, 2005.

[11] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Computing Surveys, 33(4):1–43, 2001.

[12] Xavier Defago, Andre Schiper, and Peter Urban. Total
order broadcast and multicast algorithms: Taxonomy
and survey. ACM Computing Surveys, 36(4):372–421,
2004.

[13] Danny Dolev and Dalia Malki. The Transis approach
to high availability cluster communication.
Communications of the ACM, 39(4):64–70, 1996.

[14] W. R. Elwasif, D. E. Bernholdt, J. A. Kohl, and G. A.
Geist. An architecture for a multi-threaded Harness
kernel. Lecture Notes in Computer Science:
Proceedings of PVM/MPI User’s Group Meeting,
2131:126–134, 2001.

[15] C. Engelmann and G. A. Geist. A diskless
checkpointing algorithm for super-scale architectures
applied to the fast fourier transform. Proceedings of
CLADE, pages 47–52, 2003.

[16] C. Engelmann and G. A. Geist. A lightweight kernel
for the harness metacomputing framework.
Proceedings of HCW, 2005.

[17] C. Engelmann and G. A. Geist. Super-scalable
algorithms for computing on 100,000 processors.
Proceedings of ICCS, 2005.

[18] C. Engelmann, S. L. Scott, and G. A. Geist. High
availability through distributed control. Proceedings of
HAPCW, 2004.

[19] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Harness
and fault tolerant MPI. Parallel Computing,
27(11):1479–1495, 2001.

[20] G. E. Fagg, A. Bukovsky, S. Vadhiyar, and J. J.
Dongarra. Fault-tolerant MPI for the Harness
metacomputing system. Lecture Notes in Computer
Science: Proceedings of ICCS 2001, 2073:355–366,
2001.



[21] FT-MPI Project at University of Tennessee,
Knoxville, TN, USA. At http://icl.cs.utk.edu/ftmpi.

[22] Edgar Gabriel, Graham E. Fagg, George Bosilca,
Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J.
Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, concept, and design of a next
generation MPI implementation. Proceedings of 11th
European PVM/MPI Users’ Group Meeting, 2004.

[23] G. A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang,
R. Manchek, and V. S. Sunderam. PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel Computing. MIT Press,
Cambridge, MA, USA, 1994.

[24] G.A. Geist, J.A. Kohl, S.L. Scott, and P.M.
Papadopoulos. HARNESS: Adaptable virtual machine
environment for heterogeneous clusters. Parallel
Processing Letters, 9(2):253–273, 1999.

[25] HA–OSCAR at Louisiana Tech University, Ruston,
LA, USA. At http://xcr.cenit.latech.edu/ha-oscar.

[26] I. Haddad, C. Leangsuksun, and S. Scott.
HA-OSCAR: Towards highly available linux clusters.
Linux World Magazine, March 2004.

[27] IBM Blue Gene/L Computing Platform at IBM
Research. http://www.research.ibm.com/bluegene.

[28] D. Kurzyniec, T. Wrzosek, V. Sunderam, and
A. Slominski. RMIX: A multiprotocol RMI framework
for Java. Proceedings of IPDPS, pages 140–145, 2003.

[29] Lawrence Berkeley National Laboratory, Berkeley, CA,
USA. BLCR Project at http://ftg.lbl.gov/checkpoint.

[30] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal.
Extended virtual synchrony. Proceedings of DCS,
pages 56–65, 1994.

[31] MPICH-V Project at University of Paris South,
France. http://www.lri.fr/∼gk/mpich-v.

[32] Open MPI Project. http://www.open-mpi.org.

[33] PBSPro Job Management System at Altair
Engineering, Inc., Troy, MI, USA.
http://www.altair.com/software/pbspro.htm.

[34] PBSPro Job Management System for the Cray XT3
at Altair Engineering, Inc., Troy, MI, USA.
http://www.altair.com/pdf/PBSPro Cray.pdf.

[35] J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Transactions on Parallel and
Distributed Systems, 9(10):972–986, 1998.

[36] PVM Project at Oak Ridge National Laboratory. Oak
Ridge, TN, USA. http://www.csm.ornl.gov/pvm.

[37] Ron I. Resnick. A modern taxonomy of high
availability. 1996.

[38] The Spread Toolkit and Secure Spread Project at
Johns Hopkins University, Baltimore, MD, USA.
http://www.cnds.jhu.edu/research/group/secure spread/.

[39] X1 Computing Platform at Cray Inc., Seattle, WA,
USA. http://www.cray.com/products/x1.

[40] Xpand Project at Hebrew University of Jerusalem.
Israel. http://www.cs.huji.ac.il/labs/danss/xpand.

[41] XT3 Computing Platform at Cray Inc., Seattle, WA,
USA. http://www.cray.com/products/xt3.


