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Abstract

Today‘s high performance computing systems have
several reliability deficiencies resulting in availability
and serviceability issues. Head and service nodes rep-
resent a single point of failure and control for an en-
tire system as they render it inaccessible and unman-
ageable in case of a failure until repair, causing a sig-
nificant downtime. This paper introduces two distinct
replication methods (internal and external) for provid-
ing symmetric active/active high availability for mul-
tiple head and service nodes running in virtual syn-
chrony. It presents a comparison of both methods in
terms of expected correctness, ease-of-use and perfor-
mance based on early results from ongoing work in pro-
viding symmetric active/active high availability for two
HPC system services (TORQUE and PVFS metadata
server). It continues with a short description of a dis-
tributed mutual exclusion algorithm and a brief state-
ment regarding the handling of Byzantine failures. This
paper concludes with an overview of past and ongoing
work, and a short summary of the presented research.
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Figure 1. Beowulf Cluster Architecture

1. Introduction

High performance computing (HPC) exploits
multi-processor parallelism on a large scale in order to
enable research in computational sciences in various ar-
eas, such as nanotechnology, quantum chemistry, nu-
clear fusion and astrophysics. Simulations of real-world
problems using mathematical abstraction models allow
scientists to gain knowledge without the need or the ca-
pability to perform physical experiments.

A HPC system typically consists of several nodes



(Figure 1), where each node has at least one proces-
sor, some memory and at least one network interface.
While a significant number of compute nodes perform
the actual parallel scientific simulation, a single head
node and optional service nodes handle system manage-
ment tasks, such as user login, resource management,
job scheduling, data storage and I/O.

This system architecture has been proven to be very
efficient as it permits customization of nodes and in-
terconnects to their purpose. However, it also implies
several reliability deficiencies resulting in system-wide
availability and serviceability issues [8].

Due to the fact that an entire HPC system depends
on each of its nodes and on the network to function
properly, single node or link interrupts trigger system-
wide disruptions. Furthermore, single head or service
node failures may lead to system-wide outages.

While each compute node typically represents
a single point of failure interrupting the entire sys-
tem upon failure, fault tolerance mechanisms, such as
checkpoint/restart [2] and message logging/replay [16],
allow continued operation without failed component(s)
after reconfiguration with limited (progress since the
last checkpoint) or no loss of application state.

However, head and service nodes are additionally
a single point of control for the entire HPC system as
they render it inaccessible and unmanageable in case of
a failure until repair, causing a significant downtime (up
to several percent in some instances).

Several models exist to perform reliable and con-
sistent replication of service state to multiple redundant
nodes for high availability. Past research focused on
the active/standby model [12, 19, 23] (Figure 2), where
each head and/or service node has at least one redun-
dant idle backup node, waiting to failover upon failure
of its primary node. However, interruption of service
and loss of service state may occur during a failover de-
pending on the used replication technique (hot-, warm-
or cold-standby). Furthermore, additional idle backup
nodes are needed in order to be able to tolerate multiple
simultaneous or subsequent failures.

The research presented in this paper targets the
symmetric active/active replication model for high
availability [8] using multiple redundant active head
and service nodes running in virtual synchrony. In this
model, head or service node failures do not cause a
failover to a backup and there is no disruption of ser-
vice or loss of service state. Furthermore, the number
of active head and service nodes is variable at runtime
allowing adaptation, such as adding new nodes when
old nodes become less reliable, and reconfiguration, for
example live upgrades of services.

This paper first discusses the virtual synchrony
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Figure 2. Enhanced Beowulf Cluster Architec-
ture with Active/Standby High Availability for
Head Node System Services

paradigm and its application to the active/active repli-
cation model. It continues with an introduction of two
distinct replication methods (internal and external) for
providing active/active high availability for HPC sys-
tem services. We further present a comparison of both
methods in terms of expected correctness, ease-of-use
and performance based on early results from ongoing
work. We continue with a short description of a dis-
tributed mutual exclusion algorithm, which ensures that
output produced by multiple redundant active services
is delivered only once, and a brief statement regarding
the handling of Byzantine failures. We conclude with a
brief overview of past and ongoing research in this area,
and a short summary of the presented work.

2. Virtual Synchrony

The virtual synchrony paradigm was first estab-
lished in the early work on the ISIS [1] group com-
munication system. It defines the relation between
regular-message passing in a process group and control-
message passing provided by the system itself (e.g. re-
ports on process joins or failures).

Process group membership is dynamic, i.e. pro-
cesses may join and leave the group. Whenever group
membership changes, all the processes in the new mem-
bership observe a membership change event.

Conceptually, the virtual synchrony paradigm
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Figure 3. Advanced Beowulf Cluster Architec-
ture with Symmetric Active/Active High Avail-
ability for Head Node System Services

guarantees that membership changes within a process
group are observed in the same order by all the group
members that remain connected. Moreover, member-
ship changes are totally ordered with respect to all reg-
ular messages that pass in the system.

The extended virtual synchrony paradigm [15],
which additionally supports crash recoveries and net-
work partitions, has been implemented in the Transis [7]
group communication system.

In the context of high availability for HPC system
services, the virtual synchrony paradigm allows replica-
tion of a system service to multiple head/service nodes
(Figure 3) by providing reliable total order message de-
livery to all members of a process group.

Service state changes are events, delivered in the
form of totally ordered message muilticasts. All mem-
bers of a group perform the same state change, since
they receive all messages in the same order. New mem-
bers obtain the current service state from the process
group. The service runs in virtual synchrony, i.e. all
members have a consistent replica and the service is
provided as long as one group member is still alive.

3. Active/Active High Availability

High availability is based on redundancy [21]. If a
service fails, the system is able to continue to operate
using a redundant one. As a result, its mean time to re-

Node A Node B Node C

Service

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Service

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group 
Communication

Group 
Communication

Group 
Communication

Group 
Communication

In
pu

t
M

1 In
pu

t
M

2 In
pu

t
M

3

O
ut

pu
t

M
1,

 M
2,

 M
3

Figure 4. Universal Symmetric Active/Active
High Availability Architecture for Services

cover can be decreased, loss of state can be reduced and
single points of failure and control can be eliminated.

Symmetric active/active high availability [8] (Fig-
ure 4) allows more than one redundant service to be ac-
tive, i.e. to accept state changes, while it does not waste
system resources by relying on an idle standby. Fur-
thermore, there is no interruption of service and no loss
of state, since active services run in virtual synchrony
without the need to failover.

Service state replication is performed by totally or-
dering all state change messages and reliably delivering
them to all redundant active services. A process group
communication system is used to ensure total message
order and reliable message delivery as well as service
group membership management.

Furthermore, consistent output produced by all ac-
tive services, i.e. messages sent to other parts of the sys-
tem or return messages related to service state changes,
is routed through the group communication system, us-
ing it for a distributed mutual exclusion to ensure that
output is delivered only once.

The number of active services is variable at runtime
and can be changed by either forcing an active service
to leave the service group or by joining a new service
with the service group. This allows adaptation of the
service group size, such as adding new nodes when old
nodes become less reliable, and reconfiguration of the
service group behavior, for example when performing
live upgrades in order to fix discovered vulnerabilities
or improve throughput performance.

As long as one active service is alive, state is never
lost, state changes can be performed and output is pro-
duced accordingly to state changes.



Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

O
ut

pu
t

In
pu

t
Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group 
Communication

Group 
Communication

Group 
Communication

Group 
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
tUser Interface User Interface

User Interface User Interface

Figure 5. Symmetric Active/Active High Avail-
ability Architecture using Internal Replication
by Service Modification/Adaptation

4. Replication Methods

Implementing symmetric active/active high avail-
ability using virtual synchrony supported by a group
communication system implies event-based program-
ming, where a service only reacts to event messages
using uninterruptible event handler routines.

More advanced programming models for virtual
synchrony, such as distributed control [10], use the
replicated remote procedure call abstraction to provide
a request/response programming model.

However, both programming models assume that a
service supplies the necessary hooks to perform unin-
terruptible state transitions.

While this is typically the case for networked ser-
vices that have some sort of event notification, remote
procedure call or remote method invocation interface,
command line based services, such as the batch job
scheduler in HPC systems, and proprietary network ser-
vices, such as data storage and I/O in HPC systems, do
not necessarily offer these hooks.

Adaptation to the event-based or request/response
programming model can be performed either internally
by modifying the service itself or externally by wrap-
ping it into a virtually synchronous environment.

4.1. Internal Replication

Internal replication (Figure 5) allows each active
service of a service group to accept external state
change requests individually, while using a group com-
munication system for total message order and reliable
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Figure 6. Symmetric Active/Active High Avail-
ability Architecture using External Replication
by Service User Interface Utilization

message delivery to all members of the service group.
All state changes are performed in the same order at all
services, thus virtual synchrony is given.

Services may also choose fine-grain synchroniza-
tion using the group communication system to perform
state changes in multiple stages by splitting them into
smaller atomic operations.

Since state changes are handled in an uninterrupt-
ible fashion, splitting them up allows interleaving in or-
der to gain performance and reduce response latency.
However, only non-conflicting state changes may be in-
terleaved in order to maintain correctness.

Interleaving state changes is a concurrency prob-
lem similar to pipelined execution in processors.

4.2. External Replication

External replication (Figure 6) avoids modification
of existing code by wrapping a service into a virtually
synchronous environment. Interaction with other ser-
vices or with the user is intercepted, totally ordered and
reliably delivered to the service group using a group
communication system that mimics the service interface
using separate event handler routines.

For example, the command line interface of a ser-
vice is replaced with an interceptor command that be-
haves like the original, but forwards all input to an in-
terceptor group. Once totally ordered and reliably deliv-
ered, each interceptor group member calls the original
command to perform operations at each service group
member. Service group output is routed through the in-
terceptor group for at most once delivery.



External replication implies coarse-grain synchro-
nization. Interleaving state changes is not possible,
since the interceptor group forces atomicity for all ser-
vice interface operations.

4.3. Comparison

Both methods, external and internal replication,
rely on a group communication system for totally or-
dered reliable message delivery. Assuming correctness
of the group communication system, both methods are
still susceptible to implementation errors due to the
adaptation to the event-based or request/response pro-
gramming model. This may cause incorrect run time
behavior and inconsistent state.

Implementers have to carefully examine the prop-
erties of a service before adapting it to the active/active
high availability model. The replication methods pre-
sented in this paper are for deterministic services only.
Non-determinism of a service is often caused by re-
liance on non-replicated components, such as a local
random number generator or clock, or by multithread-
ing. For example, the HPC job management system ser-
vice may rely on a local clock for job scheduling.

Internal replication requires modification of exist-
ing code, which may be unsuitable for complex and/or
large services. The amount of modification necessary
may result in a complete redesign and reimplementation
of an existing service. In contrast, the external replica-
tion method wraps an existing solution into a virtually
synchronous environment without modifying it.

Our ongoing work focuses on providing symmet-
ric active/active high availability for the TORQUE [25]
job and resource management system using external
replication and for the Parallel Virtual File System
(PVFS) [20] metadata server using internal replication
(both using the Transis group communication system).
While we have not performed extensive performance
benchmarking, early results show that internal repli-
cation offers higher performance with interleaved state
changes and slightly reduces the response latency intro-
duced by the group communication system. However,
interleaving state changes requires substantial knowl-
edge about the internal behavior of a service.

Another issue emerges when considering live up-
grades of service nodes. Upgrading a highly available
system service while it is running in a symmetric ac-
tive/active fashion requires removal, upgrade and rejoin
of each individual service group member, one at a time.
A strict prerequisite of such a procedure is that the new
version of the service fully supports the interface (in-
cluding its semantics) of the old one. Similar to live
upgrades, individual symmetric active/active high avail-

ability solutions may be reused for different service im-
plementations that provide the same user interface, for
example different HPC job and resource management
systems supporting the Open PBS [18] interface.

Maintaining a consistent interface between service
and group communication system over a significant pe-
riod of time is easier using external replication as it is
based on the external user interface of a service, while
the internal design of the service is not affected and may
change with a new version.

Overall, we recommend the internal replication
method when high throughput performance is needed,
for example for file system servers, except where the
prospect of extensive code modification or foreseeable
major service design changes prohibits it.

However, we recommend using external replication
when high throughput performance is not a major re-
quirement and the symmetric active/active high avail-
ability solution should be reusable for other services
that have exactly the same user interface.

5. Distributed Mutual Exclusion

The purpose of distributed mutual exclusion in the
context of symmetric active/active high availability us-
ing virtual synchrony is to ensure at most once delivery
of service output even in the presence of failures.

Distributed mutual exclusion can be simply imple-
mented with the help of a group communication system
by maintaining a replicated lock at each member of a
process group. This lock is acquired and released at
all process group members in virtual synchrony using
atomic multicast operations containing the member id
of the requesting process group member. A lock held
by a failed process group member is automatically re-
leased at all process group members when receiving the
atomic multicast of the respective view change.

When running multiple services in virtual syn-
chrony, the lock assures mutually exclusive access for
service output operations by relying on an output trans-
action counter that is maintained as part of the repli-
cated service state. This output transaction counter
starts with zero and is increased for every output pro-
duced by a service. Each locking request is atomically
multicast to all members of the service group containing
the member id of the requesting service group member
and the current output transaction counter value. Once
the lock has been acquired, the output is sent only if this
transaction counter value is higher than the one associ-
ated to the last successfully sent output. If this is not the
case, the lock is immediately released at all members of
the service group without the need for communication.

Once the service output has been successfully re-



ceived, the lock is released and the transaction counter
of the last successfully sent output is updated at all
members of the service group using an atomic multi-
cast by the system component that received the service
output. However, if the service holding the lock fails,
the lock is released at all members of the service group
without updating the transaction counter of the last suc-
cessfully sent output. In this case, the next service that
acquires the lock sends the respective output.

Some group communication systems, such as Tran-
sis, have advanced built-in capabilities that can drasti-
cally simplify the implementation of distributed mutual
exclusions. Most distributed mutual exclusion imple-
mentations follow the same or a similar algorithm.

6. Byzantine Failures

Our approach in providing symmetric active/active
high availability for HPC system services on head and
service nodes using virtual synchrony primarily fo-
cuses on tolerating benign failures, assuming that sys-
tem components, such as individual services, nodes or
communication links, fail by simply stopping.

Our solution presently does not guarantee correct-
ness if a single faulty component violates this assump-
tion by producing false output.

Process group communication systems that toler-
ate Byzantine failures provide a complete answer to this
problem by making no assumptions about the behavior
of faulty components. However, most solutions are im-
practical and tend to be inefficient.

We are currently in the process of analyzing past
research in practical Byzantine fault tolerance [3] for
networked services and its application to our symmet-
ric active/active high availability architecture for HPC
system services on head and service nodes.

However, due to the fact that symmetric ac-
tive/active high availability solutions have not been used
until now in HPC systems, there is not much experience
with the occurrence of Byzantine failures in this con-
text. Future research also needs to focus on isolating,
quantifying and classifying failures in HPC systems.

7. Related Work

Ongoing work in this area includes a collaborative
research effort between our teams at Oak Ridge Na-
tional Laboratory (ORNL), Louisiana Tech University
and Tennessee Tech University to design and develop
active/active high availability support for existing HPC
system software solutions, such as batch job scheduler,
resource management, message passing layer and data
storage, based on the discussed replication methods.

Related past and ongoing research at ORNL in
partnership with North Carolina State University deals
with exploration of advanced group communication al-
gorithms [6, 10], flexible and modular group commu-
nication frameworks [9], and support for scalable high
availability on compute nodes.

Other related past research includes object-oriented
replication approaches, such as the Object Group Pat-
tern, Orbix+Isis and Electra.

The Object Group Pattern [14] offers support for
replicated objects using a group communication system
for virtual synchrony. In this design pattern, objects are
designed as state machines and replicated using totally
ordered and reliably multicast state changes similar to
the approach of this paper. Furthermore, it also provides
the necessary hooks for copying object state, which is
needed for joining group members.

Orbix+Isis and Electra are follow-on research
projects [13] that focus on extending high availability
support to CORBA using object request brokers (ORBs)
on top of virtual synchrony toolkits.

Further related research also includes operating
system extensions to support high availability for clus-
ter computing, such as the OpenAIS effort, and highly
available run time environments for distributed hetero-
geneous computing, like Harness.

OpenAIS [17] is an implementation of the Service
Availability Forums [22] API Specification for cluster
high availability. It consists of Availability Manage-
ment Framework (AMF), Cluster Membership (CLM),
Checkpointing (CKPT), Event (EVT) notification, Mes-
saging (MSG), and Distributed Locks (DLOCK). Ope-
nAIS recently moved towards using virtual synchrony
for distributed locks and membership management.

Harness [11, 24] is a pluggable heterogeneous en-
vironment for distributed scientific computing. Concep-
tually, it consists of two major parts: a runtime envi-
ronment (RTE) and a set of plug-in software modules.
While the RTE provides only basic functions, plug-ins
may provide a wide variety of services, such as mes-
saging, scientific algorithms and resource management.
Multiple RTE instances can be aggregated into a highly
available Distributed Virtual Machine (DVM) using dis-
tributed control [10] for replication.

As mentioned before, past research in high avail-
ability for HPC system services primarily focused on
the active/standby model using at least one redundant
idle backup node. Most of these solutions experience an
interruption of service and a loss of service state during
a failover. A more detailed description and a classifica-
tion of availability models and their replication strate-
gies in the context of HPC system architectures can be
found in an earlier paper [8].



Lastly, there is a plethora of past research on group
communication algorithms [4, 5].

8. Conclusions

With this paper, we introduced two distinct repli-
cation methods (internal and external) for providing ac-
tive/active high availability for HPC system services us-
ing the virtual synchrony paradigm.

We discussed the virtual synchrony paradigm and
its application to the active/active replication model. We
presented the internal and external replication methods,
and compared them in terms of expected correctness,
ease-of-use and performance.

Our findings based on early results from ongoing
work in providing symmetric active/active high avail-
ability for two HPC system services (TORQUE and
PVFS metadata server) recommend using the inter-
nal replication method when high throughput perfor-
mance is needed, except where the prospect of extensive
code modification or foreseeable major service design
changes prohibits it.

External replication is a feasible alternative with
slightly lower performance and higher response latency,
and is recommended when the symmetric active/active
high availability solution should be reused with other
services that have the same user interface, except where
the anticipated performance loss prohibits it.

Furthermore, we recommend to carefully exam-
ine the properties of a service before adapting it to ac-
tive/active high availability. Virtual synchrony is event
based and requires services to supply the necessary un-
interruptible hooks for state changes.

Our ongoing research in this area focuses on the
design and development of active/active high availabil-
ity support for existing HPC system software solu-
tions, such as batch job scheduler, resource manage-
ment, message passing layer and data storage, based on
the replication methods discussed in this paper.
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