RMIX: A Dynamic, Heterogeneous,
Reconfigurable Communication Framework*

Christian Engelmann and Al Geist

Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164, USA
{engelmannc,gst}@ornl.gov
http://www.csm.ornl.gov

Abstract. RMIX is a dynamic, heterogeneous, reconfigurable commu-
nication framework that allows software components to communicate
using various RMI/RPC protocols, such as ONC RPC, Java RMI and
SOAP, by facilitating dynamically loadable provider plug-ins to supply
different protocol stacks. With this paper, we present a native (C-based),
flexible, adaptable, multi-protocol RMI/RPC communication framework
that complements the Java-based RMIX variant previously developed
by our partner team at Emory University. Our approach offers the same
multi-protocol RMI/RPC services and advanced invocation semantics
via a C-based interface that does not require an object-oriented pro-
gramming language. This paper provides a detailed description of our
RMIX framework architecture and some of its features. It describes the
general use case of the RMIX framework and its integration into the
Harness metacomputing environment in the form of a plug-in.

1 Introduction

Collaborative environments for heterogeneous distributed computing strive to
enable research institutions and universities world-wide to pool their computing
and storage resources in order to enable joint research in computational sciences,
such as nanoengineering and quantum chemistry. Frameworks for metacomput-
ing, data and computational grids, and peer-to-peer environments help to fa-
cilitate resource and data sharing among collaborating sites using standardized
interfaces and interoperable software components.

Remote Method Invocation (RMI) is the most important communication
paradigm for heterogeneous distributed collaborative environments as it extends
the semantics of local method calls to networked systems. RMI is an object
oriented analogy to the Remote Procedure Call (RPC) concept. It enables client
components to invoke methods of objects that have been previously exported on

* This research is sponsored by the Mathematical, Information, and Computational
Sciences Division; Office of Advanced Scientific Computing Research; U.S. Depart-
ment of Energy. The work was performed at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No. De-AC05-000R22725.

local or remote server components using a protocol stack that defines connection
management, message formats and data encoding.

Traditional RMI communication frameworks typically implement one specific
protocol stack, where connection management and message formats are defined
by client and server libraries, and data encoding is defined using client-side and
server-side stubs for each class of objects.

With this paper, we present a native (C-based), flexible, adaptable, multi-
protocol RMI/RPC communication framework that complements the Java-based
RMIX variant [1-4] previously developed by our partner team at Emory Uni-
versity as part of the Harness research effort [5-9].

RMIX is a dynamic, heterogeneous, reconfigurable communication frame-
work that allows software components to communicate using various RMI/RPC
protocols, such as ONC RPC, Java RMI and SOAP, by facilitating dynami-
cally loadable provider plug-ins to supply different protocol stacks. While the
RMIX base library contains functions that are common to all protocol stacks,
like networking and thread management, RMIX provider plug-ins contain pro-
tocol stack specific functions for connection management, message formats and
data encoding. Since it is up to the provider plug-ins to reuse base library func-
tions, implementations may range from lightweight to heavyweight. Moreover,
client- and server-side object stubs are very lightweight and protocol independent
as they only perform an adaptation to the RMIX system.

Furthermore, RMI semantics have been expanded within RMIX to sup-
port the RPC paradigm and its protocols. In addition to standard synchronous
RMI/RPC mechanisms, RMIX also offers advanced RMI/RPC invocation se-
mantics, such as asynchronous and one-way.

This paper is structured as follows. First, we briefly discuss related past
and ongoing research. We continue with a detailed description of the RMIX
framework architecture and some of its features. We describe the general use
case of the RMIX framework and its integration into the Harness lightweight
metacomputing environment in the form of a plug-in. This paper concludes with
a short summary of the presented research and its current status.

2 Related Work

The research in heterogeneous, adaptable, reconfigurable, networked systems
(Harness) is a collaborative effort among Oak Ridge National Laboratory (ORNL),
University of Tennessee, Knoxville, and Emory University focusing on the de-
sign and development of technologies for flexible, adaptable, reconfigurable,
lightweight environments for heterogeneous distributed computing.

The C-based RMIX framework developed at ORNL and described in this
paper follows a similar architectural design approach to the Java-based variant
by offering the same interface and similar functionality. However, the C-based
implementation is not a one-to-one translation of the Java-based solution as this
would require reimplementing many of the Java language features in a non-Java

language, i.e., reinventing the Java Virtual Machine (JVM) and parts of the
Java Standard Development Kit (SDK).

Our approach is to offer the same multi-protocol RMI/RPC services and ad-
vanced invocation semantics via a C-based interface that does not require an
object-oriented programming language. Instead of mapping RPC to RMI calls,
like in the Java-based variant, we actually map RMI to RPC calls by emulating
an object-oriented interface. Any object-oriented application just needs to im-
plement the C-based stubs as they were method calls, with the exception that
the first call argument is always a reference to the object itself. Polymorphism
is guaranteed as the server-side stub calls the real object method.

The following related work has already been previously discussed in the con-
text of the Java-based RMIX research [1-4].

XSOAP [10] (a.k.a. SoapRMI) is a RMI system based on the SOAP protocol
and offers Java and C++ implementations to create and access Web Services.
While it supports multiple transports and custom data encoding, it is not a
universal multi-protocol RMI system.

JavaParty [11] is a drop-in replacement for standard Java RMI, written in
pure Java and exploiting optimized serialization. While JavaParty supports non-
TCP/IP communication networks, e.g., Myrinet, it is not interoperable with
ordinary RMI applications and services.

The Manta [12] approach sacrifices Java portability and uses native code to
achieve the best possible performance. Manta is a native Java compiler that
compiles Java source code to Intel x86 executables. It does not offer any multi-
protocol support nor does it provide a native equivalent.

Web Services [13,14] have become a de facto standard for simplifying inte-
gration and access of heterogeneous networked services by presenting the user
with a much lower level of abstraction for distributed computing. Web Service
protocols are XML-based and are not designed for efficient data transfer. How-
ever, a RMI layer on top of Web Services, as exemplified by XSOAP and the
Java-based RMIX variant, can offer simple and elegant access to heterogeneous
resources over the Web.

3 RMIX Framework Architecture

The main goal of the RMIX communication framework is to provide efficient
and interoperable RMI/RPC capabilities to system software, middleware and
applications in a heterogeneous, distributed, collaborative computing environ-
ment. Conceptually, the RMI (and RPC) paradigm is based on a client-server
architecture, where a client invokes a method (or function) at a server-side ob-
ject. The RMIX approach allows each client-server pair to choose at compile
time or even to negotiate at runtime the most efficient RMI protocol stack that
is supported by both sides, while client-side and server-side object stubs remain
the same as they only perform an adaptation to the RMIX framework and are
not involved in the protocol stack.

The RMIX framework architecture (Figure 1) consists of two parts: a base
library and a set of provider plug-in software modules. While the base library
contains functions that are common to all protocol stacks, like advanced RMI
semantics, networking and thread management, provider plug-ins contain pro-
tocol stack specific functions for connection management, message formats and
data encoding. Since it is up to the provider to reuse base library functions,
implementations may range from lightweight to heavyweight.

‘ User Program ‘

|

‘ User Program Stub ‘

|

RMIX Library
Loadable Providers: .
RMIX Multi-Protocol

RPCX Remote Method Invocation:
XSOAP]l Provider Loader
JRMPX Thread Pool

Sync. RMI | Async. RMI
Threaded Network I/O

Network Services:

Fig. 1. RMIX Framework Architecture

The base library reuses technology developed earlier for the lightweight Har-
ness run time environment [15], such as a thread pool to simplify thread man-
agement and a provider plug-in loader to allow dynamic adaptation. It also
provides TCP/IP based networking support and advanced invocation seman-
tics, such as asynchronous and one-way. Due to the pluggable nature of RMIX,
provider plug-ins are able to extend these basic functions by supplying their own
implementation or by loading other plug-ins.

RMI calls are mapped to RPC calls in part by the base library using an ob-
ject registry that stores necessary object interface information at the server side.
When exporting an object, the user has to specify the object interface including
method names, signatures and respective stub function pointers. Server-side ob-
ject stubs adapt incoming RPC calls to method invocations and client-side stubs
adapt outgoing RMI calls to RPC calls. The adaptation performed by both stubs
also includes transposing the RMI/RPC call arguments between C-function and
arge/argv style in order to be able to pass them through the RMIX base library
for encoding and decoding in provider plug-ins. The mapping of RMI to RPC
calls is independent from the protocol stack.

3.1 General Use Case

In order to enable an application to perform remote method invocations using
RMIX, it just needs to link the RMIX base library and supply the necessary
lightweight client- and server-side object stubs.

First, an object needs to be exported at the server-side base library with pro-
tocol parameters, object interface and object pointer in order to accept incoming
RMI calls. The base library registers the object, loads the appropriate provider
using the specified protocol, and calls the provider via a standardized interface
to evaluate the protocol parameters and to export the object. The provider re-
turns a local reference for the exported object back to the user. Part of this local
object reference is the remote object reference.

Remote object references may be dynamically stored at name servers, such
as the RMIX registry, or statically assigned at compile time using advanced
protocol parameters to force a specific export behavior.

When calling a remote method, the user invokes the client-side method func-
tion using the remote object reference as first argument followed by the original
arguments. The client-side stub transposes the arguments to an arge/argv style
and forwards them and additional object interface information to the base li-
brary, which loads the appropriate provider using the protocol specified in the
remote object reference and calls it via a standardized interface.

Providers are free to use the base library components for encoding and net-
working, but are not forced to do so. On the server side, the provider receives
and decodes the RMI call and looks up the server-side object interface and ob-
ject pointer at the object registry in the base library. The provider calls the
server-side method function with object pointer and arge/argv style arguments
either directly or using a separate thread. The server-side stub transposes the ar-
guments back to C-function style and calls the appropriate function or method.
Any return values are passed from the server-side stub and provider back to the
client-side provider and stub in a similar fashion.

Provider plug-ins may be preloaded before exporting an object or calling a
remote method to improve performance. Furthermore, a provider registry file
is used to store information about providers and supported protocols. Protocol
parameters specified for exporting an object may be used to configure protocol
stack parameters, such as type mapping. They are also part of the remote object
reference to ensure symmetric protocol stack configuration.

3.2 Advanced RMI Semantics

The RMI paradigm is based on a request/response model, where the request
message contains the call input and the response message holds the call output.
However, applications are not interested in response messages if they communi-
cate using the message passing paradigm. Furthermore, each RMI call takes a
certain amount of time for remote processing causing the caller to wait idle for
the response message.

RMIX supports one-way invocations via a separate invocation interface that
allows the caller to continue after the request message has been sent and ac-
cepted. Any response is eliminated at the client-side provider plug-in in a sepa-
rate thread to maintain RMI/RPC protocol compliance.

Asynchronous invocations are offered by RMIX via another separate inter-
face that also allows the caller to continue after the request has been sent and
accepted. The caller obtains an invocation reference in order to retrieve the
response later. The client-side provider uses a separate thread to wait for the
response and to store it locally. Multiple method invocations may be interleaved,
i.e., called in succession without retrieving the response in between. The server-
side protocol plug-in guarantees the invocation order.

Asynchronous and one-way invocations have to be explicitly supported by a
provider plug-in using separate implementations for each invocation style.

3.3 Remote Object Registry

Our C-based RMIX variant provides a name server style registry to dynamically
associate remote object references with names similar to the Java RMI registry.
However, in contrast to the Java RMI registry, the RMIX registry has multi-
protocol support to improve interoperability. In fact, the RMIX registry is itself
just a name server object that is exported using RMIX.

4 Harness Integration

Harness is a pluggable heterogeneous Distributed Virtual Machine (DVM) en-
vironment for parallel and distributed scientific computing. Conceptually, the
Harness software architecture consists of two major parts: a runtime environ-
ment (RTE) and a set of plug-in software modules. The multi-threaded userspace
RTE manages the set of dynamically loadable plug-ins. While the RTE provides
only basic functions, plug-ins may provide a wide variety of services needed in
fault-tolerant parallel and distributed scientific computing, such as messaging,
scientific algorithms and resource management. Multiple RTE instances can be
aggregated into a DVM.

The C-based RMIX variant has been integrated into the C-based lightweight
Harness RTE [15] in form of a plug-in (Figure 2) to provide multiprotocol
RMI/RPC capabilities to the RTE and to plug-ins. This effort also complements
earlier work in integrating the Java-based RMIX solution into the Java-based
Harness run time environment H20 [16].

The use case scenario of the C-based RMIX variant within the Harness con-
text has already been discussed in [15]. While the RMIX base library and Harness
RTE stubs are wrapped into a Harness-RMIX plug-in, stubs for other plug-ins
are also implemented as plug-ins. Since the Harness RTE supports plug-in de-
pendencies, a plug-in requiring RMIX automatically loads its stub plug-in(s),
which subsequently load the RMIX plug-in.

Ongoing work in this area focuses on using both lightweight Harness RTEs to
provide adaptability and interoperability in a heterogeneous collaborative envi-
ronment for distributed scientific computing. Furthermore, we are also currently
investigating parallel plug-in programming paradigms using the Harness/RMIX
combination as a backbone for adaptive, fault tolerant, distributed, component-
based scientific applications.

Daemon Process Running Processes:

External Process

‘ External Process H
Startup and Control: i‘:

‘ Process Manager Pﬂ Forker Process ‘

Worker Threads:
‘ Thread Pool ‘

Loadable Plug-Ins:

Dynamically
Loaded Plug-Ins:) Some Plug-In H
[

‘ Plug-In Loader K Daemon RMIX Stub Plug-in ‘
Some Plug-In H

* RMIX Plug-In

RMIX Library
Loadable Providers: .
RMIX Multi-Protocol
RPCX Remote Method Invocation:

XSOAP]l Provider Loader
oo

Sync. RMI | Async. RMI
Threaded Network 1/0

Network Services:

Fig. 2. RMIX Plug-in for the Harness Metacomputing System

5 Conclusions

With this paper, we presented a native (C-based), flexible, adaptable, multi-
protocol RMI/RPC communication framework that complements the Java-based
RMIX solution. We described the RMIX framework architecture, its general use
case and some of its features, such as advanced invocation semantics, in more
detail. We also explained recent integration efforts with the Harness lightweight
metacomputing environment.

RMIX is part of the Harness software distribution package from Oak Ridge
National Laboratory. Currently, we supply the Harness runtime environment
together with the RMIX base library and the fully functional RPCX provider
plug-in, which offers a ONC RPC compliant protocol stack using XDR encod-
ing. The RPCX provider also supports one-way and asynchronous invocations.
Ongoing work focuses on SOAP, IIOP and Java RMI (JRMP) provider plug-ins
to further improve heterogeneity. Future work will target security related issues,
such as authentication, authorization and encryption.

References

1. Kurzyniec, D., Wrzosek, T., Sunderam, V.S., Slominski, A.: RMIX: A multiproto-
col RMI framework for Java. Proceedings of IPDPS (2003) 140
2. Kurzyniec, D., Wrzosek, T., Sunderam, V.S.: Heterogeneous access to service-
based distributed computing: The RMIX approach. Proceedings of IPDPS - HCW
(2003) 100
3. Kurzyniec, D., Sunderam, V.S.: Semantic aspects of asynchronous rmi: The RMIX
approach. Proceedings of IPDPS - JavaPDCW (2004) 157
4. Wrzosek, T., Kurzyniec, D., Sunderam, V.S.: Performance and client heterogeneity
in service-based metacomputing. Proceedings of IPDPS - HCW (2004) 113
5. Geist, G.A., Kohl, J.A., Scott, S.L., Papadopoulos, P.M.: HARNESS: Adaptable
virtual machine environment for heterogeneous clusters. Parallel Processing Letters
9 (1999) 253-273
6. Sunderam, V., Kurzyniec, D.: Lightweight self-organizing frameworks for meta-
computing. Proceedings of HPDC (2002) 113-124
7. Emory University, Atlanta, GA, USA: Harness project at http://www.mathcs.
emory.edu/harness
8. Oak Ridge National Laboratory, TN, USA: Harness project at http://www.csm.
ornl.gov/harness
9. University of Tennessee, Knoxville, TN, USA: Harness project at http://icl.cs.utk.
edu/harness
10. Indiana University, Bloomington, IN, USA: XSOAP project at http://www.ex-
treme.indiana.edu/xgws/xsoap
11. University of Karlsruhe, Karlsruhe, Germany: JavaParty project at http://www.
ipd.uka.de/javaparty
12. Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H.E., Plaat, A.: An efficient
implementation of Java’s remote method invocation. Proceedings of PPoPP (1999)
173-182
13. Vasudevan, V.: A Web Services primer. http://www.xml.com/pub/a/2001,/04/04/
webservices (2001)
14. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL). http://www.w3.org/TR/wsdl (2001)
15. Engelmann, C., Geist, G.A.: A lightweight kernel for the Harness metacomputing
framework. Proceedings of IPDPS - HCW (2005) 120
16. Kurzyniec, D., Drzewiecki, D., Sunderam, V.S.: Towards self-organizing distributed
computing frameworks: The H20 approach. Parallel Processing Letters 13 (2003)
273-290

