
Operating System Research at ORNL:

System-level Virtualization

Presented by:

Christian Engelmann
engelmannc@ornl.gov

Systems Research Team

Computer Science Research Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
United States Department of Energy

• Nation’s largest energy laboratory
• Nation’s largest science facility:

• The $1.4 billion Spallation Neutron Source
• Nation’s largest concentration of open source materials

research
• Nation’s largest open scientific computing facility

Largest Multipurpose Science LaboratoryLargest Multipurpose Science Laboratory
within the U.S. Department of Energywithin the U.S. Department of Energy

• Privately managed for US DOE
• $1.08 billion budget
• 4000+ employees total

• 1500 scientists and engineers
• 3,000 research guests annually
• 30,000 visitors each year
• Total land area 58mi2 (150km2)

ORNL East Campus: Site of World Leading ORNL East Campus: Site of World Leading
Computing and Computational SciencesComputing and Computational Sciences

Research Office
Building

Research Office
Building

Computational
Sciences Building

Computational
Sciences Building

Engineering
Technology

Facility

Engineering
Technology

Facility

Research Support Center
(Cafeteria, Conference, Visitor)

Research Support Center
(Cafeteria, Conference, Visitor)

Joint Institute for
Computational Sciences

Joint Institute for
Computational Sciences

3

Old Computational
Sciences Building
(until June 2003)

Old Computational
Sciences Building
(until June 2003)

Systems
Research

Team

Systems
Research

Team

National Center for Computational SciencesNational Center for Computational Sciences

40,000 ft2 (3700 m2) computer center:
36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
12 MW of power with 4,800 t of redundant cooling
High-ceiling area for visualization lab:

35 MPixel PowerWall, Access Grid, etc.

2 systems in the Top 500 List of Supercomputer Sites:
Jaguar: 10.Cray XT3, MPP with 12500 dual-core Processors 119 TFlop.
Phoenix: 32.Cray X1E, Vector with 1014 Processors 18 TFlop.

At Forefront in Scientific Computing At Forefront in Scientific Computing
and Simulationand Simulation

Leading partnership in developing the National
Leadership Computing Facility

Leadership-class scientific computing capability
100 TFlop/s in 2006/7 (recently installed)
250 TFlop/s in 2007/8 (commitment made)

1 PFlop/s in 2008/9 (proposed)

Attacking key computational challenges
Climate change
Nuclear astrophysics
Fusion energy
Materials sciences
Biology

Providing access to computational resources through
high-speed networking (10Gbps)

System Research Team

• SRT team
– Stephen L. Scott
– Christian Engelmann
– Hong Ong
– Geoffroy Vallee
– Thomas Naughton
– Sudharshan Vazhkudai
– Anand Tikotekar

• Research topics
– High Availability / Fault Tolerance
– Operating Systems
– Distributed Storage
– Cluster Computing
– Virtualization Technologies
– Resource Management
– Tools

System-level Virtualization - Outline

Introduction to system-level virtualization
Hypervisor for HPC
High availability
System management

Why Virtualization?

Workload isolation
− Improves security and reliability

Isolate software stack to own VM
Intrusions confined to VM scope

Workload consolidation
− Better resource utilization

Consolidate work to fewer servers
Support incompatible or legacy operating environments

Workload migration
− Improves quality of service

Workload balance
Failure detection/migration

Classification

Two kinds of system virtualization
− Type-I: the virtual machine monitor and the virtual

machine run directly on top of the hardware,
− Type-II: the virtual machine monitor and the virtual

machine run on top of the host OS

Hardware

Host OS

VMM

VM VM

Hardware

VMM

Host OS VM VM

Type I Virtualization Type II Virtualization

Virtual Machines

First studies in the 70's (e.g. “Architecture of Virtual
Machines”, R.P. Goldberg, 1973)

Common idea
− the physical machine runs an OS Host OS
− the virtual machine runs its own OS Guest OS

Today different approaches
− para-virtualization: modification of the running OS for performance
− full-virtualization: the running OS is not modified
− emulation: the host OS has a different architecture than the guest OS
− hardware support: Intel-VT, AMD-V

System-level Virtualization Solutions

Number of solutions, e.g., Xen, QEMU, KVM,
VMWare
Which one to use?
− Type-I virtualization: performance
− Type-II virtualization: development

Type-I Virtualization - Design

x86 Architecture – Execution Rings

Kernel

Applications

x86 Architecture – “Modified” Execution Rings

Kernel

Applications

Hypervisor
Ring 0

Ring 1

Ring 2

Ring 3

Ring 0

Ring 1

Ring 2

Ring 3

Type-I Virtualization - Hypervisor

Hypervisor is running in ring 0
Kernels are running in ring 1
− impossible to execute protected processor instructions
− the hypervisor needs to hijack protected processor

instructions (paravirtualization: Hypervisor calls, similar
to syscalls)

− overhead for all hypervisor calls

Applications are still running in ring 3, no
modifications

Type-I Virtualization – Device Drivers

VMs are running in ring 1, no access to devices
Most of the time the hypervisor does not include
device drivers
Couple Hypervisor + Host OS
− host OS includes drivers
− hardware access from VMs are

done through the Host OS
Source: Barney Maccabe, UNM

Type-I Virtualization – Hardware Support

Create a hardware
“virtualized context”
Transition from VM mode to
“Hypervisor mode”
− save registers
− context switch (similar to

process switch within a
traditional OS)

Current implementations:
Intel-VT, AMD-V (not compatible)

Kernel

Applications

Hypervisor
Ring 0

Ring 1

Ring 2

Ring 3

Type-II Virtualization - Design

Simpler model: the Host OS and the
Hypervisor are “stacked”
No modifications of OSes
Allow a BIOS simulation
Easy to extend for emulation (e.g.
PPC on x86_64)
Less efficient than type-I
virtualization (especially comparing to
para-virtualization)

Hardware

Host
OS

VMM

VM

Read Page

Translate
Address

Read Physical
Memory Page

Example of Type-I Virtualization: Xen

Xen: para-virtualization (type-I)
− Adv.: good performance for computation
− Problems: overhead for I/Os, modification of the Linux

kernel, start to be complex (driven by ASP market,
different needs than ours), not a full virtualization of the
system

Example of Type-II Virtualization
VMWare: full-virtualization (type-II)
− Adv.: mature
− Problems: still difficult to adapt (not open source), not really

suitable for HPC

QEMU: full-virtualization (type-II)
− Adv.: open source, performance similar to VMWare, support

a lot of architectures
− Problems: performance not suitable for HPC

KVM: full-virtualization (type-II)
− Adv.: open source, maintained by the Linux community
− Problems: Linux as Hypervisor

System-level Virtualization - Outline

Introduction to system-level virtualization
Hypervisor for HPC
High availability
System management

Context

Large scale systems
− XT3/XT4 Cray machine
− ORNL Institutional Cluster

Different users needs
− Development environments may differ: from desktops to

small clusters

Variety of user applications

Challenges

Difficult to provide a single execution environment
− that fits users/applications needs
− that is similar to all development environments

Several challenges
− plug-and-play computing
− execution environment customization

A possible approach: System-level Virtualization

Xen for HPC?

Xen has proven to be interesting for HPC
But Xen also has drawbacks
− it has become too large
− supports many architectures (much legacy stuff, we are

only interested in x86_64)
− some functionalities interesting for HPC are periodically

broken
− monolithic
− static

VMM for HPC

LDRD Project at ORNL: ORNL, Sandia, UNM,
Northwestern University

Sandia/UNM: development of a VMM based on Catamount

Northwestern: development of a dynamic hypervisor
framework

ORNL: development of a VMM based on Xen
− Fork of Xen 2 (smaller), “take the best of Xen”
− port on x86_64
− write documentation (education)
− focus on only functionalities for HPC

VMM for HPC

Goals
− be able to modify dynamically Hypervisor's behavior (T.

Naughton, G. Vallee)
− have a small hypersivor, i.e., w/ a small footprint (G.

Vallee, T. Naughton)
− efficient I/Os

VMM by-pass
API and integration of IOMMU

− have documentation!
In collaboration with Northwestern University (Prof. Peter. Dinda)

System-level Virtualization - Outline

Introduction to system-level virtualization
Hypervisor for HPC
High availability
System management

System-level Virtualization and High
Availability

Current studies based on Xen
Virtualization provides interesting mechanisms for
HA: VM live migration, VM checkpoint/restart
− Live migration is efficient
− Checkpoint/restart is not yet complete (better with Xen

3): no checkpoint of the file system

VM Checkpoint / Restart

Already possible to checkpoint the memory (memory dump in a file)

File system checkpoint/restart

In collaboration with LATech (Prof. Box Leangsuksun)

Last File System Checkpoint
(Read Only)

Current File System
(Read/Write)

Checkpoint
(merge) New File System

Checkpoint
(Read Only)

HA Framework Based on Virtualization
(1)

Goal: take benefit of system abstraction provided by
system virtualization
Pro-active FT: migrate, pause VMs before failure
occurs when something wrong is detected
− implementation of a framework to provide various

policies regarding when and how to checkpoint/migrate

HA Framework Based on Virtualization
(2)

Reactive FT
− checkpoint/restart of applications with BLCR
− BLCR port to Xenolinux
− active/standby duplication for service on headnode

Combining pro-active and reactive FT
− pro-active FT avoids issues when problems are detected

before failures
− reactive restart applications after a failure and stop pro-

active FT mechanism

Framework Architecture

XenoBLCR Kerrighed Xen

Connectors

Fault Tolerance Daemon

SMART LM-SENSOR

Fault Predictor

Policy Daemon Headnode

Event System
(Communication System)

Compute
Nodes

System Monitoring

Fault Tolerance Handling

Generic Fault Tolerance API

Plug-in Fault Tolerance API

Pro-active Fault Tolerance

Headnode
w/ Fault Tolerant Job Scheduler

1: Alarm: disk
errors, so
migrate

Fault Tolerance
Policy (w/ failover
mechanism)

Xen VM

Fault Prediction
Based on

Hardware Monitoring

Fault Prediction
Based on

Hardware Monitoring

Node i Node k

Avoid
Jobs

2: VM Live Migration

Network

.......

Reactive Fault Tolerance

Failover
Headnode

w/ Fault Tolerant
Job Scheduler

Headnode
w/ Fault Tolerant

Job Scheduler

BLCR
(in a Xen VM)

Fault Prediction
Based on

Hardware Monitoring

Node i Spare Node k

Network

.......

BLCR
(in a Xen VM)

Fault Prediction
Based on

Hardware Monitoring

Failure Detected,
Restart ProcessFailure

System-level Virtualization - Outline

Introduction to system-level virtualization
Hypervisor for HPC
High availability
System management

Management of Virtualized
Environments

Current issues similar to real systems
− how to deploy a VM?
− how to configure a VM?
− How to deploy multiple VMs?

Users do not want to deal with technical details, a
VM is just
− an architecture
− some NICs
− some memory
− etc.

Abstraction of System Virtualization
Solutions - Introduction

Users
− do not want to deal with technical details
− wants to specify their need in term of VMs with an high-

level description (memory, disk, etc.)

Virtualization solutions have different benefits
− Xen: performance
− QEMU: full system emulation, eases developments

V3M – VM Profile

Simple, high-description of VMs
Example

<?xml version="1.0"?>

<!DOCTYPE profile PUBLIC "" "v3m_profile.dtd">

<profile>

<name>test</name>

<type>Xen</type>

<image size="50">/home/gvallee/temp/v2m/test_xen.img</image>

<nic1>

<type>TUN/TAP</type>

<mac>00:02:03:04:05:06</mac>

</nic1>

</profile>

Profile Management

Concept of profiles
− for VMs, a profile is : memory, disk, OS, NICs, network

configuration
− for virtual distributed system, a profile is: a set of profiles

of virtual machines

VM Specification
(GUI)

User Profile
(XML file)

VM software
configuration

VM or set of VMs

User

Abstraction of System Virtualization
Solutions

V3M (Virtual Machine Management and Monitoring)

Allows users to specify VMs through a simple XML file
(profile)

High-Level Interface
(vm_create, create_image_from_cdrom,
create_image_with_oscar, vm_migrate,

vm_pause, vm_unpause)

Virtualization Abstraction

Qemu Xen VMWare ... V3M
Back-ends

V3M
Front-end

V2M
(Virtual Machine Management

Command Line Interface)

KVMs
(GUI for Linux - KDE/Qt)

Applications
based on
libv3m

V3M – Management Capabilities

Check the system
Check the profile
Create configuration scripts for VM management
Provide simple interface for VM management: boot,
image management, status
Switch to a new virtualization solution: only change
the type

OSCAR-V

Virtual Cluster Management

Goals
− Host OS management
− Definition of images for VMs (which may deeply differ)
− Deployment of VMs
− Hide technical details associated to each virtualization

solution

OSCAR-V
− OSCAR extension for the management of VMs
− Integrates V3M and V2M

OSCAR-V

OSCAR packages for Xen, Qemu
− capability to create an image for Host OSes

minimal image
benefit of OSCAR features for the deployment
automatic configuration of system level virtualization solutions
complete networking tools for virtualization solutions

− capability to create images for VMs
may be based on any Linux distributions supported by OSCAR:
Mandriva, Suse, Debian, FC, RHEL, etc.
benefit of the default OSCAR configuration for compute nodes

VM Deployment on Demand

OSCAR-V does not allow an automatic deployment
of VMs at job submission time
Integration of Dynamic Virtual Clusters
− Moab extension for the deployment of VMs during job

submission
− Use OSCAR images, deployment based on DVC
− Collaboration with ASU (Dan Santizone)

Operating System Research at ORNL:

System-level Virtualization

Presented by:

Christian Engelmann
engelmannc@ornl.gov

Systems Research Team

Computer Science Research Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
United States Department of Energy

	Operating System Research at ORNL:�� 							System-level Virtualization
	National Center for Computational Sciences
	At Forefront in Scientific Computing and Simulation
	System Research Team
	System-level Virtualization - Outline
	Why Virtualization?
	Classification
	Virtual Machines
	System-level Virtualization Solutions
	Type-I Virtualization - Design
	Type-I Virtualization - Hypervisor
	Type-I Virtualization – Device Drivers
	Type-I Virtualization – Hardware Support
	Type-II Virtualization - Design
	Example of Type-I Virtualization: Xen
	Example of Type-II Virtualization
	System-level Virtualization - Outline
	Context
	Challenges
	Xen for HPC?
	VMM for HPC
	VMM for HPC
	System-level Virtualization - Outline
	System-level Virtualization and High Availability
	VM Checkpoint / Restart
	HA Framework Based on Virtualization (1)
	HA Framework Based on Virtualization (2)
	Framework Architecture
	Pro-active Fault Tolerance
	Reactive Fault Tolerance
	System-level Virtualization - Outline
	Management of Virtualized Environments
	Abstraction of System Virtualization Solutions - Introduction
	V3M – VM Profile
	Profile Management
	Abstraction of System Virtualization Solutions
	V3M – Management Capabilities
	Virtual Cluster Management
	OSCAR-V
	VM Deployment on Demand
	Operating System Research at ORNL:�� 							System-level Virtualization

