

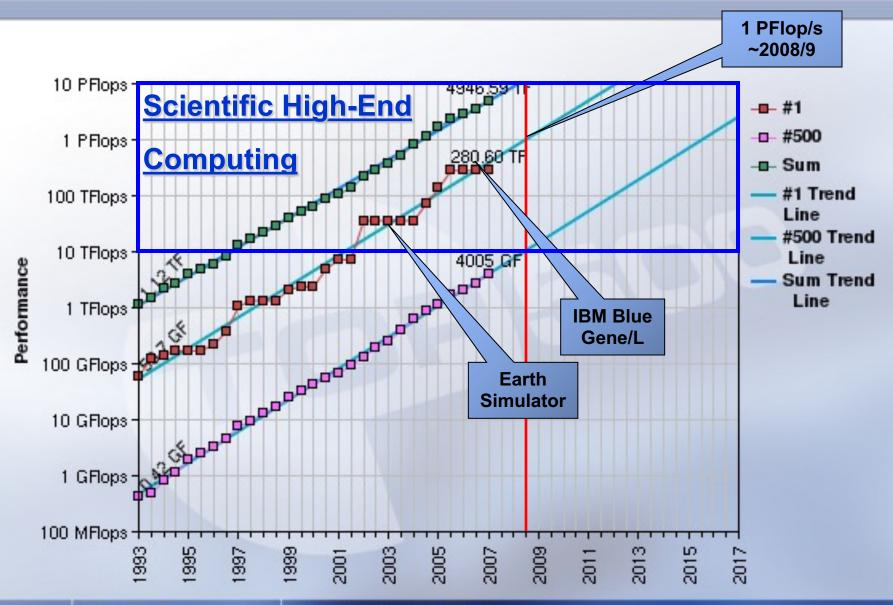
MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Service-Level High Availability in Parallel and Distributed Systems

Christian Engelmann^{1,2}

- ¹Oak Ridge National Laboratory, Oak Ridge, USA
- ² The University of Reading, Reading, UK

Talk Outline


- Scientific high-end computing (HEC)
- Availability deficiencies of today's HEC systems
- Projects and accomplishments overviews
- High availability (HA) models for services
- Developed prototypes overview
- Existing limitations and most pressing issues
- Generalization of HA programming models
- Enhancing the transparency of the HA infrastructure
- Generic HA framework infrastructure

Scientific High-End Computing (HEC)

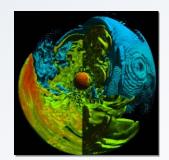
- Large-scale HPC systems.
 - Tens-to-hundreds of thousands of processors.
 - Current systems: IBM Blue Gene/L and Cray XT4
 - Next-generation: petascale IBM Blue Gene and Cray XT
- Computationally and data intensive applications.
 - □ 100 TFLOP 1PFLOP with 100 TB 10 PB of data.
 - Climate change, nuclear astrophysics, fusion energy, materials sciences, biology, nanotechnology, ...
- Capability vs. capacity computing
 - Single jobs occupy large-scale high-performance computing systems for weeks and months at a time.

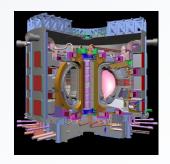
Projected Performance Development

National Center for Computational Sciences

- 40,000 ft² (3700 m²) computer center:
 - 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
 - 12 MW of power with 4,800 t of redundant cooling
 - High-ceiling area for visualization lab:
 - ■35 MPixel PowerWall, Access Grid, etc.

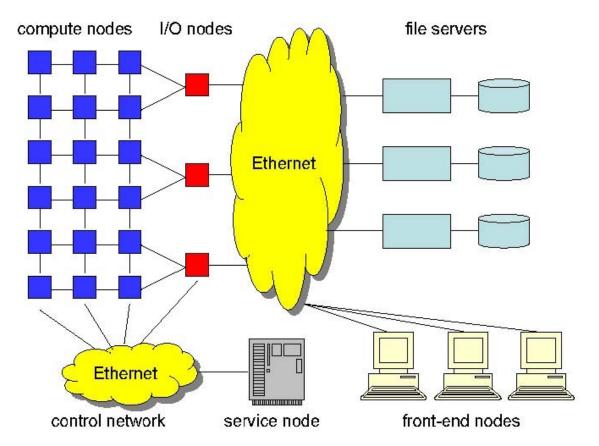
- 2 systems in the Top 500 List of Supercomputer Sites:
 - Jaguar: 2. Cray XT3, MPP with 11508 dual-core Processors ⇒ 119 TFlop.
 - Phoenix: 58. Cray X1E, Vector with 1014 Processors ⇒ 18 TFlop.


At Forefront in Scientific Computing and Simulation


PCM-HES Surface Temperature (30–1913)

- Leading partnership in developing the National Leadership Computing Facility
 - Leadership-class scientific computing capability
 - □ 119 TFlop/s in 2007 (recently installed)
 - □ 250 TFlop/s in 2007/8 (commitment made, after SC07)
 - □ 500 TFlop/s in 2008 (commitment made, UT/ORNL)
 - □ 1 PFlop/s in 2008/9 (commitment made)

- Climate change
- Nuclear astrophysics
- Fusion energy
- Materials sciences
- Biology
- Providing access to computational resources through high-speed networking (10Gbps)


Availability Measured by the Nines

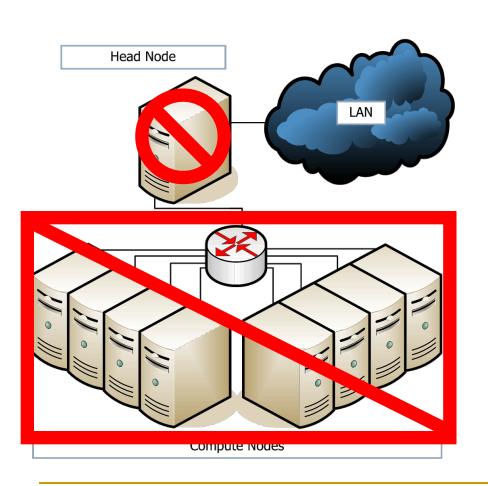
see http://info.nccs.gov/resources for current status of HPC systems at Oak Ridge National Laboratory

9's	Availability	Downtime/Year	Examples
1	90.0%	36 days, 12 hours	Personal Computers
2	99.0%	87 hours, 36 min	Entry Level Business
3	99.9%	8 hours, 45.6 min	ISPs, Mainstream Business
4	99.99%	52 min, 33.6 sec	Data Centers
5	99.999%	5 min, 15.4 sec	Banking, Medical
6	99.9999%	31.5 seconds	Military Defense

- Enterprise-class hardware + Stable Linux kernel = 5+
- Substandard hardware + Good high availability package = 2-3
- Today's supercomputers = 1-2
- My desktop = 1-2

Typical HEC System Architecture

Typical failure causes:


- Overheating !!!
- Memory errors
- Network errors
- Other hardware issues
- Software bugs

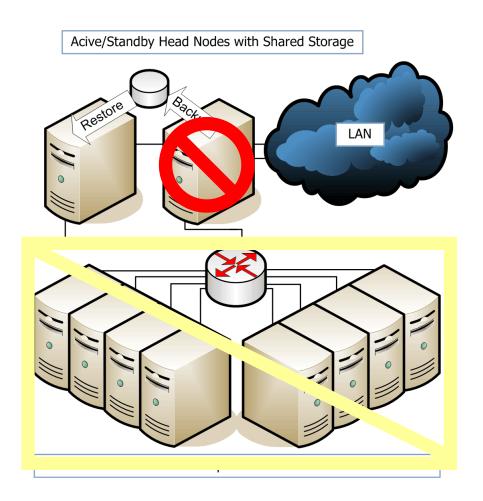
Different scale requires different solutions:

- Compute nodes (10,000+)
- Front-end, service, and I/O nodes (50+)

Image source: Moreira et al., "Designing a Highly-Scalable Operating System: The Blue Gene/L Story" Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 11-17, Tampa, FL, USA.

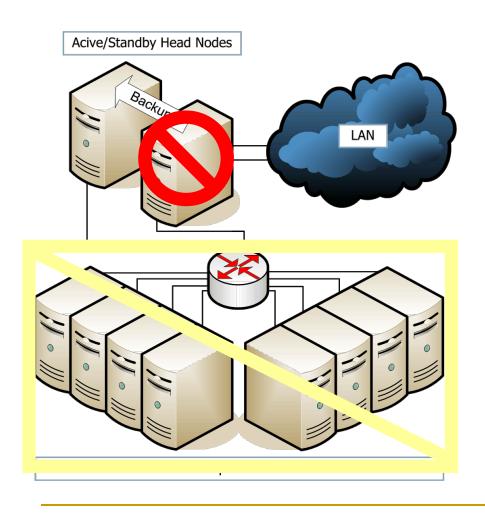
Single Head/Service Node Problem

- Single point of failure.
- Compute nodes sit idle while head node is down.
- A = MTTF / (MTTF + MTTR)
- MTTF depends on head node hardware/software quality.
- MTTR depends on the time it takes to repair/replace node.
- MTTR = 0 → A = 1.00 (100%) continuous availability.

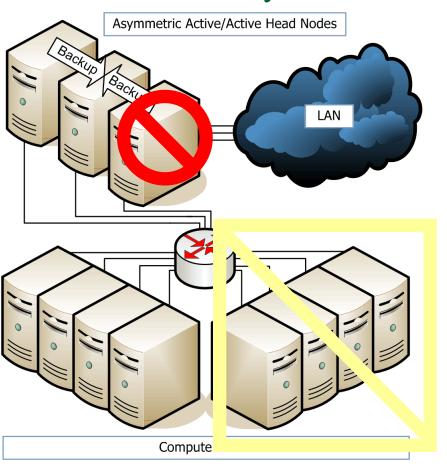

Projects Overview

- Initial HA-OSCAR research in active/standby technology for the batch job management system
- Recent MOLAR/FAST-OS research in compute/ service node fault tolerance & high availability
- Recent RAS LDRD research in service node fault tolerance & high availability
- Ongoing RAS/FAST-OS research in compute node fault tolerance & high availability
- → 4-5 years of research and development in fault tolerance & high availability for HPC

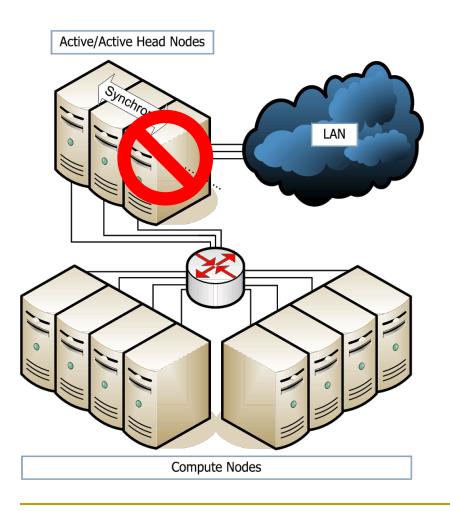
Accomplishments Overview


- Investigated the overall background of HA technologies in the context of HPC
 - Detailed problem description
 - Conceptual models
 - Review of existing solutions
- Developed different replication strategies for providing high availability for HPC system services
 - Active/standby
 - Asymmetric active/active
 - Symmetric active/active
- Implemented several proof-of-concept prototypes

Active/Standby with Shared Storage


- Single active head node
- Backup to shared storage
- Simple checkpoint/restart
- Fail-over to standby node
- Possible corruption of backup state when failing during backup
- Introduction of a new single point of failure
- Correctness and availability are NOT ALWAYS guaranteed
- SLURM, meta data servers of PVFS and Lustre

Active/Standby Redundancy


- Single active head node
- Backup to standby node
- Simple checkpoint/restart
- Fail-over to standby node
- Idle standby head node
- Rollback to backup
- Service interruption for failover and restore-over
- Torque on Cray XT
- → HA-OSCAR prototype

Asymmetric Active/Active Redundancy

- Many active head nodes
- Work load distribution
- Optional fail-over to standby head node(s) (n+1 or n+m)
- No coordination between active head nodes
- Service interruption for fail-over and restore-over
- Loss of state w/o standby
- Limited use cases, such as high-throughput computing
- Prototype based on HA-OSCAR

Symmetric Active/Active Redundancy

- Many active head nodes
- Work load distribution
- Symmetric replication between head nodes
- Continuous service
- Always up-to-date
- No fail-over necessary
- No restore-over necessary
- Virtual synchrony model
- Complex algorithms
- Prototype for Torque & PVFS

Developed Prototypes Overview (1/2)

- Active/Standby HA-OSCAR
 - High availability for Open PBS/TORQUE
 - Integration with compute node checkpoint/restart
- Asymmetric active/active HA-OSCAR
 - High availability for Open PBS & SGE
 - High throughput computing solution
- Symmetric active/active JOSHUA
 - High availability for PBS TORQUE and for PVFS metadata server

Existing Limitations

- The active/standby and asymmetric active/active technology interrupts the service during fail-over
- Generic n+1 or n+m asymmetric active/active configurations have not been developed yet
- The 2+1 asymmetric active/active configuration uses two different service implementations
- The developed symmetric active/active technology has certain stability and performance issues
- All developed prototypes use a customized high availability environment
- Missing interaction with compute node fault tolerance mechanisms (except for HA-OSCAR for head node fail-over)

Most Pressing Issues

- For production-type deployment
 - Stability guaranteed quality of service
 - Performance low replication overhead
 - Interaction with compute node fault tolerance mechanisms
 - e.g. procedure for failing PBS mom
 - → Testing, enhancements, and staged deployment
- For extending the developed technologies
 - Portability ability to apply technology to different services
 - Ease-of-use simplified service HA management (RAS)
 - Generic HA framework needed

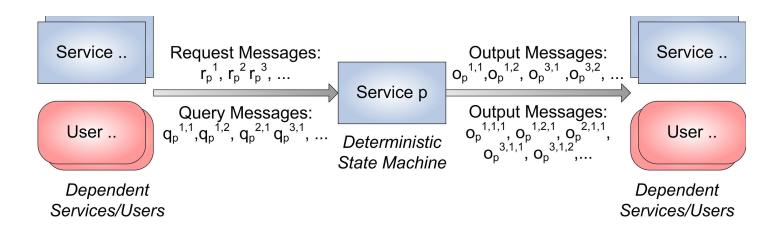
Next Step: Generic HA Framework

- Generalization of HA programming models
 - Active/Standby
 - Asymmetric active/active
 - Symmetric active/active
- Enhancing the transparency of the HA infrastructure
 - Minimum adaptation to the actual service protocol
 - Virtualized communication layer for abstraction
- → Portability
- → Ease-of-use

Next Step: Generic HA Framework

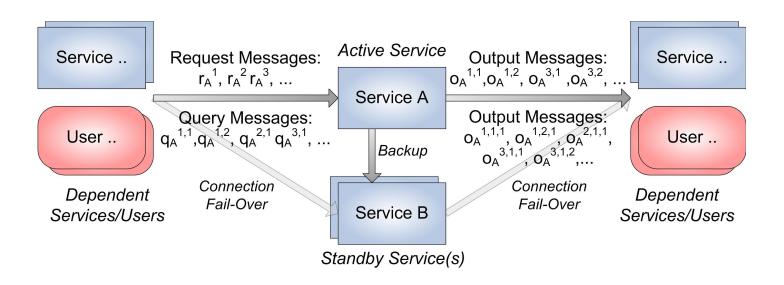
- Generalization of HA programming models
 - Active/Standby
 - Asymmetric active/active
 - Symmetric active/active
- Enhancing the transparency of the HA infrastructure
 - Minimum adaptation to the actual service protocol
 - Virtualized communication layer for abstraction
- → Portability
- → Ease-of-use

Failure Model


Fail-stop

- The service, its node, or its communication links, fail by simply stopping.
- Failure detection mechanisms may be deployed to assure fail-stop behavior in certain cases, such as for incomplete or garbled messages.

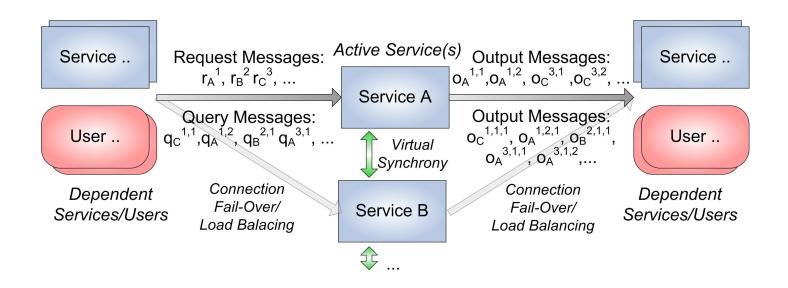
Permanent failures


- Non-transient behavior assured by detection mechanisms via node fencing.
- Recovery requires external intervention, such as repair or replacement of the failed component.
- Both assumptions match real-world properties.

Communicating Process Generalization

- Most, if not all, HPC system services are deterministic
- Non-determinism introduced by random number generators or unsynchronized timers:
 - Removal of the use of random number generators in HPC system services
 - Synchronization of timers (clocks) between replicas is trivial:
 - Closely coupled local area networks with low and constant latency
 - Clock skew tolerable within certain boundaries (not real-time, not fully synchronous)

Active/Standby Generalization


- Warm-Standby:
 - Regular state updates from Active Service to Standby Service (push or pull)
- Hot-Standby
 - On-change state updates from Active Service to Standby Service (push)
- Group communication style consistency required for state updates to multiple Standby Services

Asymmetric Active/Active Generalization

- Replication of service capability via multiple Active Services
- No replication of state among Active Services
- Mechanisms and semantics for optional Standby Services are the same as for Active/Standby

Symmetric Active/Active Generalization

- Replication of service capability via multiple Active Services
- Replication of state among Active Services
- Virtual synchrony (active replication) model

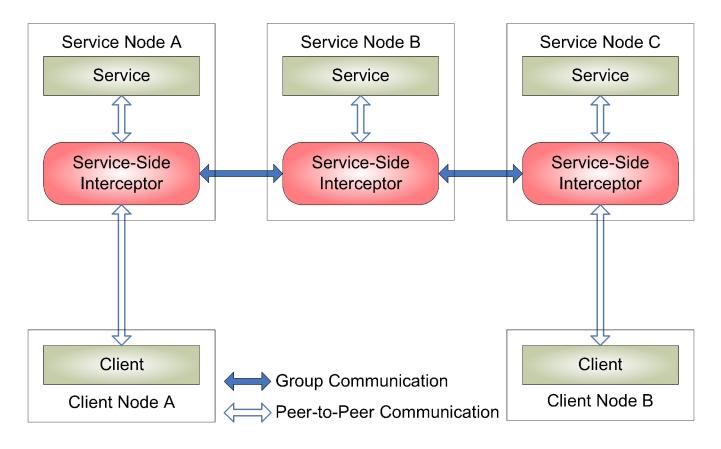
Comparison of Replication Methods

Model	MTTR	Latency Overhead
Warm-Standby	$T_d + T_f + T_c + T_r$	0
Hot-Standby	$T_d + T_f + T_r$	$2l_{A,B}$
Asymmetric	$T_d + T_f + T_c + T_r$ or	0 or
	$T_d + \mathring{T_f} + T_r$	$2l_{A,\alpha}$
Symmetric	$\overline{T_r}$	O(n)

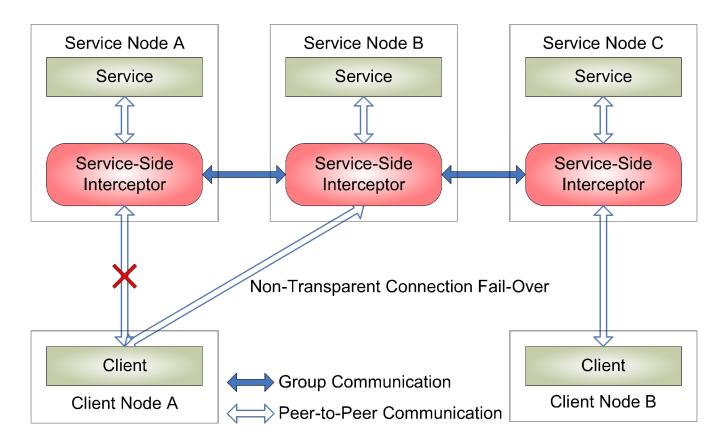
 T_d = time between failure occurrence and detection (Heartbeat)

 T_f = time between failure detection and fail-over (STONITH)

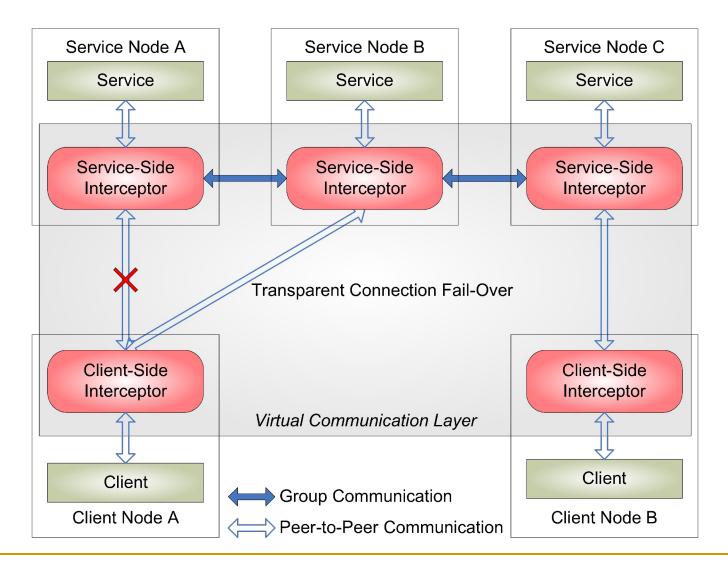
 T_c = time to recover from checkpoint to previous state


 T_r = time to reconfigure client/user connection

 $l_{A,B}$ = communication latency between A and B


Next Step: Generic HA Framework

- Generalization of HA programming models
 - Active/Standby
 - Asymmetric active/active
 - Symmetric active/active
- Enhancing the transparency of the HA infrastructure
 - Minimum adaptation to the actual service protocol
 - Virtualized communication layer for abstraction
- → Portability
- → Ease-of-use


Symmetric Active/Active Replication

Non-Transparent Connection Fail-Over

Transparent Connection Fail-Over

Interceptors in the Communication Path: What about Performance?

Payload	Without	With Service	With Both
500	Interceptors	Interceptor	Interceptors
100 B	149.9µs	$150.6 \mu s / +0.5\%$	$178.4 \mu s + 19.0\%$
1 <i>KB</i>	284.3µs	$314.6 \mu s / + 10.7\%$	$346.7 \mu s + 21.9\%$
10 KB	1.9 <i>ms</i>	$1.9ms/~\pm0.0\%$	2.0ms/ +5.3%
100 <i>KB</i>	22.3ms	22.5ms/ +0.8%	22.7ms/ +1.8%
Tabl	e 1. Ping-l	ong Latency C	omparison
Payload	Without	With Service	With Both
-200	Interceptors	Interceptor	Interceptors
100B	667 <i>KBps</i>	664KBps/-0.4%	561 <i>KBps</i> /-15.9%
1 <i>KB</i>	3.5 <i>MBps</i>	3.2MBps/-8.6%	2.9MBps/-17.1%
10 KB	5.3 <i>MBps</i>	5.2MBps/-1.9%	5.0MBps/-5.7%
100 <i>KB</i>	4.5 <i>MBps</i>	4.4 <i>MBps</i> /-2.2%	4.4MBps/ -2.2%

Table 2. Ping-Pong Bandwidth Comparison

Test Results from a 100 Mbit/s LAN Environment

Future Work

- Availability and reliability modeling
- Testing and benchmarking
- What about communication security/integrity?
 - For client-server connections across administrative domains
 - For distributed computing scenarios
- What about interdependent services?

How does this relate to P2P and the Grid

- All presented concepts and prototypes are applicable to any service-oriented architectures (SOAs).
- All prototypes are designed for local area replication, but can be easily used for wide area replication.
- Introduced latency overhead for local area replication protocols are negligible in the wide area context.
- Stateful Grid service replication:
 - Replication of Grid services to meet QoS/SLA guarantees.
- Stateful P2P service replication:
 - Replication of P2P support services for high availability, e.g., for directory servers and brokers.

MOLAR: Adaptive Runtime Support for High-end Computing Operating and Runtime Systems

- Addresses the challenges for operating and runtime systems to run large applications efficiently on future ultra-scale high-end computers.
- Part of the <u>Forum to Address Scalable Technology for Runtime</u> and <u>Operating Systems (FAST-OS)</u>.
- MOLAR is a collaborative research effort (<u>www.fastos.org/molar</u>):

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Service-Level High Availability in Parallel and Distributed Systems

Christian Engelmann^{1,2}

- ¹Oak Ridge National Laboratory, Oak Ridge, USA
- ² The University of Reading, Reading, UK