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Traditional Beowulf cluster computing
architecture

Single Point of Failure/
Single Point of Control
Compute Node Interconnect
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e Single head node manages entire HPC system

o System-wide services are provided by head node:
— Job & resource management, networked file system, ...

e Local services are provided by compute nodes
— Message passing (MPI, PVM), ...
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Recent trend toward massively parallel
processing (MPP) architectures

Single Points of Failure
Single Points of Control
Compute Node Interconnect
\ Compute] [Computej [Computi
Node ] Node Node Node Node
Users
Node Node Node Node

1/0 & Storage

\

e Single head node and additional service nodes manage the entire
HPC system

e System-wide services are provided by head node and are offloaded to
service nodes, e.g., networked file system

e Local services are provided by service nodes and compute nodes,
e.g., message passing
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Recent trend toward partitioned MPP
architectures
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e Single head node manages entire HPC system

e Service nodes manage and support compute nodes belonging to their
partitions
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Availability Measured by the Nines

http://info.nccs.gov/resources - HPC system status at Oak Ridge National Laboratory

9’s | Availability Downtime/Year Examples

1 90.0% 36 days, 12 hours Personal Computers

2 99.0% 87 hours, 36 min Entry Level Business

3 99.9% 8 hours, 45.6 min ISPs, Mainstream Business
4 99.99% 52 min, 33.6 sec Data Centers

5 99.999% 5 min, 15.4 sec Banking, Medical

6 99.9999% 31.5 seconds Military Defense

e Enterprise-class hardware + Stable Linux kernel = 5+

e Substandard hardware + Good high availability package = 2-3

e Today’s supercomputers

o My desktop
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Typical Failure Causes in HPC Systems

e Hardware failures due to wear/age of:
— Hard drives, memory modules, network cards, and processors

Software failures due to bugs in:
— Operating system, middleware, applications

o Stress-related failures that exceed design specifications in:
— Hardware, e.g. due to excessive heat radiation
— Software, e.g. due to (unintentional) denial of service

Radiation-induced soft errors (bit flips due to electromagnetic
interference, heat radiation, natural neutron radiation) in:

— Memory modules, network cards, and processors

-> Different scale requires different solutions:

— Compute nodes (up to 150,000)
— Front-end, service, and I/O nodes (1 to 150)
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Research and development goals

o Efficient redundancy strateqgies for head and service nodes in HPC
systems to provide high availability as well as high performance of
critical infrastructure services

e Reactive fault tolerance for HPC compute nodes utilizing the job
pause approach as well as checkpoint interval and placement
adaptation to actual and predicted system health threats

e Proactive fault tolerance using system-level virtualization in HPC
environments for pre-emptive migration of computation away from
compute nodes that are about to fail

e Reliability analysis for identifying pre-fault indicators, predicting
failures, and modeling and monitoring of individual component and

overall HPC system reliability

e Holistic fault tolerance technology through combination of adaptive
proactive and reactive fault tolerance mechanisms in conjunction with

system health monitoring and reliability analysis
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MOLAR: Adaptive runtime support for high-end
computing operating and runtime systems

e Previous effort: 2004-2007

e Addresses the challenges for operating and runtime systems to run
large applications efficiently on large-scale supercomputers

e Part of the Forum to Address Scalable Technology for Runtime and
Operating Systems (FAST-0S)

e MOLAR is a collaborative research effort (www.fastos.org/molar):
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Reliability, Availability, and Serviceability (RAS)
for Petascale High-End Computing and Beyond

e Current effort: 2008-2011

o Addresses the fault resilience challenges for operating and runtime
systems of next-generation large-scale supercomputers

e Part of the Forum to Address Scalable Technology for Runtime and
Operating Systems (FAST-0S)

e RAS HPC is a collaborative research effort (www.fastos.org/ras):
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Symmetric active/active redundancy for
head and service nodes

e Many active head nodes

e Work load distribution

Active/Active Head Nodes

e Symmetric replication
between head nodes

e Continuous service

e Always up to date

e No fail-over necessary

e No restore-over necessary
e Virtual synchrony model
Vv Complex algorithms

- Prototypes for PBS Torque and
PVFS metadata server

Compute Nodes

=0 : - - Tennessee Tech OAK
The University of Reading m UNIVERSITY RIDGE

National Laboratory
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Symmetric active/active replication
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Symmetric active/active Parallel Virtual
File System metadata service
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Reactive vs. proactive fault tolerance for
compute nodes

s e Reactive fault tolerance:

b .l.;.;;‘;; o State saving during failure-free operation
“"T;’;:;: e State recovery after failure

1. e Assured quality of service, but limited
L L% scalability
e Proactive fault tolerance:
R o System health monitoring and online reliability
e 3 modeling
B e Failure anticipation and prevention through
T, prediction and reconfiguration before failure

*if{g e Highly scalable, but not all failures can be
anticipated

-> Ideal solution: Matching combination of both
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Enhanced reactive fault tolerance with
LAM/MPI+BLCR job pause mechanism

live node

paused MPI
process

existing
connection

paused Mm
process

live node

failed

failed node

failed MPI
process

new connection

]

shared storage
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process
migration

migrated
MPI process

spare node

e Operational nodes: Pause
— BLCR reuses existing processes

— LAM/MPI reuses existing
connections

— Restore partial process state
from checkpoint

e Failed nodes: Migrate

— Restart process on new node
from checkpoint

— Reconnect with paused
processes

=> Scalable MPlI membership
management for low overhead

=> Efficient, transparent, and
automatic failure recovery
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New job pause mechanism in BLCR

e Application registers threaded

callback = spawns callback
thread

* Pause_req()
' unblocks
. handler thr

e Thread blocks in kernel

e Pause utility calls ioctl(),
unblocks callback thread

other work

e All threads complete callbacks
and enter kernel

block

= New: All threads restore part of
their states

cleanup

e Run regular application code
from restored state

54

ot normale run handler functions
y ! g

receives signal, runs handlers«& -
and ioctl()

AssessamTeCN
I | barrier |
first thread restores
shared resource

I l registers/signals
registers/signals |
‘reg-"sm
. I | barrier |
e~ '. mark checkpoint as complete

l
4 >

normal execution
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LAM/MPI+BLCR job pause performance

B Job Pause and Migrate U LAM Reboot O Job Restart

[S—
(e

Seconds
O = NN W A OO d 0O
T

8§ = 8 BB 8

BT CG EP FT LU MG SP

e 3.4% overhead over job restart, but
— No LAM reboot overhead
— Transparent continuation of execution

e No re-queue penalty

e Less staging overhead
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Proactive fault tolerance using Xen
virtualization

e Stand-by Xen host (spare
node without guest VM)

PFT
Daemon

PFT
Daemon

Privileged VM Privileged VM|

e Deteriorating health:

— Migrate guest VM to spare
node

e New host generates
unsolicited ARP reply

— Indicates that guest VM has
moved

— ARP tells peers to resend to

. MPL new host
t Task

= Novel fault tolerance scheme
that acts before a failure
impacts a system
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PFT
Daemon

Ganglia )

Privileged VM :

PFT
Daemon

Ganglia )

Privileged VM :
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Proactive fault tolerance (PFT) daemon

e Runs in privileged domain (host) ' PFT Daemon

e [nitialization
— Read safe threshold from config file
— Init connection with IPMI controller
— Obtain/filter set of available sensors

Health monitoring
— Read sensors from IPMI controller
— Periodically sample data

— Trigger load balancing if exceeding
sensor threshold

Ganglia

VM migration
— Select target based on load
— Invoke Xen live migration for VM

Raise Alarm /
Maintenance of
the System

July 17, 2023 Resiliency for High-Performance Computing — Christian Engelmann, Oak Ridge National Laboratory 23/41



VM migration performance impact

Seconds
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e Single node failure: 0.5-5% additional cost over total wall clock time

e Double node failure: 2-8% additional cost over total wall clock time
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HPC reliability analysis and modeling for
prediction and anticipation

e Programming paradigm and system scale impact reliability

o Reliability analysis:
— Estimate mean time to failure (MTTF)
— Obtain failure distribution: Exponential, Weibull, Gamma, ...

e Feedback into fault tolerance schemes for adaptation

negative likelihood value

System reliability (MTTF) for k-of-n AND Survivability (k=n) Parallel exponencial 2653.3
Execution model ; weibull 3532.8
lognormal 2604.3
800 09 gamma 2627.4 . T
= 700 —e— Node MTTF 1000 hrs "
£ 600 —=— Node MTTF 3000 hrs ger e N
E 500 4 Node MTTF 5000 hrs ] N o o )
= Node MTTF 7000 hrs =
g 400 Z 0B .
S 300 +—= g
w =
@200 ~ S 05 .
£ 100 =
[ Z 04 7
o e e e :
10 50 100 500 1000 2000 5000 = TEF data al
. . cooo-95% confidence bounds
Number of Participating Nodes a5 Exponential i
: Weibull
01 Lognormal il
’ Gamma
LOUISIANA TECH J§QAK : e
UNITVERSTIT Yo TIT prmw—— Time Between Failure (TBF)
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Simulation framework for HPC fault

tolerance policies

e Evaluation of fault tolerance
policies
— Reactive only
— Proactive only
— Reactive/proactive combination

e Evaluation of fault tolerance
parameters

— Checkpoint interval
— Prediction accuracy

e Event-based simulation framework
using actual HPC system logs

e Customizable simulated
environment
— Number of active and spare nodes
— Checkpoint and migration overheads

Fine Select FT
Tune policy
parameters A
Global Schema 1 ’>
App schema
Node schema Application
Overhead
FT Policies results
Failure Logs

Completion
of
application

LOUISIANA TECH ¥ OAK

UNITVERSIT Ye VRIPbG(E
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Combination of proactive and reactive
fault tolerance: Simulation example 1
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% Execution
overhead

(o]
[Ye]
‘Check point interval

(hours)

0 90-100
m 80-90
o 70-80
m 60-70
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m 30-40
m 20-30
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e Best: Prediction accuracy >60% and
checkpoint interval 16-32 hours

o Better than only proactive or only reactive

e Results for higher prediction accuracies
and very low checkpoint intervals are
worse than only proactive or only reactive
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Number of processes

125

Active nodes / Spare nodes

125/12

Checkpoint overhead

50 min/Checkpoint

Migration overhead

1 min/Migration

Simulation based on ASCI White system logs
(nodes 1 — 125 and 500-512)
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Combination of proactive and reactive
fault tolerance: Simulation example 2

prediction accuracy

Execution overhead for various checkpoint intervals and different

100

90 @ 90-100

80 W 80-90

0O 70-80

L. N~ o [ee}
% Prediction & « ¥
accuracy

70

B 60-70

-60 0 50-60
%Execution |m 40-50
overhead 0 30-40

020-30

30 H 10-20
20 @ 0-10

50
40

10

Checkpoint interval
(hours)

e Best: Accuracy >60%, interval 16-64h

e 70% and 32 hours:
— 8% gain over reactive only
— 24% gain in over proactive only

e 80% and 32 hours:

— 10% gain over reactive only
— 3% loss over proactive only

Number of processes

125

Active nodes / Spare nodes

125/12

Checkpoint overhead

50 min/Checkpoint

Migration overhead

1 min/Migration

Simulation based on ASCI White system logs
(nodes 126 — 250 and 500-512)
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A holistic resiliency framework concept
for high-performance computing

gl
s
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Example 1: Automatic Runtime
Environment Checkpoint/Restart
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Example 2: Automatic Virtual Machine
Checkpoint/Restart/Migration

Virtualization Scope:
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Example 3: Automatic Application-Level
Checkpoint/Restart

Virtualization Scope:
Application and Run Time Environment
Customization Detection Recovery and

and Guidance ! ! Prevention
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Application | \ T Oty Application

RP : Based Analysis | PP
: ! =

Communication? Policy Configuration, | | Fault, Error and
SystemJ Decision Guidance Trend Notification

Fault Tolerance
Mechanism Invocation

Multiple, Fully

Coordinated Global Policy-Based |
Analysis and Decision Making |7

Event
Distribution

Users, Administrator,
System Services

~

Redundant ﬁ
Service Nodes

Local Policy-Based Analysis

{ Round Robin Heart Beat

Highly Available RAS Engine

July 17, 2023 Resiliency for High-Performance Computing — Christian Engelmann, Oak Ridge National Laboratory 35/41



Example 4: Automatic 0S-Level
Checkpoint/Restart/Migration

Individual
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Customization
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Achievements

e Developed efficient redundancy strategies for critical infrastructure
services in HPC systems

e Added the job pause approach for HPC compute nodes to enhance
reactive fault tolerance

e Implemented threshold-based preemptive migration using system-
level virtualization for proactive fault tolerance

¢ Investigated mean-time to failure characteristics of HPC systems
using reliability analysis

o Simulated and evaluated various fault tolerance strategies using
actual failure data from HPC system logs

— Reactive fault tolerance only
— Proactive fault tolerance only
— Holistic fault tolerance through reactive/proactive combination
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Ongoing work and future plans

e Finishing development on threshold-based process-level preemptive
migration for proactive fault tolerance

e Engaging in prediction-based preemptive migration using for
proactive fault tolerance

e Investigating failure mode, failure detection, and failure distribution
characteristics of HPC systems using reliability analysis

e Plan to further enhance reactive fault tolerance with checkpoint
placement adaptation to actual and predicted system health threats

e Plan to develop a holistic fault tolerance framework that offers the
mix-and-match approach for various fault resilience strategies
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