
THE UNIVERSITY OF READING

Symmetric Active/Active High Availability

for High-Performance Computing System

Services

This thesis is submitted for the degree of

Doctor of Philosophy

School of Systems Engineering

Christian Engelmann

December 2008

Preface

I originally came to Oak Ridge National Laboratory (ORNL), USA, in 2000 to perform

research and development for my Master of Science (MSc) thesis in Computer Science

at the University of Reading, UK. The thesis subject “Distributed Peer-to-Peer Control

for Harness” focused on providing high availability in a distributed system using process

group communication semantics. After I graduated, I returned to ORNL in 2001 and

continued working on several aspects of high availability in distributed systems, such as

the Harness Distributed Virtual Machine (DVM) environment.

In 2004, I transitioned to a more permanent staff member position within ORNL, which

motivated me to engage in further extending my academic background. Fortunately, my

former university offered a part-time Doctor of Philosophy (PhD) degree program for

working-away students. After reconnecting with my former MSc thesis advisor, Prof.

Vassil N. Alexandrov, I formally started studying remotely at the University of Reading,

while performing my research for this PhD thesis at ORNL.

As part of this partnership between ORNL and the University of Reading, I not only

regularly visited the University of Reading, but I also got involved in co-advising MSc

students performing their thesis research and development at ORNL. As an institutional

co-advisor, I placed various development efforts, some of which are part of this PhD

thesis research, in the hands of several very capable students. I also was able to get

a PhD student from Tennessee Technological University, USA, to commit some of his

capabilities to a development effort. Their contributions are appropriately acknowledged

in the respective prototype sections of this thesis.

The research presented in this PhD thesis was primarily motivated by a continued

interest in extending my prior MSc thesis work to providing high availability in high-

performance computing (HPC) environments. While this work focuses on HPC system

head and service nodes and the state-machine replication approach, some of my other re-

search that was conducted in parallel and is not mentioned in this thesis targets advanced

fault tolerance solutions for HPC system compute nodes.

It is my believe that this thesis is a significant step in understanding high availability

aspects in the context of HPC environments and in providing practical state-machine

replication solutions for service high availability.

II

Abstract

In order to address anticipated high failure rates, reliability, availability and serviceability

have become an urgent priority for next-generation high-performance computing (HPC)

systems. This thesis aims to pave the way for highly available HPC systems by focusing on

their most critical components and by reinforcing them with appropriate high availability

solutions. Service components, such as head and service nodes, are the “Achilles heel” of

a HPC system. A failure typically results in a complete system-wide outage. This thesis

targets efficient software state replication mechanisms for service component redundancy

to achieve high availability as well as high performance.

Its methodology relies on defining a modern theoretical foundation for providing service-

level high availability, identifying availability deficiencies of HPC systems, and compar-

ing various service-level high availability methods. This thesis showcases several devel-

oped proof-of-concept prototypes providing high availability for services running on HPC

head and service nodes using the symmetric active/active replication method, i.e., state-

machine replication, to complement prior work in this area using active/standby and

asymmetric active/active configurations.

Presented contributions include a generic taxonomy for service high availability, an

insight into availability deficiencies of HPC systems, and a unified definition of service-level

high availability methods. Further contributions encompass a fully functional symmetric

active/active high availability prototype for a HPC job and resource management service

that does not require modification of service, a fully functional symmetric active/active

high availability prototype for a HPC parallel file system metadata service that offers high

performance, and two preliminary prototypes for a transparent symmetric active/active

replication software framework for client-service and dependent service scenarios that hide

the replication infrastructure from clients and services.

Assuming a mean-time to failure of 5,000 hours for a head or service node, all presented

prototypes improve service availability from 99.285% to 99.995% in a two-node system,

and to 99.99996% with three nodes.

III

Acknowledgements

I would like to thank all those people who made this thesis possible and an enjoyable

experience for me. This dissertation would have been impossible without their encour-

agement and support. Specifically, I would like to express my gratitude to Stephen L.

Scott and Al Geist from Oak Ridge National Laboratory (ORNL) and to my advisor Prof.

Vassil N. Alexandrov from the University of Reading for their continued professional and

personal advice, encouragement, and support.

I would also like to thank my students, Kai Uhlemann (MSc, University of Reading,

2006), Matthias Weber (MSc, University of Reading, 2007), and Li Ou (PhD, Tennessee

Technological University, 2007), for their contributions in the form of developed prototypes

that offered practical proofs of my concepts, but also demonstrated their limitations.

Their prototyping work performed under my guidance was instrumental in the incremental

progress of my PhD thesis research.

Further, I would like to thank all my friends for their continued encouragement and

support. Especially, I would like to thank my family in Germany, which has supported

me over all those years I have been away from my home country.

Finally, this thesis research was sponsored by the Office of Advanced Scientific Com-

puting Research of the U.S. Department of Energy as part of the Forum to Address

Scalable Technology for Runtime and Operating Systems (FAST-OS). The work was per-

formed at ORNL, which is managed by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725. The work by Li Ou from Tennessee Tech University was additionally

sponsored by the Laboratory Directed Research and Development Program of ORNL.

IV

Declaration

I confirm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged. The described developed software has been submitted

separately in form of a CD-ROM.

Christian Engelmann

V

Publications

I have co-authored 2 journal, 6 conference, and 7 workshop publications, co-advised 2

Master of Science (MSc) theses, and co-supervised 1 internship for another Doctor of

Philosophy (PhD) thesis as part of the 4-year research and development effort conducted

in conjunction with this PhD thesis. At the time of submission of this PhD thesis, 1

co-authored journal publication is under review.

Journal Publications

[1] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He. Sym-

metric active/active high availability for high-performance computing system ser-

vices. Journal of Computers (JCP), 1(8):43–54, 2006. Academy Publisher, Oulu,

Finland. ISSN 1796-203X. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann06symmetric.pdf.

[2] Christian Engelmann, Stephen L. Scott, David E. Bernholdt, Narasimha R. Got-

tumukkala, Chokchai Leangsuksun, Jyothish Varma, Chao Wang, Frank Mueller,

Aniruddha G. Shet, and Ponnuswamy Sadayappan. MOLAR: Adaptive runtime

support for high-end computing operating and runtime systems. ACM SIGOPS

Operating Systems Review (OSR), 40(2):63–72, 2006. ACM Press, New York, NY,

USA. ISSN 0163-5980. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann06molar.pdf.

Pending Journal Publications

[1] Xubin He, Li Ou, Christian Engelmann, Xin Chen, and Stephen L. Scott. Symmetric

active/active metadata service for high availability parallel file systems. Journal of

Parallel and Distributed Computing (JPDC), 2008. Elsevier, Amsterdam, The Nether-

lands. ISSN 0743-7315. Submitted, under review.

VI

http://www.csm.ornl.gov/~engelman/publications/engelmann06symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06molar.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06molar.pdf

Conference Publications

Conference Publications

[1] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

Symmetric active/active replication for dependent services. In Proceedings of

the 3rd International Conference on Availability, Reliability and Security (ARES)

2008, pages 260–267, Barcelona, Spain, March 4-7, 2008. IEEE Computer Society.

ISBN 978-0-7695-3102-1. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann08symmetric.pdf.

[2] Li Ou, Christian Engelmann, Xubin He, Xin Chen, and Stephen L. Scott. Sym-

metric active/active metadata service for highly available cluster storage systems.

In Proceedings of the 19th IASTED International Conference on Parallel and Dis-

tributed Computing and Systems (PDCS) 2007, Cambridge, MA, USA, November 19-

21, 2007. ACTA Press, Calgary, AB, Canada. ISBN 978-0-88986-703-1. URL

http://www.csm.ornl.gov/∼engelman/publications/ou07symmetric.pdf.

[3] Li Ou, Xubin He, Christian Engelmann, and Stephen L. Scott. A fast delivery protocol

for total order broadcasting. In Proceedings of the 16th IEEE International Conference

on Computer Communications and Networks (ICCCN) 2007, Honolulu, HI, USA,

August 13-16, 2007. IEEE Computer Society. ISBN 978-1-4244-1251-8, ISSN 1095-

2055. URL http://www.csm.ornl.gov/∼engelman/publications/ou07fast.pdf.

[4] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

On programming models for service-level high availability. In Proceedings of

the 2nd International Conference on Availability, Reliability and Security (ARES)

2007, pages 999–1006, Vienna, Austria, April 10-13, 2007. IEEE Computer Soci-

ety. ISBN 0-7695-2775-2. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann07programming.pdf.

[5] Kai Uhlemann, Christian Engelmann, and Stephen L. Scott. JOSHUA: Symmetric

active/active replication for highly available HPC job and resource management. In

Proceedings of the 8th IEEE International Conference on Cluster Computing (Cluster)

2006, Barcelona, Spain, September 25-28, 2006. IEEE Computer Society. ISBN 1-4244-

0328-6. URL http://www.csm.ornl.gov/∼engelman/publications/uhlemann06joshua.

pdf.

[6] Daniel I. Okunbor, Christian Engelmann, and Stephen L. Scott. Exploring process

groups for reliability, availability and serviceability of terascale computing systems. In

Proceedings of the 2nd International Conference on Computer Science and Information

VII

http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/ou07symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/ou07fast.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07programming.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07programming.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf

Publications

Systems (ICCSIS) 2006, Athens, Greece, June 19-21, 2006. URL http://www.csm.

ornl.gov/∼engelman/publications/okunbor06exploring.pdf.

Workshop Publications

[1] Christian Engelmann, Stephen L. Scott, Chokchai (Box) Leangsuksun, and Xu-

bin (Ben) He. Symmetric active/active high availability for high-performance comput-

ing system services: Accomplishments and limitations. In Proceedings of the 8th IEEE

International Symposium on Cluster Computing and the Grid (CCGrid) 2008: Work-

shop on Resiliency in High Performance Computing (Resilience) 2008, pages 813–818,

Lyon, France, May 19-22, 2008. IEEE Computer Society. ISBN 978-0-7695-3156-

4. URL http://www.csm.ornl.gov/∼engelman/publications/engelmann08symmetric2.

pdf.

[2] Christian Engelmann, Hong H. Ong, and Stephen L. Scott. Middleware in modern high

performance computing system architectures. In Lecture Notes in Computer Science:

Proceedings of the 7th International Conference on Computational Science (ICCS)

2007, Part II: 4th Special Session on Collaborative and Cooperative Environments

(CCE) 2007, volume 4488, pages 784–791, Beijing, China, May 27-30, 2007. Springer

Verlag, Berlin, Germany. ISBN 3-5407-2585-5, ISSN 0302-9743. URL http://www.

csm.ornl.gov/∼engelman/publications/engelmann07middleware.pdf.

[3] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He. Trans-

parent symmetric active/active replication for service-level high availability. In Pro-

ceedings of the 7th IEEE International Symposium on Cluster Computing and the

Grid (CCGrid) 2007: 7th International Workshop on Global and Peer-to-Peer Com-

puting (GP2PC) 2007, pages 755–760, Rio de Janeiro, Brazil, May 14-17, 2007. IEEE

Computer Society. ISBN 0-7695-2833-3. URL http://www.csm.ornl.gov/∼engelman/

publications/engelmann07transparent.pdf.

[4] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He. To-

wards high availability for high-performance computing system services: Accomplish-

ments and limitations. In Proceedings of the High Availability and Performance

Workshop (HAPCW) 2006, in conjunction with the Los Alamos Computer Science

Institute (LACSI) Symposium 2006, Santa Fe, NM, USA, October 17, 2006. URL

http://www.csm.ornl.gov/∼engelman/publications/engelmann06towards.pdf.

[5] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He. Ac-

tive/active replication for highly available HPC system services. In Proceedings of the

VIII

http://www.csm.ornl.gov/~engelman/publications/okunbor06exploring.pdf
http://www.csm.ornl.gov/~engelman/publications/okunbor06exploring.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric2.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric2.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07middleware.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07middleware.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07transparent.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07transparent.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06towards.pdf

Publications

1st International Conference on Availability, Reliability and Security (ARES) 2006: 1st

International Workshop on Frontiers in Availability, Reliability and Security (FARES)

2006, pages 639–645, Vienna, Austria, April 20-22, 2006. IEEE Computer Soci-

ety. ISBN 0-7695-2567-9. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann06active.pdf.

[6] Christian Engelmann and Stephen L. Scott. Concepts for high availability in scien-

tific high-end computing. In Proceedings of the High Availability and Performance

Workshop (HAPCW) 2005, in conjunction with the Los Alamos Computer Science

Institute (LACSI) Symposium 2005, Santa Fe, NM, USA, October 11, 2005. URL

http://www.csm.ornl.gov/∼engelman/publications/engelmann05concepts.pdf.

[7] Christian Engelmann and Stephen L. Scott. High availability for ultra-scale high-end

scientific computing. In Proceedings of the 2nd International Workshop on Operating

Systems, Programming Environments and Management Tools for High-Performance

Computing on Clusters (COSET-2) 2005, in conjunction with the 19th ACM Inter-

national Conference on Supercomputing (ICS) 2005, Cambridge, MA, USA, June 19,

2005. URL http://www.csm.ornl.gov/∼engelman/publications/engelmann05high.pdf.

Co-Advised MSc Theses

[1] Matthias Weber. High availability for the Lustre file system. Master’s thesis, De-

partment of Computer Science, University of Reading, UK, March 14, 2007. URL

http://www.csm.ornl.gov/∼engelman/students/weber07high.pdf. Double diploma in

conjunction with the Department of Engineering I, Technical College for Engineering

and Economics (FHTW) Berlin, Berlin, Germany. Advisors: Prof. Vassil N. Alexan-

drov (University of Reading, Reading, UK); Christian Engelmann (Oak Ridge Na-

tional Laboratory, Oak Ridge, TN, USA).

[2] Kai Uhlemann. High availability for high-end scientific computing. Master’s thesis,

Department of Computer Science, University of Reading, UK, March 6, 2006. URL

http://www.csm.ornl.gov/∼engelman/students/uhlemann06high.pdf. Double diploma

in conjunction with the Department of Engineering I, Technical College for Engi-

neering and Economics (FHTW) Berlin, Berlin, Germany. Advisors: Prof. Vassil N.

Alexandrov (University of Reading, Reading, UK); George A. Geist and Christian

Engelmann (Oak Ridge National Laboratory, Oak Ridge, TN, USA).

IX

http://www.csm.ornl.gov/~engelman/publications/engelmann06active.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06active.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05concepts.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05high.pdf
http://www.csm.ornl.gov/~engelman/students/weber07high.pdf
http://www.csm.ornl.gov/~engelman/students/uhlemann06high.pdf

Co-Supervised PhD Thesis Internships

Co-Supervised PhD Thesis Internships

[1] Li Ou. Design of a High-Performance and High-Availability Distributed Storage

System. PhD thesis, Department of Electrical and Computer Engineering, Ten-

nessee Technological University, Cookeville, TN, USA, December 2006. URL http:

//www.csm.ornl.gov/∼engelman/students/ou06design.pdf. Graduate advisory com-

mittee: Prof. Xubin He, Periasamy K. Rajan, Prof. Roger L. Haggard, Prof. Martha

J. Kosa, Prof. Kwun Lon Ting (Tennessee Technological University, Cookeville, TN,

USA); Prof. Jeffrey Norden (State University of New York, Binghamton, NY, USA),

and Stephen L. Scott (Oak Ridge National Laboratory, Oak Ridge, TN, USA). In-

ternship supervisors: Christian Engelmann and Stephen L. Scott (Oak Ridge National

Laboratory, Oak Ridge, TN, USA).

X

http://www.csm.ornl.gov/~engelman/students/ou06design.pdf
http://www.csm.ornl.gov/~engelman/students/ou06design.pdf

Contents

1 Introduction 1

1.1 Background . 3

1.2 Motivation . 4

1.3 Objectives . 6

1.4 Methodology . 7

1.5 Contribution . 9

1.6 Structure . 10

1.7 Summary . 11

2 Previous Work 12

2.1 Head and Service Node Solutions . 12

2.1.1 Active/Standby using Shared Storage 12

Simple Linux Utility for Resource Management 14

Sun Grid Engine . 15

Parallel Virtual File System Metadata Service 15

Lustre Metadata Service . 15

2.1.2 Active/Standby Replication . 15

High Availability Open Source Cluster Application Resources . . . 16

Portable Batch System Professional for Cray Platforms 17

Moab Workload Manager . 17

2.1.3 High Availability Clustering . 18

High Availability Open Source Cluster Application Resources . . . 19

2.1.4 Node Fencing . 19

2.2 Compute Node Solutions . 19

2.2.1 Checkpoint/Restart . 20

Berkeley Lab Checkpoint Restart 20

Transparent Incremental Checkpointing at Kernel-level 21

DejaVu . 21

Diskless Checkpointing . 22

2.2.2 Message Logging . 22

XI

Contents

MPICH-V . 22

2.2.3 Algorithm-Based Fault Tolerance 23

Fault-Tolerant Message Passing Interface 23

Open Message Passing Interface . 24

Data Redundancy . 24

Computational Redundancy . 24

2.2.4 Proactive Fault Avoidance . 25

2.3 Distributed Systems Solutions . 25

2.3.1 State-Machine Replication . 26

2.3.2 Process Group Communication . 26

Total Order Broadcast Algorithms 27

2.3.3 Virtual Synchrony . 28

Isis . 28

Horus . 29

Ensemble . 29

Transis . 30

Totem . 30

Spread . 31

Object Group Pattern, Orbix+Isis, and Electra 31

2.3.4 Distributed Control . 32

2.3.5 Practical Byzantine Fault Tolerance 32

Byzantine Fault Tolerance with Abstract Specification Encapsulation 33

Thema . 33

Zyzzyva . 33

Low-Overhead Byzantine Fault-Tolerant Storage 33

2.4 Information Technology and Telecommunication Industry Solutions 34

2.4.1 Hewlett-Packard Serviceguard . 34

2.4.2 RSF-1 . 34

2.4.3 IBM High Availability Cluster Multiprocessing 36

2.4.4 Veritas Cluster Server . 36

2.4.5 Solaris Cluster . 37

2.4.6 Microsoft Cluster Server . 37

2.4.7 Red Hat Cluster Suite . 37

2.4.8 LifeKeeper . 38

2.4.9 Linux FailSafe . 38

2.4.10 Linuxha.net . 39

2.4.11 Kimberlite . 39

XII

Contents

2.4.12 Transparent Transmission Control Protocol Active Replication . . . 39

2.4.13 Stratus Continuous Processing . 40

2.4.14 Open Application Interface Specification Standards Based Cluster

Framework . 40

2.4.15 System-level Virtualization . 41

Xen . 41

VMware . 42

High Availability in a Virtualised Environment 42

2.5 Summary . 43

3 Taxonomy, Architecture, and Methods 44

3.1 High Availability Taxonomy . 44

3.1.1 Faults, Failures, and Outages . 44

3.1.2 Reliability Metrics . 46

3.1.3 Availability Domains and Configurations 48

Basic Availability . 48

High Availability . 48

Continuous Availability . 50

3.1.4 Availability Metrics . 50

3.1.5 Fail-Stop . 53

3.2 System Architecture . 53

3.2.1 HPC System Architectures . 53

3.2.2 Availability Deficiencies . 56

Critical System Services . 57

Head Node . 58

Service Nodes . 58

Partition Service Nodes . 58

Compute Nodes . 59

Partition Compute Nodes . 59

System Scale . 60

3.3 High Availability Methods . 61

3.3.1 Service Model . 61

3.3.2 Active/Standby Replication . 63

3.3.3 Asymmetric Active/Active Replication 66

3.3.4 Symmetric Active/Active Replication 67

3.3.5 Comparison . 69

3.4 Summary . 70

XIII

Contents

4 Prototypes 71

4.1 Symmetric Active/Active High Availability Framework Concept 71

4.1.1 Communication Drivers . 72

4.1.2 Group Communication System . 73

4.1.3 Virtual Synchrony Runtime Environment 73

4.1.4 Applications/Services . 73

4.1.5 Approach . 73

4.2 External Symmetric Active/Active Replication for the HPC Job and Re-

source Management Service . 74

4.2.1 Objectives . 75

4.2.2 Technical Approach . 76

4.2.3 Architecture and Design . 77

Group Communication System . 78

Software Design . 78

Failure-Free Operation . 79

Failure Handling . 80

4.2.4 Test Results . 81

4.2.5 Conclusions . 84

4.3 Internal Symmetric Active/Active Replication for the HPC Parallel File

System Metadata Service . 84

4.3.1 Objectives . 85

4.3.2 Technical Approach . 86

4.3.3 Architecture and Design . 87

Group Communication System . 87

Total Order Broadcast in Transis 88

Notation and Definition . 89

Fast Delivery Protocol . 89

Software Design . 91

Failure-Free Operation . 91

Failure Handling . 93

4.3.4 Test Results . 94

Fast Delivery Protocol . 94

Symmetric Active/Active Metadata Service 95

4.3.5 Conclusions . 97

4.4 Transparent Symmetric Active/Active Replication Framework for Services 98

4.4.1 Objectives . 98

4.4.2 Technical Approach . 99

XIV

Contents

4.4.3 Architecture and Design . 101

Failure Handling . 104

4.4.4 Test Results . 105

4.4.5 Conclusions . 107

4.5 Transparent Symmetric Active/Active Replication Framework for Depen-

dent Services . 108

4.5.1 Objectives . 109

4.5.2 Technical Approach . 109

4.5.3 Architecture and Design . 110

4.5.4 Test Results . 113

4.5.5 Conclusions . 116

4.6 Summary . 117

5 Summary, Conclusions, and Future Work 119

5.1 Summary . 119

5.2 Conclusions . 122

5.3 Future Work . 124

6 References 126

A Appendix 152

A.1 Detailed Prototype Test Results . 152

A.1.1 External Symmetric Active/Active Replication for the HPC Job

and Resource Management Service 152

A.1.2 Internal Symmetric Active/Active Replication for the HPC Parallel

File System Metadata Service . 155

A.1.3 Transparent Symmetric Active/Active Replication Framework for

Services . 159

A.1.4 Transparent Symmetric Active/Active Replication Framework for

Dependent Services . 161

XV

List of Figures

1.1 Growth of HPC system scale in the Top 500 List of Supercomputer Sites

during the last decade (in number of processors/systems) 1

2.1 Active/standby HPC head nodes using shared storage 13

2.2 Active/standby HPC head nodes using replication 16

2.3 Clustered HPC head nodes with standby (2 + 1) 18

3.1 The “bathtub curve”: Failure rate for a given large enough population of

identical components . 46

3.2 Traditional Beowulf cluster system architecture 54

3.3 Generic modern HPC system architecture 54

3.4 Generic modern HPC system architecture with compute node partitions . . 55

3.5 Traditional fat vs. modern lean compute node software architecture 55

3.6 Generic service model . 61

3.7 Active/standby method . 64

3.8 Asymmetric active/active method . 66

3.9 Symmetric active/active method . 67

4.1 Symmetric active/active high availability framework concept 72

4.2 Symmetric active/active replication architecture using external replication

by service interface utilisation . 76

4.3 External replication architecture of the symmetric active/active HPC job

and resource management service . 77

4.4 External replication design of the symmetric active/active HPC job and

resource management service . 79

4.5 Normalised job submission latency performance of the symmetric active/ac-

tive HPC job and resource management service prototype 82

4.6 Normalised job submission throughput performance of the symmetric ac-

tive/active HPC job and resource management service prototype 82

4.7 Availability of the symmetric active/active HPC job and resource manage-

ment service prototype . 83

XVI

List of Figures

4.8 Symmetric active/active replication architecture using internal replication

by service modification/adaptation . 87

4.9 Internal replication architecture of the symmetric active/active HPC par-

allel file system metadata service . 88

4.10 Fast delivery protocol for the Transis group communication system 90

4.11 Internal replication design of the symmetric active/active HPC parallel file

system metadata service . 92

4.12 Query and request handling of the symmetric active/active HPC parallel

file system metadata service . 92

4.13 Latency performance of the fast delivery protocol 95

4.14 Normalised request latency performance of the symmetric active/active

HPC parallel file system metadata service 96

4.15 Normalised query throughput performance of the symmetric active/active

HPC parallel file system metadata service 96

4.16 Normalised request throughput performance of the symmetric active/active

HPC parallel file system metadata service 97

4.17 Symmetric active/active replication software architecture with non-trans-

parent client connection fail-over . 100

4.18 Symmetric active/active replication software architecture with transparent

client connection fail-over . 102

4.19 Example: Transparent external replication design of the symmetric ac-

tive/active HPC job and resource management service 103

4.20 Example: Transparent internal replication design of the symmetric ac-

tive/active HPC parallel file system metadata service 104

4.21 Normalised message ping-pong (emulated remote procedure call) latency

performance of the transparent symmetric active/active replication frame-

work using external replication . 106

4.22 Normalised message ping-pong (emulated emulated remote procedure call)

bandwidth performance of the transparent symmetric active/active repli-

cation framework using external replication 106

4.23 Transparent symmetric active/active replication framework architecture for

client/service scenarios . 110

4.24 Transparent symmetric active/active replication framework architecture for

client/client+service/service scenarios . 112

4.25 Transparent symmetric active/active replication framework architecture for

client/2 services and service/service scenarios 112

XVII

List of Figures

4.26 Example: Transparent symmetric active/active replication framework ar-

chitecture for the Lustre cluster file system 113

4.27 Normalised message ping-pong (emulated emulated remote procedure call)

latency performance of the transparent symmetric active/active replication

framework in a serial virtual communication layer configuration 115

4.28 Normalised message ping-pong (emulated emulated remote procedure call)

bandwidth performance of the transparent symmetric active/active repli-

cation framework in a serial virtual communication layer configuration . . 115

A.1 Job submission latency performance of the symmetric active/active HPC

job and resource management service prototype 152

A.2 Job submission throughput performance of the symmetric active/active

HPC job and resource management service prototype 153

A.3 Normalized job submission throughput performance of the symmetric ac-

tive/active HPC job and resource management service prototype 153

A.4 Job submission throughput performance of the symmetric active/active

HPC job and resource management service prototype 154

A.5 Request latency performance of the symmetric active/active HPC parallel

file system metadata service . 156

A.6 Query throughput performance of the symmetric active/active HPC par-

allel file system metadata service . 157

A.7 Request throughput performance of the symmetric active/active HPC par-

allel file system metadata service . 158

A.8 Message ping-pong (emulated emulated remote procedure call) latency per-

formance of the transparent symmetric active/active replication framework

using external replication . 159

A.9 Message ping-pong (emulated emulated remote procedure call) bandwidth

performance of the transparent symmetric active/active replication frame-

work using external replication . 160

A.10 Message ping-pong (emulated emulated remote procedure call) latency per-

formance of the transparent symmetric active/active replication framework

in a serial virtual communication layer configuration 161

A.11 Message ping-pong (emulated emulated remote procedure call) bandwidth

performance of the transparent symmetric active/active replication frame-

work in a serial virtual communication layer configuration 162

XVIII

List of Tables

1.1 Publicly available past and current HPC system availability statistics . . . 4

2.1 Requirements and features comparison between head and service node high

availability solutions . 13

2.2 Requirements and features comparison between information technology and

telecommunication industry service high availability products 35

3.1 Availability measured by the “nines” . 51

3.2 Comparison of replication methods . 69

4.1 Transaction control module locking table of the symmetric active/active

HPC parallel file system metadata service 93

A.1 Job submission latency performance of the symmetric active/active HPC

job and resource management service prototype 152

A.2 Job submission throughput performance of the symmetric active/active

HPC job and resource management service prototype 153

A.3 Availability of the symmetric active/active HPC job and resource manage-

ment service prototype . 154

A.4 Latency performance of the fast-delivery protocol 155

A.5 Request latency performance of the symmetric active/active HPC parallel

file system metadata service . 156

A.6 Query throughput performance of the symmetric active/active HPC par-

allel file system metadata service . 157

A.7 Request throughput performance of the symmetric active/active HPC par-

allel file system metadata service . 158

A.8 Message ping-pong (emulated emulated remote procedure call) latency per-

formance of the transparent symmetric active/active replication framework

using external replication . 159

XIX

List of Tables

A.9 Message ping-pong (emulated emulated remote procedure call) bandwidth

performance of the transparent symmetric active/active replication frame-

work using external replication . 160

A.10 Message ping-pong (emulated emulated remote procedure call) latency per-

formance of the transparent symmetric active/active replication framework

in a serial virtual communication layer configuration 161

A.11 Message ping-pong (emulated remote procedure call) bandwidth perfor-

mance of the transparent symmetric active/active replication framework

in a serial virtual communication layer configuration 162

XX

Glossary

AIS Application Interface Specification

API Application Programming Interface

ASCI Advanced Simulation and Computing Initiative

BASE Byzantine Fault Tolerance with Abstract Specification Encapsulation

BLCR Berkeley Lab Checkpoint Restart

CCSM Community Climate System Model

CNK Compute Node Kernel

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

DAS Direct Attached Storage

DMR Dual Modular Redundancy

DomU Privileged Domain

DomU Unprivileged Domain

DRBD Distributed Replicated Block Device

DVM Distributed Virtual Machine

ECC Error-Correcting Code

FPGA Field-Programmable Gate Array

FT-FW Fault-Tolerant Firewall

FT-MPI Fault-Tolerant Message Passing Interface

HA-OSCAR High Availability Open Source Cluster Application Resources

XXI

Glossary

HAVEN High Availability in a Virtualised Environment

HEC High-End Computing

HP Hewlett-Packard

HPC High-Performance Computing

I/O Input/Output

Id Identifier

IP Internet Protocol

IPC Inter-Process Communication

IPCC Intergovernmental Panel on Climate Change

IT Information Technology

LAM Local Area Multicomputer

MDS Metadata Service

MPI Message Passing Interface

MPP Massively Parallel Processing

MSc Master of Science

MTBF Mean-Time Between Failures

MTTF Mean-Time To Failure

MTTR Mean-Time To Recover

NAS Network Attached Storage

NASA National Aeronautics and Space Administration

NFS Network File System

Open MPI Open Message Passing Interface

OpenAIS Open Application Interface Specification

OS Operating System

XXII

Glossary

OSS Object Storage Service

PBS Portable Batch System

PBS Pro Portable Batch System Professional

PDF Probability Density Function

PE Processing Element

PFlop/s 1015 Floating Point Operations Per Second

PhD Doctor of Philosophy

POSIX Portable Operating System Interface

PVFS Parallel Virtual File System

PVM Parallel Virtual Machine

RAID Redundant Array of Independent Drives

RAS Reliability, Availability and Serviceability

RMI Remote Method Invocation

RPC Remote Procedure Call

SCSI Small Computer System Interface

SGE Sun Grid Engine

SLURM Simple Linux Utility for Resource Management

SOA Service-Oriented Architecture

SSI Single-System Image

STONITH Shoot The Other Node In The Head, i.e., node fencing

T2CP-AR Transparent Transmission Control Protocol Active Replication

TCP Transmission Control Protocol

TICK Transparent Incremental Checkpointing at Kernel-level

TORQUE Terascale Open-Source Resource and QUEue Manager

XXIII

Glossary

TSI Terascale Supernova Initiative

UNEP United Nations Environment Programme

VCL Virtual Communication Layer

VM Virtual Machine

WMO World Meteorological Organisation

XXIV

1 Introduction

During the last decade, scientific high-performance computing (HPC) has become an im-

portant tool for scientists world-wide to understand problems, such as in climate dynam-

ics, nuclear astrophysics, fusion energy, nanotechnology, and human genomics. Computer

simulations of real-world and theoretical experiments exploiting multi-processor paral-

lelism on a large scale using mathematical models have provided us with the advantage to

gain scientific knowledge without the immediate need or capability of performing physi-

cal experiments. Furthermore, HPC has played a significant role in scientific engineering

applications, where computer simulations have aided the design and testing of electronic

components, machinery, cars, air planes, and buildings.

Every year, new larger-scale HPC systems emerge on the market with better raw per-

formance capabilities. Over the last decade, the performance increase of the world-wide

fastest HPC systems was not only aided by advances in network and processor design and

manufacturing, but also by employing more and more processors within a single closely-

coupled HPC system. The Top 500 List of Supercomputer Sites clearly documents this

trend toward massively parallel computing systems (Figure 1.1) [1].

(a) November 1997 (b) November 2007

Figure 1.1: Growth of HPC system scale in the Top 500 List of Supercomputer Sites
during the last decade (in number of processors/systems) [1]

This growth in system scale poses a substantial challenge for system software and scien-

tific applications with respect to reliability, availability and serviceability (RAS). Although

the mean-time to failure (MTTF) for each individual HPC system component, e.g., pro-

cessor, memory module, and network interface, may be above typical consumer product

1

1 Introduction

standard, the combined probability of failure for the overall system scales proportionally

with the number of interdependent components. Recent empirical studies [2, 3] confirm

that the enormous quantity of components results in a much lower MTTF for the over-

all system, causing more frequent system-wide interruptions than displayed by previous,

smaller-scale HPC systems.

As a result, HPC centres may artificially set allowable job run time for their HPC sys-

tems to very low numbers in order to require a scientific application to store intermediate

results, essentially a forced checkpoint, as insurance against lost computation time on

long running jobs. However, this forced checkpoint itself wastes valuable computation

time and resources as it does not produce scientific results.

In contrast to the loss of HPC system availability caused by low MTTF and resulting

frequent failure-recovery cycles, the demand for continuous HPC system availability has

risen dramatically with the recent trend toward capability computing, which drives the

race for scientific discovery by running applications on the fastest machines available while

desiring significant amounts of time (weeks and months) without interruption. These

extreme-scale HPC machines must be able to run in the event of frequent failures in such

a manner that the capability is not severely degraded.

Both, the telecommunication and the general information technology (IT) communities,

have dealt with these issues for their particular solutions and have been able to provide

high-level RAS using traditional high availability concepts, such as active/standby, for

some time now. It is time for the HPC community to follow the IT and telecommunication

industry lead and provide high-level RAS for extreme-scale HPC systems.

This thesis aims to pave the way for highly available extreme-scale HPC systems by

focusing on their most critical system components and by reinforcing them with appro-

priate high availability solutions. Service components, such as head and service nodes,

are the “Achilles heel” of a HPC system. A failure typically results in a complete system-

wide outage until repair. This research effort targets efficient software state replication

mechanisms for providing redundancy of such service components in extreme-scale HPC

systems to achieve high availability as well as high performance.

The next Sections 1.1-1.5 provide a more detailed description of the overall research

background, motivation, objectives, methodology, and contribution, followed by a short

description of the overall structure of this thesis in Section 1.6. Section 1.7 gives a brief

summary of this Chapter.

2

1 Introduction

1.1 Background

Scientific high-performance computing has its historical roots in parallel and distributed

computing, which is based on the general idea of solving a problem faster using more than

one processor [4]. While distributed computing [5] takes a decentralised approach, parallel

computing [6] uses the opposite centralised concept. Both are extremes in a spectrum of

concurrent computing with everything in-between. For example, a distributed computer

system may be loosely coupled, but it is parallel.

Parallel and distributed computing on a large scale is commonly referred to as high-

performance computing or supercomputing. Today‘s supercomputers are typically parallel

architectures that have some distributed features. They scale from a few hundred pro-

cessors to more than a hundred thousand. The elite of supercomputing systems, i.e.,

the fastest systems in the world that appear in the upper ranks of the Top 500 List of

Supercomputer Sites [1], are typically referred to as high-end computing (HEC) systems,

or extreme-scale HEC systems due to the number of processors they employ.

Scientific computing [7] is the field of study concerned with constructing mathematical

models and numerical solution techniques, and using computers to analyse and solve scien-

tific and engineering problems. Computational science combines domain-specific science,

computational methods, parallel algorithms, and collaboration tools to solve problems

in various scientific disciplines, such as in climate dynamics, nuclear astrophysics, fusion

energy, nanotechnology, and human genomics. Extreme-scale scientific high-end comput-

ing exploits multi-processor parallelism on a large scale for scientific discovery using the

fastest machines available for days, weeks, or even months at a time.

For example, the Community Climate System Model (CCSM) [8] is a fully-coupled,

global climate model that provides state-of-the-art computer simulations of the Earth‘s

past, present, and future climate states. The results of climate change scenarios simulated

with the CCSM are included in reports to the Intergovernmental Panel on Climate Change

(IPCC), which has been established by the World Meteorological Organisation (WMO)

and United Nations Environment Programme (UNEP) to assess scientific, technical and

socio-economic information relevant for the understanding of climate change, its potential

impacts and options for adaptation and mitigation. The IPCC has been awarded the

2007 Nobel Peace Prize, together with former U.S. Vice President Al Gore, for creating

“an ever-broader informed consensus about the connection between human activities and

global warming” [9–11].

Another example is the Terascale Supernova Initiative (TSI) [12], a multidisciplinary

collaborative project that aims to develop models for core collapse supernovae and en-

abling technologies in radiation transport, radiation hydrodynamics, nuclear structure,

3

1 Introduction

linear systems and eigenvalue solution, and collaborative visualisation. Recent break-

through accomplishments include a series of 3-dimensional hydrodynamic simulations that

show the extent of a supernova shock and the birth of a neutron star.

Both scientific applications, the CCSM and the TSI, have been allocated millions of

hours of processor time on the Jaguar Cray XT system [13] at the National Center for

Computational Sciences [14] located at Oak Ridge National Laboratory in Oak Ridge,

Tennessee, USA. Since this system is equipped with 11,508 dual-core AMD Opteron pro-

cessors, an application run over the full system would take several weeks. For the year

2007 alone, the CCSM has been allocated 4,000,000 hours of processor time equivalent

to 2 weeks and 6 hours of uninterrupted full system usage, and the TSI been allocated

7,000,000 hours of processor time, i.e., 3 weeks, 4 days, and 9 hours.

1.2 Motivation

Recent trends in HPC system design and architecture (see Top 500 List of Supercom-

puter Sites [1], and Figure 1.1 shown previously) have clearly indicated future increases

in performance, in excess of those resulting from improvements in single-processor per-

formance, will be achieved through corresponding increases in system scale, i.e., using

a significantly larger component count. As the raw computational performance of the

world’s fastest HPC systems increases to next-generation extreme-scale capability and

beyond, their number of computational, networking, and storage components will grow

from today‘s 10,000 to several 100,000 through tomorrow‘s 1,000,000 and beyond.

With only very few exceptions, the availability of recently installed systems (Table 1.1)

has been lower in comparison to the same deployment phase of their predecessors. In some

cases the overall system mean-time between failures (MTBF) is as low as 6.5 hours. Based

on personal communication with various HPC centre personnel and publicly available

statistics [15–19], the overall system availability of currently operational HPC systems is

roughly above 96% and below 99%.

Installed System Processors MTBF Measured Source
2000 ASCI White 8,192 40.0h 2002 [15]
2001 PSC Lemieux 3,016 9.7h 2004 [16]
2002 Seaborg 6,656 351.0h 2007 [17]
2002 ASCI Q 8,192 6.5h 2002 [18]
2003 Google 15,000 1.2h 2004 [16]
2006 Blue Gene/L 131,072 147.8h 2006 [19]

Table 1.1: Publicly available past and current HPC system availability statistics

4

1 Introduction

However, these availability statistics are not comparable due to missing strict speci-

fications for measuring availability metrics for HPC systems. For example, most HPC

centres measure the MTBF without including the application recovery time in contrast

to the more strict definition for MTBF as the actual time spent on useful computation

between full system recovery and the next failure. The same HPC system with and with-

out high-bandwith networked file system support would achieve the same MTBF, since

parallel application restart time, i.e., the time it takes to load the last checkpoint from

the file system to all compute nodes, is not included. Additionally, the time spent on

fault tolerance measures, such as writing a checkpoint from all compute nodes to the file

system, is typically not included as planned downtime either.

In order to provide accurate and comparable availability statistics, a RAS taxonomy

standard for HPC systems is needed that incorporates HPC system hardware and software

architectures as well as user-, centre-, and application-specific use cases.

A recent study [20] performed at Los Alamos National Laboratory estimates the MTBF

for a next-generation extreme-scale HPC system. Extrapolating from current HPC system

performance, scale, and overall system MTTF, this study suggests that the MTBF will fall

to only 1.25 hours of useful computation on a 1 PFlop/s (1015 floating point operations per

second) next-generation supercomputer. Another related study from Los Alamos National

Laboratory [21] shows that a Cray XD1 system [22] with the same number of processors

as the Advanced Simulation and Computing Initiative (ASCI) Q system [23], with almost

18,000 field-programmable gate arrays (FPGAs) and 16,500 GB of error-correcting code

(ECC) protected memory, would experience one non-recoverable radiation-induced soft

error (double-bit memory or single-bit logic error) once every 1.5 hours, if located at Los

Alamos, New Mexico, USA, i.e., at 7,200 feet altitude.

The first Los Alamos National Laboratory study [20] also estimates the overhead of

the current state-of-the-art fault tolerance strategy, checkpoint/restart, for a 1 PFlop/s

system, showing that a computational job that could normally complete in 100 hours

in a failure-free environment will actually take 251 hours to complete, once the cost of

checkpointing and failure recovery is included. What this analysis implies is startling:

more than 60% of the processing power (and investment) on these extreme-scale HPC

systems may be lost due to the overhead of dealing with reliability issues, unless something

happens to drastically change the current course.

In order to provide high availability as well as high performance to future-generation

extreme-scale HPC systems, research and development in advanced high availability and

fault tolerance technologies for HPC is needed.

5

1 Introduction

1.3 Objectives

There are two major aspects in providing high availability for HPC systems. The first

considers head and service nodes. A HPC system is typically controlled using a single head

node, which stores state informnation about the entire system, provides important system-

wide services, and acts as a gateway between the compute nodes inside the system and

the outside world. Service nodes typically offload specific head node services to provide

for better scalability and performance. The second aspect involves compute nodes, which

perform the actual scientific computation. While there is only one head node in a HPC

system, there may be hundreds of service nodes, and many more compute nodes. For

example, the Jaguar Cray XT system [13] has 11,706 nodes: one head node, 197 service

nodes, and 11,508 compute nodes.

Each of these two aspects in providing high availability for HPC systems requires a

separate approach as the purpose and scale of head and service nodes are significantly

different to the purpose and scale of compute nodes. Solutions that may be applicable to

head and service nodes, such as node redundancy, may not suitable for compute nodes

due to their resource requirement and performance impact at scale.

This thesis focuses on the aspect of providing high availability for HPC system head

and service nodes, as these components are the “Achilles heel” of a HPC system. They are

the command and control backbone. A failure typically results in a complete system-wide

outage until repair. Moreover, high availability solutions for compute nodes rely on the

functionality of these nodes for fault-tolerant communication and reconfiguration.

When this research work started in 2004, there were only a small number of high avail-

ability solutions for HPC system head and service nodes (Section 2.1). Most of them

focused on an active/standby node redundancy strategy with some or full service state

replication. Other previous research in providing high availability in distributed systems

using state-machine replication, virtual synchrony, and process group communication sys-

tems has been performed in the early-to-mid 1990s (Section 2.3).

This work aims to combine the research efforts in high availability for distributed sys-

tems and in high availability for HPC system head and service nodes, and to extend them

to provide the highest level of availability for HPC system head and service nodes. This

thesis research targets efficient software state replication mechanisms for the redundancy

of services running on HPC head and service nodes to achieve high availability as well

as high performance. Moreover, it is its intend to offer a theoretical foundation for head

and service node high availability in HPC as part of the greater effort in defining a HPC

RAS taxonomy standard. This work further aims at offering practical proof-of-concept

prototype solutions of highly available HPC head and service nodes. This thesis:

6

1 Introduction

• examines past and ongoing efforts in providing high availability for head, service,

and compute nodes in HPC systems, for distributed systems, and for services in the

IT and telecommunication industry

• provides a high availability taxonomy suitable for HPC head and service nodes

• generalises HPC system architectures and identifies specific availability deficiencies

• defines the methods for providing high availability for HPC head and service nodes

• designs, implements, and tests the following proof-of-concept prototypes for provid-

ing high availability for HPC head and service nodes:

– a fully functional proof-of-concept prototype using external symmetric active/

active replication for the HPC job and resource management service

– a fully functional proof-of-concept prototype using internal symmetric active/

active replication for the HPC parallel file system metadata service

– a preliminary proof-of-concept prototype using external and internal trans-

parent symmetric active/active replication for a service-level high availability

software framework

– a preliminary proof-of-concept prototype using external and internal trans-

parent symmetric active/active replication for a service-level high availability

software framework with support for dependent services

1.4 Methodology

This research combines previous efforts in service-level high availability (Chapter 2) by

providing a generic high availability taxonomy and extending it to the needs of high

availability and high performance within HPC environments (Section 3.1). This thesis

introduces new terms, such as asymmetric active/active and symmetric active/active, to

resolve existing ambiguities of existing terms, such as active/active. It also clearly defines

the various configurations for achieving high availability of service, such as active/standby,

asymmetric active/active and symmetric active/active.

This thesis further examines current HPC system architectures in detail (Section 3.2).

A more generalised HPC system architecture abstraction is introduced to allow the iden-

tification of architectural availability deficiencies. HPC system services are categorised

into critical and non-critical to describe their impact on overall system availability. HPC

system nodes are categorised into single points of failure and single points of control to

7

1 Introduction

pinpoint their involvement in system failures, to describe their impact on overall system

availability, and to identify their individual need for a high availability solution.

Based on the introduced extended high availability taxonomy, this thesis defines vari-

ous methods for providing service-level high availability (Section 3.3) for identified HPC

system head and service nodes using a conceptual service model and detailed descriptions

of service-level high availability methods and their properties. A theoretical comparison

of these methods with regards to their performance overhead and provided availability is

offered, and similarities and differences in their programming interfaces are examined.

This thesis further details a series of developed proof-of-concept prototypes (Chapter 4)

for providing high availability for HPC head and service nodes using the symmetric ac-

tive/active replication method, i.e., state-machine replication, to complement prior work

in this area using active/standby and asymmetric active/active configurations. In addi-

tion to specific objectives and intermediate conclusions, various architecture, design and

performance aspects are discussed for each prototype implementation.

The developed proof-of-concept prototypes centre around a multi-layered symmetric ac-

tive/active high availability framework concept that coordinates individual solutions with

regards to their respective field, and offers a modular approach that allows for adaptation

to system properties and application needs.

The first proof-of-concept prototype (Section 4.2) provides symmetric active/active high

availability for the most important HPC system service running on the head node, the

job and resource management service, also commonly referred to as batch job scheduler

or simply the scheduler. This fully functional prototype relies on the concept of external

symmetric active/active replication, which avoids modification of existing code of a com-

plex service, such as the HPC job and resource management service, by wrapping a it

into a virtually synchronous environment. This proof-of-concept prototype also involves

a distributed mutual exclusion mechanism that is needed to unify replicated output.

The second proof-of-concept prototype (Section 4.3) offers symmetric active/active high

availability for one of the second most important HPC system services running on the

head node of small-scale HPC systems and on a dedicated service node in large-scale

HPC systems, the latency-sensitive metadata service of the parallel file system. This fully

functional prototype relies on the concept of internal symmetric active/active replication,

which requires modification of the service and therefore may yield better performance.

The third proof-of-concept prototype (Section 4.4) is a transparent symmetric ac-

tive/active replication software framework for service-level high availability in client-

service scenarios. This preliminary proof-of-concept prototype completely hides the repli-

cation infrastructure within a virtual communication layer formed by interceptor processes

in case of external replication or adaptor components in case of internal replication.

8

1 Introduction

The fourth proof-of-concept prototype (Section 4.5) is a transparent symmetric ac-

tive/active replication software framework for service-level high availability in client-

service as well as dependent service scenarios. By using a high-level abstraction, this pre-

liminary proof-of-concept prototype, in addition to normal dependencies between clients

and services, maps decompositions of service-to-service dependencies into respective or-

thogonal dependencies between clients and services onto a replication infrastructure con-

sisting of multiple virtual communication layers.

1.5 Contribution

This thesis research yields several major contributions to the field of service-level high

availability in general and to high-level HPC system RAS in specific:

1. This thesis offers a modern theoretical foundation for providing service-level high

availability that includes traditional redundancy strategies, such as various ac-

tive/standby configurations, as well as advanced redundancy strategies based on

state-machine replication. Existing ambiguities of terms are resolved and the con-

cept of state-machine replication using virtual synchrony is integrated.

2. This work provides an insight into specific availability deficiencies of HPC system

hardware and software architectures with respect to critical system services, single

points of failures, and single points of control. It also clearly identifies two different

failure modes of HPC systems: (1) system-wide outage until repair, and (2) partial

system outage in degraded operating mode.

3. This research gives a unified definition of various service-level high availability meth-

ods using a conceptual service model. Individual replication algorithms are de-

scribed in detail, and their performance and provided availability are analysed. The

comparison of traditional and advanced redundancy strategies clearly shows the

trade-off between performance impact and achieved availability.

4. The developed fully-functional proof-of-concept prototype for providing symmetric

active/active high availability for the job and resource management service is the

first of its kind in high-level HPC system RAS. The concept of external replication is

a new contribution to the field of service-level high availability, which allows service

state replication without modifying the service itself. With a node MTTF of 5,000

hours, this solution improves service availability from 99.285% to 99.994% in a two-

node system, and to 99.99996% with three nodes. As a great proof-of-concept value,

9

1 Introduction

this prototype demonstrates a distributed mutual exclusion using a process group

communication system.

5. The implemented fully-functional proof-of-concept solution for providing symmetric

active/active high availability for the metadata service of the parallel file system

is the second of its kind in high-level HPC system RAS. The concept of internal

replication is a new contribution to the field of service-level high availability, which

permits tight integration of service state replication mechanisms with the service for

better performance. As a great proof-of-concept value, this prototype demonstrates

high performance of a state-machine replication solution.

6. The developed preliminary proof-of-concept prototypes for a transparent symmet-

ric active/active replication software framework for client-service and dependent

service scenarios are significant contributions to the field of service-level high avail-

ability. Both prototypes demonstrate for the first time that a state-machine repli-

cation infrastructure that can be deployed transparently (external replication) or

semi-transparently (internal replication), completely or partially invisible to clients

and services. Moreover, the replication infrastructure is able to deal with service

interdependencies by decomposing service-to-service dependencies into respective

orthogonal client-service dependencies.

1.6 Structure

This thesis is structured as follows. While this Chapter 1 contains a more detailed de-

scription of the overall research background, motivation, objectives, methodology, and

contribution, the following Chapter 2 evaluates previous work within this context. Chap-

ter 3 lays the theoretical ground work by defining a modern service-level high availability

taxonomy, describing existing availability deficiencies in HPC system architectures using

a generalised model, and detailing methods for providing high availability to services run-

ning on HPC system head and service nodes. Chapter 4 presents designs and test results of

various developed proof-of-concept prototypes for providing symmetric active/active high

availability to services on head and service nodes. While each of these chapters finishes

with an individual summary, Chapter 5 concludes this thesis with an overall summary

and evaluation of the presented research, and a discussion of future directions.

10

1 Introduction

1.7 Summary

This Chapter provided a more detailed description of the overall thesis research back-

ground, motivation, objectives, methodology, and contribution. The research background

of scientific HPC and its significance to other science areas, such as climate dynamics,

nuclear astrophysics, and fusion energy, has been explained. The trend toward larger-

scale HPC systems beyond 100,000 computational, networking, and storage components

and the resulting lower overall system MTTF has been detailed. The main objective of

this thesis, efficient software state replication mechanisms for the redundancy of services

running on HPC head and service nodes, has been stated and motivated by the fact that

such service components are the “Achilles heel” of a HPC system.

The methodology of this thesis has been outlined with respect to theoretical ground

work and prototype development. The described theoretical ground work included defin-

ing a modern theoretical foundation for service-level high availability, identifying avail-

ability deficiencies of HPC system architectures, and comparing various service-level high

availability methods. The outlined prototype development encompassed several proof-of-

concept solutions for providing high availability for services running on HPC head and

service nodes using symmetric active/active replication.

The major research contributions of this thesis have been summarised. The theo-

retical ground work contributed a generic taxonomy for service high availability, an in-

sight into availability deficiencies of HPC system architectures, and a unified definition

of service-level high availability methods. The prototype development contributed two

fully functional symmetric active/active high availability solutions, for a HPC job and

resource management service and for the HPC parallel file system metadata service, and

two preliminary prototypes for a transparent symmetric active/active replication software

framework, for client-service and for dependent service scenarios.

11

2 Previous Work

Existing high availability solutions for HPC systems can be categorised into head and ser-

vice node redundancy strategies, and compute node fault tolerance mechanisms. Different

techniques are being used due to the difference in scale, i.e., the number of nodes involved,

and purpose, i.e., system services vs. parallel application. In the following, existing high

availability and fault tolerance solutions for HPC systems are briefly described and their

advantages and deficiencies are examined.

In addition, past research and development efforts in providing high availability in

distributed systems using state-machine replication, virtual synchrony, and process group

communication systems are illustrated and their applicability for HPC head and service

node redundancy solutions is evaluated.

Also, existing solutions and ongoing research and development efforts in providing high

availability for services in the IT and telecommunication industry are examined.

2.1 Head and Service Node Solutions

High availability solutions for head and service nodes of HPC systems are typically based

on service-level replication techniques. If a service running on a head or service node fails,

a redundant one running on another node takes over. This may imply a head/service

node fail-over, where the failed node is completely replaced by the standby node, i.e., the

standby node assumes the network address of the failed node.

Individual high availability solutions are usually tied directly to the services they pro-

vide high availability for. Each solution uses its own failure detection mechanism and

redundancy strategy. Individual mechanisms range from active/standby mechanisms to

high availability clustering techniques (Table 2.1).

2.1.1 Active/Standby using Shared Storage

The concept of using a shared storage device (Figure 2.1) for saving service state is a

common technique for providing service-level high availability, but it has its pitfalls. Ser-

vice state is saved on the shared storage device upon modification, while the standby

12

2 Previous Work

M
ax

.
S
er

v
ic

e
N

o
d
es

S
h
ar

ed
S
to

ra
ge

A
ct

iv
e/

S
ta

n
d
b
y

C
ro

ss
w

is
e

A
ct

iv
e/

S
ta

n
d
b
y

2
+

1
H

ig
h

A
va

il
ab

il
it

y
C

lu
st

er
in

g

L
in

u
x

D
R

B
D

SLURM 2 × × ×
Sun Grid Engine 2 × × ×
PVFS Metadata Service 2 × × × × ×
Lustre Metadata Service 2 × × × × ×
HA-OSCAR 2 × × ×
PBS Pro for Cray Platforms 2 × ×
Moab Workload Manager 2 × ×

×, Requirement or available feature

Table 2.1: Requirements and features comparison between head and service node high
availability solutions

Acive/Standby Head Nodes with Shared Storage

Compute Nodes

LAN

Figure 2.1: Active/standby HPC head nodes using shared storage

13

2 Previous Work

service takes over in case of a failure of the active service. The standby service moni-

tors the health of the active service using a heartbeat mechanism [24–26] and initiates

the fail-over procedure. An extension of this technique uses a crosswise active/standby

redundancy strategy. In this case, both are active services and additional standby ser-

vices for each other. In both cases, the mean-time to recover (MTTR) depends on the

heartbeat interval, which may vary between a few seconds and several minutes.

While the shared storage device is typically an expensive redundant array of indepen-

dent drives (RAID) and therefore highly available, it remains a single point of failure and

control. Furthermore, file system corruption on the shared storage device due to failures

occurring during write operations are not masked unless a journaling file system is used

and an incomplete backup state is discarded, i.e., a commit protocol for saving backup

state is used. Correctness and quality of service are not guaranteed if no commit protocol

is used. The requirement for a journaling file system impacts the fail-over procedure by

adding a file system check, which in-turn extends the MTTR.

The shared storage device solution for providing service-level high availability has be-

come very popular with the heartbeat program [24–26], which includes failure detection

and automatic failover with optional Internet protocol (IP) address cloning feature. Re-

cent enhancements include support for file systems on a Distributed Replicated Block

Device (DRBD) [27–29], which is essentially a storage mirroring solution that eliminates

the single shared storage device and replicates backup state to local storage of standby

services. This measure is primarily a cost reduction, since an expensive RAID system is

no longer required. However, the requirement for a journaling file system and commit

protocol remain to guarantee correctness and quality of service, since the DRBD operates

at the block device level for storage devices and not at the file system level.

The following active/standby solutions using a shared storage device exist for head and

service nodes of HPC systems.

Simple Linux Utility for Resource Management

The Simple Linux Utility for Resource Management (SLURM) [30–32] is an open source

and highly scalable HPC job and resource management system. SLURM is a critical

system service running on the head node. It provides job and resource management for

many HPC systems, e.g., IBM Blue Gene [33, 34]. It offers high availability using an

active/standby redundancy strategy with a secondary head node and a shared storage

device.

14

2 Previous Work

Sun Grid Engine

The Sun Grid Engine (SGE) [35] is a job and resource management solution for Grid,

cluster, and HPC environments. It provides scalable policy-based workload management

and dynamic provisioning of application workloads. SGE is the updated commercial

version of the open source Grid Engine project [36]. Its shadow master configuration [37]

offers high availability using an active/standby redundancy strategy with a secondary

head node and a shared storage device.

Parallel Virtual File System Metadata Service

The Parallel Virtual File System (PVFS) [38–40] is a file system for HPC that utilises

parallel input/output (I/O) in order to eliminate bottlenecks. One of the main compo-

nents of any parallel file system is the metadata service (MDS), which keeps records of all

stored files in form of a directory service. This MDS is a critical system service typically

located on head or service nodes. PVFS offers two high availability configurations for its

MDS involving a secondary node and a shared storage device, active/standby and cross-

wise active/standby. Both configurations are based on the earlier mentioned heartbeat

program [24–26].

Lustre Metadata Service

Similar to PVFS, Lustre [41–43] is a scalable cluster file system for HPC. It runs in

production on systems as small as 4 and as large as 15,000 compute nodes. Its MDS keeps

records of all stored files in form of a directory service. This MDS is a critical system

service typically located on head or service nodes. Lustre provides high availability for

its MDS using an active/standby configuration with a shared storage based on the earlier

mentioned heartbeat program [24–26].

2.1.2 Active/Standby Replication

Service-level active/standby high availability solutions for head and service nodes in HPC

systems (Figure 2.2) typically perform state change validation to maintain consistency

of backup state. The primary service copies its state to the standby service in regular

intervals or on any change using a validation mechanism in order to avoid corruption of

backup state when failing during the copy operation. The new backup state is validated

and the old one is deleted only when the entire state has been received by the standby.

Furthermore, active/standby solutions may use additional two-phase commit protocols to

ensure consistency between active and standby nodes. In this case, the primary service

15

2 Previous Work

first announces its state change to the standby service, and then commits it after it

received an acknowledgement back. Once committed, the state at the standby service

is updated accordingly. Commit protocols provide active/standby with transparent fail-

over, i.e., no state is lost and only an interruption of service may be noticed.

The following active/standby replication solutions exist for head and service nodes of

HPC systems.

Acive/Standby Head Nodes

Compute Nodes

LAN

Figure 2.2: Active/standby HPC head nodes using replication

High Availability Open Source Cluster Application Resources

High Availability Open Source Cluster Application Resources (HA-OSCAR) [44–46] is a

high availability framework for the OpenPBS [47] batch job and system resource manage-

ment service on the head node. OpenPBS is the original version of the Portable Batch

System (PBS). It is a flexible batch queueing system developed for the National Aero-

nautics and Space Administration (NASA) in the early- to mid-1990s. The PBS service

interface has become a standard in batch job and system resource management for HPC.

OpenPBS offers batch job and system resource management for typical low- to mid-

end HPC systems. It is a critical system service running on the head node. HA-OSCAR

supports high availability for Open PBS using an active/standby redundancy strategy

involving a secondary head node. Service state is replicated to the the standby upon

modification, while the standby service takes over based on the current state. The standby

node monitors the health of the primary node using the heartbeat mechanism and initiates

16

2 Previous Work

the fail-over. However, OpenPBS does temporarily loose control of the system in this case.

All previously running jobs on the HPC system are automatically restarted.

The MTTR of HA-OSCAR depends on the heartbeat interval and on the time currently

running jobs need to recover to their previous state. The HA-OSCAR solution integrates

with checkpoint/restart compute node fault tolerance solutions (Section 2.2.1), improving

its MTTR to 3-5 seconds for fail-over plus the time currently running jobs need to catch

up based on the last checkpoint.

Portable Batch System Professional for Cray Platforms

The professional edition of the original PBS implementation, PBS Professional (PBS

Pro) [48], is a commercial variant that operates in networked multi-platform UNIX en-

vironments, and supports heterogeneous clusters of workstations, supercomputers, and

massively parallel systems.

PBS Pro for Cray HPC platforms [49] supports high availability using an active/standby

redundancy strategy involving Crays proprietary interconnect network for message dupli-

cation and transparent fail-over. Service state is replicated to the the standby node by

delivering all messages to both, the active node and the standby node, while the standby

service takes over based on the current state. PBS Pro does not loose control of the sys-

tem. The network interconnect monitors the health of the primary service and initiates

the fail-over. This solution is only available for Cray HPC systems as it is based on Crays

proprietary interconnect technology. The MTTR of PBS Pro for Cray HPC systems is

close to 0. However, the availability of this two head node system is still limited by the

event of both head nodes failing at the same time.

Moab Workload Manager

Moab Workload Manager [50, 51] is a policy-based job scheduler and event engine that

enables utility-based computing for clusters. It simplifies management across one or

multiple hardware, operating system, storage, network, license and resource manager

environments to increase the return of investment of clustered resources, improve system

utilisation to run between 90-99%, and allow for expansion. Moab Workload Manager is

being used in HPC systems as batch job and system resource management service on the

head node and employs an active/standby mechanism with transparent fail-over using an

internal heartbeat mechanism as well as an internal standby synchronisation technique.

17

2 Previous Work

2.1.3 High Availability Clustering

The term high availability clustering (Figure 2.3) is commonly used to describe the concept

of using a group of service nodes to essentially provide the same single service using load

balancing in order to provide uninterrupted processing of new incoming service requests.

Active/standby replication for all service nodes together, for a subset, or for each service

node individually may be used to provide continued processing of existing service requests.

This leads to a variety of high availability configurations, such as n+ 1 and n+m with n

active nodes and 1 or m standby nodes. The earlier mentioned crosswise active/standby

redundancy solution where two active service nodes are additional standby service nodes

for each other is also sometimes referred to as an active/active high availability clustering

configuration.

High availability clustering targets high throughput processing of a large number of

small service requests with no or minimal service state change, such as a Web service.

This technique should not be confused with high availability cluster computing, where

applications run on a set of compute nodes in parallel. In high availability cluster com-

puting, the compute nodes perform a common task and depend on each other to produce

a correct result, while the service nodes in high availability clustering perform indepen-

dent tasks that do not depend on each other. However, there are use cases where both

overlap, such as for embarrassingly parallel applications using task farming. Examples

are SETI@HOME [52–54] and Condor [55–57].

Clustered Active Head Nodes with Standby

Compute Nodes

LAN

Figure 2.3: Clustered HPC head nodes with standby (2 + 1)

18

2 Previous Work

High Availability Open Source Cluster Application Resources

As part of the HA-OSCAR research, a high availability clustering prototype implemen-

tation [58] has been developed that offers batch job and system resource management

for HPC systems in a high-throughput computing scenario. Two different batch job and

system resource management services, OpenPBS and the Sun Grid Engine [35], run in-

dependently on different head nodes at the same time, while one additional head node

is configured as a standby. Fail-over is performed using a heartbeat mechanism and is

guaranteed for only one service at a time using a priority-based fail-over policy. Similar to

the active/standby HA-OSCAR variant, OpenPBS and Sun Grid Engine do loose control

of the system during fail-over, requiring a restart of lost jobs. The MTTR is 3-5 seconds

for fail-over plus the time currently running jobs need to catch up.

Despite the existence of two active and one standby services, only one failure is com-

pletely masked at a time due to the 2 + 1 configuration. A second failure results in a

degraded operating mode with one healthy head node serving the system.

2.1.4 Node Fencing

The practice of node fencing, also commonly referred to as “shoot the other node in the

head” (STONITH) [59], is a mechanism whereby the “other node” is unconditionally

powered off by a command sent to a remote power supply. This is a crude, “big hammer”

approach of node membership management. It is typically used to avoid further corruption

of the system by an incorrect or malicious node. A softer approach just reboots the node

or otherwise brings it into a known stable disconnected state.

Node fencing is typically employed in service redundancy strategies, e.g., in order to

shut off the failed primary node during a fail-over.

2.2 Compute Node Solutions

High availability solutions for compute nodes of HPC systems are typically based on a

state redundancy strategy without node redundancy involving a shared storage device

and appropriate validation mechanisms for consistency. Compute node state is copied

to a shared storage device regularly or on any change, and validated once a consistent

backup has been performed. However, complete redundancy, i.e., a matching standby

node for every compute node, is not an appropriate mechanism for HPC systems due to

the number of compute nodes involved.

Spare compute nodes may be used to replace lost compute nodes after a failure, or

compute nodes may be oversubscribed, i.e., failed computational processes are restarted

19

2 Previous Work

on nodes that are already occupied by other computational processes.

Currently, there are two major techniques for compute node fault tolerance: check-

point/restart and message logging. Additionally, ongoing research efforts also focus on

algorithmic fault tolerance and proactive fault avoidance.

2.2.1 Checkpoint/Restart

Checkpoint/restart is a commonly employed technique for compute node fault tolerance.

Application, process, or the entire operating system (OS) state from all compute nodes

is copied to a shared storage device in regular intervals, and validated once a consistent

backup has been performed. The shared storage device is typically a high-performance

networked file system, such as Lustre [41–43]. The checkpoint/restart mechanism requires

coordination of all involved compute nodes in order to ensure consistency, i.e., to perform a

global snapshot. Upon failure, all surviving compute nodes roll back to the last checkpoint

(backup) and failed compute nodes are restarted from the last checkpoint. Progress made

between the last checkpoint and the time of failure is lost.

Checkpointing a HPC system, i.e., backing up its current state, is a preemptive mea-

sure performed during normal operation and needs to be counted as planned downtime.

Restarting a HPC system, i.e., restoring the last backup state, is a reactive measure ex-

ecuted upon failure. The MTTR of checkpoint/restart systems is defined by the time it

takes to detect the failure, the time to restore, and the time it takes for the compute

nodes to catch up to their previous state.

Checkpoint/restart solutions typically scale approximately linearly, i.e., planned down-

time and MTTR grow linear with the number of compute nodes (O(n)), assuming that

the high-performance networked file system is scaled up appropriately as well to avoid

that access to the shared storage device becomes a bottleneck.

Several checkpoint/restart solutions exist. Many applications utilise their own check-

point/restart mechanism that writes out a checkpoint after a set of iterative computations

have been performed or specific computational phases have been finished. Upon failure,

these applications are able to restart from such intermediate result. Another solution is

to transparently stop and checkpoint an application at a lower software layer, such as

messaging or OS, and to transparently reinstate an application after a failure.

Berkeley Lab Checkpoint Restart

The Berkeley Lab Checkpoint Restart (BLCR) [60–62] solution is a hybrid kernel/user

implementation of checkpoint/restart for applications on the Linux OS. BLCR performs

checkpointing and restarting inside the Linux OS kernel. While this makes it less portable

20

2 Previous Work

than solutions that use user-level libraries, it also means that it has full access to all kernel

resources, and is able to restore resources, like process identifiers, that user-level libraries

can‘t.

BLCR does not support checkpointing certain process resources. Most notably, it will

not checkpoint and/or restore open sockets or inter-process communication (IPC) objects,

such as pipes or shared memory. Such resources are silently ignored at checkpoint time

and are not restored. Applications can arrange to save any necessary information and

reacquire such resources at restart time.

Local Area Multicomputer (LAM) [63, 64] is an implementation of the Message Passing

Interface (MPI) [65] standard used by applications for low-latency/high-bandwith com-

munication between compute nodes in HPC systems. LAM integrates directly with the

BLCR solution and allows transparent checkpoint/restart of MPI-based applications.

Transparent Incremental Checkpointing at Kernel-level

Transparent Incremental Checkpointing at Kernel-level (TICK) [66, 67] is a Linux 2.6.11

kernel module that provides incremental checkpointing support transparently to applica-

tions. The general concept of incremental checkpointing allows to take application snap-

shots and to reduce checkpoint data to a minimum by only saving the difference to the

previous checkpoint. This technique may require a local copy of the last full checkpoint,

while reduced checkpoint data is saved to a high-performance networked file system.

In case of a restart, all correct nodes roll back using their local copy, while failed nodes

reconstruct the last checkpoint from the high-performance networked file system. In order

to speed up the restart process, reconstruction of the last checkpoint for every compute

node may be performed by the high-performance networked file system itself or by agents

on the storage nodes. For incremental checkpointing in diskless HPC systems, checkpoint

data reduction may be performed by only saving changed memory pages.

DejaVu

DejaVu [68, 69] is a fault tolerance system for transparent and automatic checkpointing,

migration, and recovery of parallel and distributed applications. It provides a transpar-

ent parallel checkpointing and recovery mechanism that recovers from any combination

of systems failures without any modification to parallel applications or the OS. It uses

a new runtime mechanism for transparent incremental checkpointing that captures the

least amount of state needed to maintain global consistency and provides a novel com-

munication architecture that enables transparent migration of existing MPI applications

without source-code modifications.

21

2 Previous Work

The DejaVu fault tolerance system has been integrated into the commercial Evergrid

Availability Services product [70].

Diskless Checkpointing

Diskless checkpointing [71–75] saves application state within the memory of dedicated

checkpointing nodes, spare compute nodes, service nodes, or compute nodes in use, with-

out relying on stable storage. It eliminates the performance bottleneck of checkpointing

to a shared stable storage by (1) utilising memory, which typically has a much lower

read/write latency than disks, and by (2) placing checkpoint storage within a HPC sys-

tem, thus further improving access latency to stored state.

Similarly to stable storage solutions, data redundancy strategies can be deployed to

provide high availability for stored state. In contrast to stable storage solutions, diskless

checkpointing saves the state of an application only as long as the HPC system is powered

on and typically only for its job run, i.e., for the time an application is supposed to

run. Diskless checkpointing may be provided by an underlying framework or performed

internally by the application itself.

2.2.2 Message Logging

The concept of message logging is based on the idea of capturing all messages of a HPC

application. Upon failure of a process, this process is restarted and its messages are played

back in order to catch up to the previous state. Message logging may be combined with

checkpoint/restart solutions to avoid playback from application start. However, message

logging is only applicable to deterministic applications as message playback is used to

recover application state.

Message logging solutions have a direct impact on system performance during normal

operation as all messages on the network may be doubled. Furthermore, centralised

message logging servers are bottlenecks. However, message logging in combination with

checkpoint/restart permits uncoordinated checkpointing, i.e., each process of a parallel

application is able to checkpoint individually while maintaining a message log to ensure

a global recovery line for consistency.

At this moment, there exists only one message logging solution for HPC system compute

node fault tolerance, MPICH-V.

MPICH-V

MPICH-V [76–78] is a research effort with theoretical studies, experimental evaluations,

and pragmatic implementations aiming to provide a MPI implementation featuring mul-

22

2 Previous Work

tiple fault tolerant protocols based on message logging. MPICH-V provides an automatic

fault-tolerant MPI library, i.e., a totally unchanged application linked with the MPICH-V

library is a fault-tolerant application. Currently, MPICH-V features five different proto-

cols:

• MPICH-V1 (deprecated) is designed for very large-scale HPC systems using hetero-

geneous networks. It is able to tolerate a very high number of faults, but it requires

a large bandwidth for stable components to reach good performance.

• MPICH-V2 (deprecated) is designed for very large-scale HPC systems using homo-

geneous networks. It only requires a very small number of stable components to

reach good performance as it is based on an uncoordinated checkpointing protocol.

• MPICH-VCausal (deprecated) is designed for low-latency dependent applications

which must be resilient to a high failure frequency. It combines the advantages of

V1 and V2 with direct communication and absence of acknowledgements.

• MPICH-VCL is designed for extra low-latency dependent applications. The Chandy

Lamport algorithm [79] used in MPICH-VCL does not introduce any overhead dur-

ing fault free execution. However, it requires restarting all nodes in the case of a

single failure.

• MPICH-PCL features a Blocking Chandy Lamport fault tolerant protocol, which

consists of a new communication channel and two components, a checkpoint server

and a specific dispatcher, supporting large-scale and heterogeneous applications.

2.2.3 Algorithm-Based Fault Tolerance

The notion of algorithm-based fault tolerance re-emerged recently with the trend toward

massively parallel computing systems with 100,000 and more processors. The core concept

is to design computational algorithms to either ignore failures and still deliver an accept-

able result, or to implicitly recover using redundant computation and/or redundant data.

A major requirement for algorithm-based fault tolerance is that the underlying system

(hardware and software) is capable of detecting and ignoring failures.

Fault-Tolerant Message Passing Interface

Fault-tolerant Message Passing Interface (FT-MPI) [80–82] is a full 1.2 MPI specification

implementation that provides process-level fault tolerance at the MPI application pro-

gramming interface (API) level. FT-MPI is built upon the fault-tolerant Harness runtime

23

2 Previous Work

system (Section 2.3.4). It survives the crash of n − 1 processes in a n-process parallel

application, and, if required, can restart failed processes. However, it is still the respon-

sibility of the application to recover data structures and data. FT-MPI is essential for

algorithmic fault tolerance as is provides the underlying fault-tolerant software system.

Open Message Passing Interface

Open Message Passing Interface (Open MPI) [83, 84] is a project combining technologies

and resources from several other projects in order to build the best MPI library available.

A completely new MPI-2 compliant implementation, Open MPI offers advantages for

system and software vendors, application developers, and computer science researchers.

Open MPI is founded upon a component architecture that is designed to foster 3rd

party collaboration by enabling independent developers to use Open MPI as a production-

quality research platform. Specifically, the component architecture was designed to allow

small, discrete implementations of major portions of MPI functionality, e.g., point-to-

point messaging, collective communication, and runtime environment support.

Ongoing work targets the integration of checkpoint/restart using BLCR (Section 2.2.1),

message logging based on the MPICH-V mechanisms (Section 2.2.2), and support for

algorithm-based fault tolerance similar to FT-MPI.

Data Redundancy

A recent effort in algorithm-based checkpoint-free fault tolerance for parallel matrix com-

putations [85] takes the approach to encode the data an algorithm works on to contain

redundancy. Data redundancy is adjustable by the encoding algorithm, such that a spe-

cific number of compute node failures can be tolerated at the same time. A light-weight

implicit recovery mechanism using only local computation on the data of correct compute

nodes is able to recode the data, such that no data is lost. An application of this technique

to matrix-matrix multiplication shows very low performance overhead.

Computational Redundancy

Instead of keeping redundant data or even employing redundant computational processes

that operate on the same data, the idea of computational redundancy relies on the

algorithm-based relationship between individual data chunks of a parallel application.

If a data chunk gets lost due to a compute node failure, the impact on the result may be

within the margin of error or may be recoverable by running the surviving nodes a little

bit longer. Therefore, a certain number of compute node failures may be tolerated by

simply ignoring them.

24

2 Previous Work

An example for this technique was implemented by me a couple of years ago as part

of the research in cellular architectures [75]. It focused on the development of algorithms

that are able to use a 100,000-processor machine efficiently and are capable of adapting

to or simply surviving faults. In a first step, a simulator in Java was developed, since

a 100,000-processor machine was not available at that time. The prototype was able

to emulate up to 500,000 virtual processors on a cluster with 5 real processors solving

Laplace‘s equation and the global maximum problem while ignoring failures.

2.2.4 Proactive Fault Avoidance

Proactive fault avoidance recently emerged as a new research field. In contrast to tradi-

tional reactive fault handling, a reliability-aware runtime may provide a new approach for

fault tolerance by performing preemptive measures that utilise reliability models based on

historical events and current system health status information in order to avoid applica-

tion faults. For example, a process, task, or virtual machine may be temporarily migrated

away from a compute node that displays a behaviour similar to one that is about to fail.

Pre-fault indicators, such as a significant increase in heat, an unusual number of network

communication errors, or a fan fault, can be used to avoid an imminent application fault

through anticipation and reconfiguration.

Early prototypes [86] and simulations [87] suggest that migration can be performed

very quickly with minimal performance overhead, while still utilising reactive fault tol-

erance measures, such as checkpoint/restart, for unanticipated failures. Proactive fault

avoidance techniques require highly available head and service nodes as an underlying

support framework to perform scalable system monitoring and migration.

2.3 Distributed Systems Solutions

Parallel systems research has always taken the optimistic approach toward fault tolerance,

i.e., system components fail rarely and performance has higher priority. In contrast,

distributed systems research [5] has always taken the pessimistic approach, i.e., system

components fail often and fault tolerance has higher priority. With the advent of extreme-

scale HPC systems with 100,000 networked processors and beyond, distributed system

solutions may become more attractive as fault recovery in these massively parallel systems

becomes more expensive. Moreover, even with small-scale problems, such as HPC system

head and service node redundancy, distributed systems solutions may provide for much

higher availability with an acceptable performance trade-off.

In the following, the concepts of state-machine replication, process group communi-

25

2 Previous Work

cation, virtual synchrony, and distributed control are illustrated and existing solutions

are detailed. The main focus is on the primary objective of this thesis to combine high

availability efforts for HPC system head and service nodes with high availability efforts

for distributed systems to provide the highest level of availability.

2.3.1 State-Machine Replication

The concept of state-machine replication [88, 89] has its origins in the early 1980s and is

a common technique for providing fault tolerance in distributed systems. Assuming that

a service is implemented as a deterministic finite state machine, i.e., all service states are

defined and all service state transitions are deterministic, consistent replication may be

achieved by guaranteeing the same initial states and a linear history of state transitions

for all service replicas. All correct service replicas perform the same state transitions and

produce the same service output.

Service replicas are placed on different nodes. Service input needs to be consistently

and reliably replicated to service replicas, while replicated service output needs to be con-

sistently and reliably verified and unified. Voting on output correctness may be performed

using a reliable quorum algorithm.

The introduction of the state-machine replication concept presented a number of prob-

lems for distributed systems with failures and sparked a greater research effort on process

group communication, such as reliable multicast, atomic multicast, distributed consensus,

and failure detectors.

2.3.2 Process Group Communication

In modern computing systems, services are implemented as communicating processes,

i.e., as a finite state machine that communicates to other components, such as clients

and other services, via a network communication protocol. State-machine replication of

a service involves communication among a set of replicated processes, i.e., members of

a replicated service group. Algorithms that coordinate the various operating modes of

such a group are commonly referred to as process group communication algorithms. They

typically deal with reliable delivery and consensus issues, such as liveness, i.e., the process

group eventually makes progress, and consistency, i.e., all correct members of the process

group eventually agree.

The propably most prominent process group communication algorithm is Lamport‘s

Paxos [90] first proposed in 1990, which solves the distributed consensus problem in a

network of unreliable processes. Most distributed consensus algorithms are based on the

idea that all processes propose their output to either the entire group, a subset, or an

26

2 Previous Work

arbiter, to decide which process is correct.

There is a plethora of past research and development on process group communication

algorithms and systems [91–94] focusing on semantics, correctness, efficiency, adaptability,

and programming models. Group communication systems have been used to provide high

availability for financial (stock market) and military applications, but not for head and

service nodes in HPC systems.

Total Order Broadcast Algorithms

A total order broadcasting algorithm [93, 94] not only reliably delivers all messages within

a process group, but also in the same order to all process group members. This fault-

tolerant distributed consensus on message order is essential for state-machine replication

and typically provided by a process group communication system.

The agreement on a total message order usually bears a cost of performance: a message

is not delivered immediately after being received, until all process group members reach

agreement on the total order of delivery. Generally, the cost is measured as latency from

the point a new message is ready to be sent by a process group member, to the time it is

delivered in total order at all process group members.

The following three approaches are widely used to implement total message ordering:

sequencer, privilege-based, and communication history algorithms.

In sequencer total order broadcasting algorithms, one process group member is respon-

sible for ordering and reliably broadcasting messages on behalf of all other process group

members. A fail-over mechanism for the sequencer assures fault tolerance. The Amoeba

distributed OS [95–98] utilises a sequencer algorithm as well as the Isis process group

communication system (Section 2.3.3).

Privilege-based total order broadcasting algorithms rely on the idea that group members

can reliably broadcast messages only when they are granted the privilege to do so. In

the Totem protocol (Section 2.3.3) for example, a token is rotating among process group

members and only the token holder can reliably broadcast messages. A time-out on the

token assures fault tolerance and liveness.

In communication history total order broadcasting algorithms, messages can be reliably

broadcast by any group member at any time, without prior enforced order, and total

message order is ensured by delaying delivery until enough information of communication

history has been gathered from other process group members. The Transis protocol

(Section 2.3.3) is an example for a communication history algorithm.

These three types of algorithms have both advantages and disadvantages. Sequencer

algorithms and privilege-based algorithms provide good performance when a system is

relatively idle. However, when multiple process group members are active and constantly

27

2 Previous Work

broadcasting messages, the latency is limited by the time to circulate a token or produce

total message order via a sequencer.

Communication history algorithms have a post-transmission delay to detect “happend

before” relationships between incoming, reliably broadcast messages, i.e., causal message

order [99, 100]. The post-transmission delay typically depends on the slowest process

group member and is most apparent when the system is relatively idle, since less com-

munication history is produced and a response from all process group members is needed

to determine total message order. In the worst case, the delay may be equal to the in-

terval of heartbeat messages from an idle process group member. On the contrary, if all

process group members produce messages and the communication in the process group is

heavy, the regular messages continuously form a total order, and the algorithm provides

the potential for low latency of total order message delivery.

Several studies have been made to reduce the cost. Early delivery algorithms [101, 102]

are able to reduce latency by reaching agreement with a subset of the process group.

Optimal delivery algorithms [103, 104] deliver messages before total message order is

determined, but notify applications and cancel message delivery if the determined total

message order is different from the delivered message order.

2.3.3 Virtual Synchrony

The virtual synchrony paradigm was first established in the early work on the Isis [105–

107] group communication system. It defines the relation between regular-message passing

in a process group and control-message passing provided by the system itself, e.g., reports

on process group joins or process failures. Process group membership is dynamic, i.e.,

processes may join and leave the group. Whenever group membership changes, all the

processes in the new membership observe a membership change event. Conceptually,

the virtual synchrony paradigm guarantees that membership changes within a process

group are observed in the same order by all the group members that remain connected.

Moreover, membership changes are totally ordered with respect to all regular messages

that pass in the system. The extended virtual synchrony paradigm [108], which addi-

tionally supports crash recoveries and network partitions, has been implemented in the

Transis [109, 110] group communication system.

Isis

The Isis [105–107] system implements a collection of techniques for building software for

distributed systems that performs well, is robust despite hardware and software failures,

and exploits parallelism. The basic approach is to provide a toolkit mechanism for dis-

28

2 Previous Work

tributed programming, whereby a distributed system is built by interconnecting fairly

conventional nondistributed programs, using tools drawn from the kit. Tools are included

for managing replicated data, synchronising distributed computations, automating recov-

ery, and dynamically reconfiguring a system to accommodate changing workloads. Isis

has become very successful: companies and universities employed the toolkit in settings

ranging from financial trading floors to telecommunications switching systems.

The Isis project has moved from Cornell University to Isis Distributed Systems a sub-

sidiary of Stratus Computer, Inc. It was phased out by the end of 1998.

Horus

The Horus project [111–113] was originally launched as an effort to redesign Isis, but has

evolved into a general-purpose communication architecture with advanced support for

the development of robust distributed systems in settings for which Isis was unsuitable,

such as applications that have special security or real-time requirements. Besides the

practical uses of the software, the project has contributed towards the theory of virtual

synchrony. At the same time, Horus is much faster and lightweight than the Isis system.

Horus can be viewed as a group communication environment rather than as a collection

of pre-built groupware solutions. It is UNIX-independent, and permits the use of several

programming languages (C, C++, ML, and Python) in a single system. Horus protocols

are structured like stacks of Lego-blocks, hence new protocols can be developed by adding

new layers or by recombining existing ones. Through dynamic run-time layering, Horus

permits an application to adapt protocols to its environment.

Horus can be used for research purposes at no fee, but has restricted commercial rights.

Its stacked protocol architecture introduces additional overheads.

Ensemble

Ensemble [111, 114–116] is the next generation of the Horus group communication toolkit.

It provides a library of protocols that can be used for quickly building complex distributed

applications. An application registers 10 or so event handlers with Ensemble, and then the

Ensemble protocols handle the details of reliably sending and receiving messages, trans-

ferring state, implementing security, detecting failures, and managing reconfigurations in

the system. Ensemble is a highly modular and reconfigurable toolkit. The high-level

protocols provided to applications are really stacks of tiny protocol layers. These protocol

layers each implement several simple properties: they are composed to provide sets of

high-level properties, such as total ordering, security, and virtual synchrony. Individual

layers can be modified or rebuilt to experiment with new properties or change perfor-

29

2 Previous Work

mance characteristics. The software is partially written in OCaml permitting protocol

verification and optimisation. However, the usage of OCaml limits portability.

Transis

Transis [109, 110, 117] is a multicast communication layer that facilitates the development

of fault-tolerant distributed applications in a network of machines. It supports reliable

group communication for high availability applications. Transis contains a novel protocol

for reliable message delivery that optimises the performance for existing network hard-

ware and tolerates network partitioning. Transis provides several forms of group multicast

operations: FIFO ordered, causally ordered, totally ordered, and safely delivered. The

multicast operations differ in their semantics and in their cost, i.e., latency. The Tran-

sis approach to advanced group communication has acquired a wide recognition in the

academic community, mainly due to the following desirable properties:

• It employs a highly efficient multicast protocol, based on the Trans protocol, that

utilises available hardware multicast.

• It can sustain extremely high communication throughput due to its effective flow

control mechanism, and its simple group design.

• It supports partitionable operation, and provides the means for consistently merging

components upon recovery.

Totem

The Totem [118–120] system is a set of communication protocols to aid the construction of

fault-tolerant distributed systems. The message ordering mechanisms provided by Totem

allow an application to maintain consistency of distributed and replicated information in

the presence of faults. The features of the Totem system are:

• ordered multicasts to process groups,

• high throughput and low predictable latency,

• highly portable code through the use of standard Unix features,

• rapid reconfiguration to remove failed processes, add recovered and new processes,

and to merge a partitioned system, and

• continued operation of all parts of a partitioned system to the greatest possible

extent that is consistent with correctness.

30

2 Previous Work

The Totem system provides reliable, totally ordered delivery of messages to processes

within process groups on a single local-area network, or over multiple local-area net-

works interconnected by gateways. Superimposed on each local-area network is a logical

token-passing ring. The fields of the circulating token provide reliable delivery and total

ordering of messages, confirmation that messages have been received by all processors,

flow control, and fault detection. Message ordering is consistent across the entire network,

despite processor and communication faults, without requiring all processes to deliver all

messages.

Totem is a group communication system with a fixed protocol layer. The more flexible

Ensemble system provides a Totem protocol layer among others.

Spread

Spread [121, 122] is an open source toolkit that provides a high performance messaging

service that is resilient to failures across local and wide area networks. Spread functions as

a unified message bus for distributed applications, and provides highly tuned application-

level multicast, group communication, and point-to-point support. Spread services range

from reliable messaging to fully ordered messages with delivery guarantees. Spread can

be used in many distributed applications that require high reliability, high performance,

and robust communication among various subsets of members. The toolkit is designed to

encapsulate the challenging aspects of asynchronous networks and enable the construction

of reliable and scalable distributed applications. Spread consists of a library that user

applications are linked with, a binary daemon which runs on each computer that is part

of the process group, and various utility and demonstration programs.

While Spread supports multiple messaging protocols, such as Hop and Ring, and con-

figurable message delivery semantics, like safe and agreed, it does not provide an open

platform for group communication algorithms and programming models due to a missing

modular architecture.

Object Group Pattern, Orbix+Isis, and Electra

The Object Group Pattern [123] offers programming model support for replicated objects

using a group communication system for virtual synchrony. In this design pattern, ob-

jects are constructed as state machines and replicated using totally ordered and reliably

multicast state changes. The Object Group Pattern also provides the necessary hooks for

copying object state, which is needed for joining group members.

Orbix+Isis and Electra are follow-on efforts [124] focusing on high availability support

for the Common Object Request Broker Architecture (CORBA).

31

2 Previous Work

2.3.4 Distributed Control

The distributed control paradigm emerged from the Harness project [125–127] I was in-

volved in a few years ago. It focused on the design and development of a pluggable

lightweight heterogeneous distributed virtual machine (DVM) environment, where clus-

ters of personal computers, workstations, and “big iron” supercomputers can be aggre-

gated to form one giant DVM in the spirit of its widely-used predecessor, Parallel Virtual

Machine (PVM). As part of the Harness project, a variety of experiments and system

prototypes were developed to explore lightweight pluggable frameworks, adaptive recon-

figurable runtime environments, assembly of scientific applications from software modules,

parallel plug-in paradigms, highly available DVMs [128–130], FT-MPI (Section 2.2.3),

fine-grain security mechanisms, and heterogeneous reconfigurable communication frame-

works. Three different Harness system prototypes were developed, two C variants and

one Java-based alternative, each concentrating on different research issues.

In order to provide a fully symmetrically replicated DVM runtime environment con-

taining its global state, such as current member processes and loaded software modules at

members, the distributed control paradigm [128–130] offers a replicated remote procedure

call (RPC) abstraction on top of a ring-based process group communication algorithm.

The major difference to other process group communication systems is the utilisation of

collective communication for the voting process on the RPC return. This allows the DVM

to load a software module on a set of members in parallel and to recover appropriately

if loading fails on a subset, such as to unload all successfully loaded software modules or

to load software modules at alternate members. Due to the ring architecture, replicated

RPC costs are linear with the number of members of a DVM.

2.3.5 Practical Byzantine Fault Tolerance

Recent research and development in providing service redundancy for high availability

using group communication mechanisms focused on practical solutions for solving the

Byzantine generals problem [131], where malicious attacks and software errors result in

incorrect process group behaviour. These approaches go beyond the fail-stop model, which

assumes that system components, such as services, nodes, or links, fail by simply stopping.

Appropriate failure detection mechanisms are deployed to verify the correct behaviour of

processes. This includes cryptographic techniques to prevent spoofing and replays, and

to detect corrupted messages.

Byzantine fault tolerance mechanisms incur a higher performance overhead than fail-

stop fault tolerance solutions during failure-free operation due to the additional measures

employed to catch incorrect process behaviour. Since HPC is a performance sensitive

32

2 Previous Work

application area and typical HPC system failures exhibit fail-stop behaviour, Byzantine

fault tolerance solutions are not employed.

Byzantine Fault Tolerance with Abstract Specification Encapsulation

Byzantine Fault Tolerance with Abstract Specification Encapsulation (BASE) [132] is a

communication library for state-machine replication. It uses abstraction to reduce the

cost of Byzantine fault tolerance and to improve its ability to mask software errors. Using

BASE, each replica can be repaired periodically using an abstract view of the state stored

by correct replicas. Furthermore, each replica can run distinct or nondeterministic service

implementations, which reduces the probability of common mode failures. Prototype

implementations for a networked file system [133] and an object-oriented database [134]

suggest that the technique can be used in practice with a modest amount of adaptation

and with comparable performance results.

Thema

Thema [135] is a middleware system on top of BASE that transparently extends Byzantine

fault tolerance to Web Services technologies.

Zyzzyva

Zyzzyva [136] is a protocol that uses speculation to reduce the cost and simplify the

design of Byzantine fault-tolerant state-machine replication. In Zyzzyva, replicas respond

to a client‘s request without first running an expensive three-phase commit protocol to

reach agreement on the order in which the request must be processed. Instead, they

optimistically adopt the order proposed by the primary and respond immediately to the

client. Replicas can thus become temporarily inconsistent with one another, but clients

detect inconsistencies, help correct replicas converge on a single total ordering of requests,

and only rely on responses that are consistent with this total order. This approach allows

Zyzzyva to reduce replication overheads to near their theoretical minima.

Low-Overhead Byzantine Fault-Tolerant Storage

Related recent research [137] also produced an erasure-coded Byzantine fault-tolerant

block storage protocol that is nearly as efficient as protocols that tolerate only crashes.

Previous Byzantine fault-tolerant block storage protocols have either relied upon repli-

cation, which is inefficient for large blocks of data when tolerating multiple faults, or a

combination of additional servers, extra computation, and versioned storage. To avoid

these expensive techniques, this new protocol employs novel mechanisms to optimise for

33

2 Previous Work

the common case when faults and concurrency are rare. In the common case, a write

operation completes in two rounds of communication and a read completes in one round.

The protocol requires a short checksum comprised of cryptographic hashes and homo-

morphic fingerprints. It achieves throughput within 10% of the crash-tolerant protocol

for writes and reads in failure-free runs when configured to tolerate up to 6 faulty servers

and any number of faulty clients.

2.4 Information Technology and Telecommunication

Industry Solutions

The IT and telecommunication industry has dealt with service-level high availability for

some time. Individual solutions range from simple active/standby mechanisms to so-

phisticated enterprise products supporting a variety of replication strategies (Table 2.2).

However, only very few efforts employ state-machine replication or virtual synchrony

mechanisms in the form of active replication and dual modular redundancy (DMR) due

to the complexity of communication protocols. In the following, individual existing solu-

tions are examined and ongoing research and development efforts are described.

2.4.1 Hewlett-Packard Serviceguard

Hewlett-Packard (HP) Serviceguard [138] is a high availability solution for services that

offers active/standby with cascading fail-over when using more than two service nodes,

crosswise active/standby, and n+ 1 and n+m high availability clustering configurations,

all using a shared storage device (Sections 2.1.1 and 2.1.3). HP Serviceguard utilises

a heartbeat mechanism over a network connection and needs a shared Small Computer

System Interface (SCSI), Fibre Channel, or software mirrored storage subsystem with

RAID capability. While the RAID capability provides data high availability within a

single location, network-based storage mirroring allows robust data replication across the

world. The HP Serviceguard Quorum Server [139] is able to arbitrate in case of service

node partitions to ensure that there is only one active service group.

HP Serviceguard is one of the primary solutions for service high availability in the IT

sector and part of HP‘s non-stop solutions [140] with support for HP-UX and Linux.

2.4.2 RSF-1

RSF-1 [141] from High-Availability.com is a service high availability product that provides

active/standby with optional cascading fail-over, crosswise active/standby, and n + 1

34

2 Previous Work

M
ax

.
S
er

v
ic

e
N

o
d
es

S
h
ar

ed
S
to

ra
ge

S
to

ra
ge

M
ir

ro
ri

n
g

Q
u
or

u
m

S
er

ve
r

A
ct

iv
e/

S
ta

n
d
b
y

C
as

ca
d
in

g
A

ct
iv

e/
S
ta

n
d
b
y

C
ro

ss
w

is
e

A
ct

iv
e/

S
ta

n
d
b
y

n
+

1
H

ig
h

A
va

il
ab

il
it

y
C

lu
st

er
in

g
n

+
m

H
ig

h
A

va
il
ab

il
it

y
C

lu
st

er
in

g
A

ct
iv

e
R

ep
li
ca

ti
on

D
u
al

M
o
d
u
la

r
R

ed
u
n
d
an

cy

L
in

u
x

A
IX

H
P

-U
X

S
ol

ar
is

W
in

d
ow

s
M

ac
O

S

D
R

B
D

S
C

S
I

F
ib

re
C

h
an

n
el

N
A

S
N

F
S

HP Serviceguard ? × × × × × × × × ×× ××
RSF-1 64 × × × × × × ×××× ×
IBM HAC 32 × × × × × × × × × ×××
Veritas Cluster Server ? × × × × × × × × ××××× ×××
Solaris Cluster 16 × × × × × × × × × × ? ?
Microsoft Cluster Server 8 × × × ? × ? ? × ×× ?
Red Hat Cluster Suite 128 × × × × × × × ? ××××
LifeKeeper 32 × × × × × × × × × ? ×××
Linux FailSafe 16 × × × × × × × ? ××
Linuxha.net 2 × × × × × ××××
Kimberlite 2 × × × × ? ××
T2CP-AR 2 × × ×
Stratus Cont. Processing 2 × × × ×

×, Requirement or available feature
?, Insufficient documentation

Table 2.2: Requirements and features comparison between information technology and
telecommunication industry service high availability products

and n + m high availability clustering configurations, all using a shared storage device

(Sections 2.1.1 and 2.1.3). It uses a heartbeat mechanism over a network connection and

is based on a shared network attached storage (NAS), SCSI, or Fibre Channel storage

subsystem with RAID capability for data high availability. RSF-1 scales up to 64 service

nodes and supports Linux, HP-UX, Solaris, MacOS X (Darwin), and AIX.

RSF-1 is a primary service high availability IT solution. Customers include the Univer-

sity of Salford [142], the German WestLB Bank [143], and the China Postal Service [144].

35

2 Previous Work

2.4.3 IBM High Availability Cluster Multiprocessing

IBM High Availability Cluster Multiprocessing [145, 146] is a service high availability

solution for up to 32 nodes running AIX that offers active/standby with optional cascad-

ing fail-over, crosswise active/standby, and n + 1 and n + m high availability clustering

configurations, all using a shared storage device (Sections 2.1.1 and 2.1.3). It relies on a

heartbeat mechanism over a network connection or shared storage device, and requires a

shared NAS, SCSI, or Fibre Channel storage subsystem with RAID capability for data

high availability. While RAID technology is employed locally, a network-based storage

mirroring mechanism is used for robust data replication across the world to assure disaster

recovery. A quorum service for arbitrating service node partitions is supplied as well.

IBM High Availability Cluster Multiprocessing is one of the primary solutions for service

high availability in the IT sector.

Note that IBM uses the term cluster to describe its configuration, which refers to high

availability clustering (Section 2.1.3). IBM also offers cluster computing products for use

in parallel and distributed computing scenarios.

2.4.4 Veritas Cluster Server

Symantec‘s Veritas Cluster Server [147, 148] is a high availability solution for services

that offers active/standby with optional cascading fail-over, crosswise active/standby,

and n+ 1 and n+m high availability clustering configurations, all using a shared storage

device (Sections 2.1.1 and 2.1.3). It relies on a heartbeat mechanism over a network

connection and requires a shared NAS, SCSI, or Fibre Channel storage subsystem with

RAID capability for data high availability. Veritas Cluster Server supports Solaris, HP-

UX, AIX, Linux, Windows. It offers a quorum service to arbitrate service node partitions

as well as a data replication service for wide-area redundancy.

Symantec‘s Veritas Cluster Server is one of the primary solutions for service high avail-

ability in the IT sector.

Note that Symantec uses the term cluster server to describe its configuration, which

refers to high availability clustering (Section 2.1.3). Veritas Cluster Server uses a process

group communication system (Section 2.3.2) to determine node membership, i.e., to detect

service node failures and to notify its software components to perform fail-over. The

product uses state-machine replication for its cluster configuration database, but not for

service high availability.

36

2 Previous Work

2.4.5 Solaris Cluster

Sun‘s Solaris Cluster [149–151] is a high availability product for services that offers ac-

tive/standby with optional cascading fail-over, crosswise active/standby, and n + 1 and

n + m high availability clustering configurations, all using a shared storage device (Sec-

tions 2.1.1 and 2.1.3). It relies on a heartbeat mechanism over a network connection and

requires a shared SCSI storage subsystem with RAID capability for data high availability.

The documentation is unclear about support for a NAS or Fibre Channel storage subsys-

tem. Solaris Cluster runs on up to 16 Solaris service nodes and supports a quorum service

to arbitrate service node partitions. Sun also offers a data replication in conjunction with

its Metro Cluster and World Wide Cluster products for wide-area redundancy. Open High

Availability Cluster (OHAC) [152] is the open-source code base of Solaris Cluster.

Note that Solaris uses the term cluster to describe its configuration, which refers to

high availability clustering (Section 2.1.3).

2.4.6 Microsoft Cluster Server

Microsoft Cluster Server [153, 154] is a Windows-based service high availability variant

that provides active/standby and crosswise active/standby, both using a shared storage

device (Sections 2.1.1 and 2.1.3). The documentation is unclear about support for ac-

tive/standby with optional cascading fail-over, and n + 1 and n + m high availability

clustering configurations. Microsoft Cluster Server uses a heartbeat mechanism over a

network connection and requires a shared SCSI or Fibre Channel storage subsystem with

RAID capability for data high availability. The documentation is also unclear about sup-

port for a NAS storage subsystem. The product supports up to 8 service nodes and a

quorum service to arbitrate service node partitions.

Note that Microsoft uses the term cluster server to describe its configuration, which

refers to high availability clustering (Section 2.1.3). Microsoft recently started offering

cluster computing products for use in parallel and distributed computing scenarios.

2.4.7 Red Hat Cluster Suite

The Red Hat Cluster Suite [155, 156] is a service high availability product based on Red

Hat Enterprise Linux [157] and offers active/standby with optional cascading fail-over,

crosswise active/standby, and n+ 1 and n+m high availability clustering configurations,

all using a shared storage device (Sections 2.1.1 and 2.1.3). It relies on a heartbeat

mechanism over a network connection and requires a shared network file system (NFS),

NAS, SCSI, or Fibre Channel storage subsystem with RAID capability.

37

2 Previous Work

For high-volume open source applications, such as NFS, Samba, and Apache, Red Hat

Cluster Suite provides complete ready-to-use solutions. For other applications, customers

can create custom fail-over scripts using provided templates. Red Hat Professional Ser-

vices can provide custom Red Hat Cluster Suite deployment services where required.

Note that Red Hat uses the term cluster to describe its configuration, which refers

to high availability clustering (Section 2.1.3). Many 3rd party vendors offer parallel and

distributed cluster computing products based on Red Hat Enterprise Linux.

2.4.8 LifeKeeper

SteelEye’s LifeKeeper [158] is a high availability product for services that offers ac-

tive/standby with optional cascading fail-over, crosswise active/standby, and n + 1 high

availability clustering configurations, all using a shared storage device (Sections 2.1.1

and 2.1.3). It relies on a heartbeat mechanism over a network connection and requires a

shared NAS, SCSI, or Fibre Channel storage subsystem with RAID capability for data

high availability. LifeKeeper runs on Linux and Windows. It supports up to 32 ser-

vice nodes and offers a variety of recovery kits for services. SteelEye also offers a data

replication product in conjunction with LifeKeeper for wide-area redundancy.

2.4.9 Linux FailSafe

Linux FailSafe by Silicon Graphics, Inc [159] is a service high availability solution that

provides active/standby with optional cascading fail-over, crosswise active/standby, and

n + 1 and n + m high availability clustering configurations, all using a shared storage

device (Sections 2.1.1 and 2.1.3). It uses a heartbeat mechanism over a serial and/or

network connection and requires a shared SCSI or Fibre Channel storage subsystem with

RAID capability for data high availability. Linux FailSafe is architected to scale up to 16

service nodes and offers plug-ins for service-specific interfaces. It is intended to be Linux

distribution agnostic. However, there are dependencies on libraries and paths to system

files that do vary from one distribution to the next.

Note that the Linux FailSafe documentation uses the term cluster to describe its config-

uration, which refers to high availability clustering (Section 2.1.3). It also uses the terms

process membership and process group, different from the usage in virtual synchrony (Sec-

tion 2.3.3). Linux FailSafe uses a process group communication system (Section 2.3.2

to determine node membership, i.e., to detect service node failures and to notify its soft-

ware components to perform fail-over. The product uses state-machine replication for its

cluster configuration database, but not for service high availability.

38

2 Previous Work

2.4.10 Linuxha.net

Linuxha.net [160] is a high availability solution for services that features active/standby

and crosswise active/standby limited for two service nodes, all using a shared storage de-

vice (Sections 2.1.1 and 2.1.3). It utilises a heartbeat mechanism over a network connec-

tion and a DRBD-based replicated storage subsystem or a NAS, SCSI, or Fibre Channel

shared storage subsystem. In contrast to its competitors, an expensive NAS, SCSI, or

Fibre Channel RAID is not necessarily required due to the network-based consistent data

replication of DRBD.

Note that the Linuxha.net documentation uses the term cluster to describe its config-

uration, which refers to high availability clustering (Section 2.1.3). It also uses the terms

idle standby for an active/standby configuration and active standby for the crosswise ac-

tive/standby configuration.

2.4.11 Kimberlite

Kimberlite from Mission Critical Linux [161, 162] is a high availability variant that sup-

ports active/standby and crosswise active/standby redundancy for two service nodes using

a shared storage device (Section 2.1.1). It utilises a heartbeat mechanism over a serial

and/or network connection, and requires a shared SCSI or Fibre Channel storage sub-

system with RAID capability for data high availability. Kimberlite runs on Linux. Since

it is primarily composed of user-level daemons, Kimberlite is Linux distribution agnostic

and runs on a great diversity of commodity hardware.

Note that the Kimberlite documentation uses the term cluster to describe its configu-

ration and cluster system for each individual service node, both refer to high availability

clustering (Section 2.1.3).

2.4.12 Transparent Transmission Control Protocol Active Replication

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet. It

provides reliable, in-order delivery of a stream of bytes. Transparent Transmission Control

Protocol Active Replication (T2CP-AR) [163] provides replication support for TCP-based

services by allowing backup services to intercept communication between clients and the

primary service and by performing seamless connection fail-over.

The core concept of T2CP-AR relies on keeping consistent TCP-related connection

state information at the backup service. T2CP-AR is a communication protocol for ac-

tive/standby redundancy on two service nodes using active replication, i.e., the backup

service receives the same incoming traffic as the primary, performs all state transitions

39

2 Previous Work

in virtual synchrony, and takes over upon primary failure. The protocol was mainly de-

veloped for telecommunication services. A recently developed proof-of-concept prototype

showcases a stateful fault-tolerant firewall (FT-FW) [164] in Linux.

2.4.13 Stratus Continuous Processing

Stratus [165] offers standard DMR, which uses two CPU-memory assemblies (mother-

boards). These systems deliver levels of availability unrivalled by competitive high avail-

ability cluster systems. DMR systems are designed for 99.999% of availability. All moth-

erboards run in a lockstep manner from a single system clock source. The fault-detection

and isolation logic compares I/O output from all motherboards; any miscompare indicates

an error. DMR systems rely on fault-detection logic on each motherboard to determine

which board is in error. If no motherboard error is signalled, a software algorithm deter-

mines which board to remove from service.

Stratus enables Continuous Processing capabilities through three fundamental elements:

lockstep technology, failsafe software, and an active service architecture. While the lock-

step technology uses replicated, fault-tolerant hardware components that process the same

instructions at the same time, the failsafe software works in concert with lockstep tech-

nology to prevent many software errors from escalating into outages. The active service

architecture enables built-in serviceability by providing remote Stratus support capabili-

ties. The Continuous Processing technology is available in Stratus’ ftServer product [166]

for Red Hat Enterprise Linux 4 and Microsoft Windows Server 2003.

2.4.14 Open Application Interface Specification Standards Based

Cluster Framework

The Open Application Interface Specification (OpenAIS) Standards Based Cluster Frame-

work [167] is an Open Source implementation of the Service Availability Forum Appli-

cation Interface Specification (AIS) [168]. AIS is a software application programming

interface API and policies, which are used to develop applications that maintain service

during faults. Restarting and failover of applications is also targeted for those deploying

applications which may not be modified.

The OpenAIS software is designed to allow any third party to implement plug-in clus-

ter services using the infrastructure provided. Among others, AIS includes APIs and

policies for: naming, messaging, membership, event notification, time synchronisation,

locking, logging, cluster management, and checkpointing. OpenAIS utilises process group

communication semantics (Section 2.3.2) on compute nodes to deal with fault-tolerant

node membership management, but not process membership management. Specifically,

40

2 Previous Work

the membership service relies on the virtual synchrony (Section 2.3.3) provided by the

Totem process group communication system for node failure detection and triggering high

availability cluster re-configuration.

OpenAIS is a pure development effort at this moment. It is based on existing mech-

anisms for service availability and fault tolerance. It supports Linux, Solaris, BSD, and

MacOS X. OpenAIS does not support specific service high availability configurations. In-

stead, it is an effort to provide an open source solution for the underlying mechanisms

used in service high availability.

2.4.15 System-level Virtualization

System-level virtualisation using hypervisors has been a research topic since the 1970s [169],

but regained popularity during the past few years because of the availability of efficient

solutions, such as Xen [170, 171], and the implementation of hardware support in com-

modity processors, e.g., Intel-VT and AMD-V.

The IT industry has recently taken an interest in exploiting the benefits of system-

level virtualisation in enterprise computing scenarios for server consolidation and for high

availability. While server consolidation focuses on moving entire operating system envi-

ronments of multiple underutilised servers to a single server, the high availability aspect

similarly targets redundancy strategies for operating system environments across multiple

server resources. While currently the IT and telecommunication industry typically deploys

exactly the same high availability solutions in virtualised systems as in non-virtualised sys-

tems, recent research and development efforts focus on exploiting the additional features

of system-level virtualisation, such as live migration and transparent checkpoint/restart,

for providing high availability.

Xen

Xen [170, 171] is an open source hypervisor for IA-32, x86-64, IA-64, and PowerPC archi-

tectures. Its type-I system-level virtualisation allows one to run several virtual machines

(VMs or guest operating systems) in an unprivileged domain (DomU) on top of the hy-

pervisor on the same computer hardware at the same time using a host operating system

running in a privileged domain (Dom0) for virtual machine management and hardware

drivers. Several modified operating systems, such as FreeBSD, Linux, NetBSD, and Plan

9, may be employed as guest systems using paravirtualisation, i.e., by modifying the guest

operating system for adaptation to the hypervisor interface. Using hardware support for

virtualisation in processors, such as Intel VT and AMD-V, the most recent release of Xen

is able to run unmodified guest operating systems inside virtual machines.

41

2 Previous Work

Xen originated as a research project at the University of Cambridge, led by Ian Pratt,

senior lecturer at Cambridge and founder of XenSource, Inc. This company now sup-

ports the development of the open source project and also sells enterprise versions of the

software. The first public release of Xen was made available in 2003.

Xen supports live migration, i.e., moving entire operating system environments from

one physical resource to another while keeping it running. This capability is heavily

used in enterprise computing scenarios for load balancing, scheduled maintenance, and

proactive fault tolerance (Section 2.2.4).

VMware

VMware Inc. [172] offers a wide range of system-level virtualisation solutions, including

the free VMware player and VMware Server (formerly VMware GSX Server). While the

mentioned free products and the non-free VMware Workstation employ type-II virtualisa-

tion, i.e., virtual machines are actual processes inside the host operating system, VMware

Inc. also provides a non-free type-I system-level virtualisation solution, VMware ESX

Server, based on hypervisor technology. The company further distributes an infrastruc-

ture solution (VMware Infrastructure) and various data-centre products for deployment

of system-level virtualisation in enterprise businesses, such as for server consolidation.

VMware products support suspending and resuming running operating system envi-

ronments, a transparent checkpoint/restart technique (Section 2.2.1). Using the sus-

pend/resume facility, operating system environments can be migrated from one physical

resource to another using the stop-and-copy approach. VMware products have also the

notion of “virtual appliances”, where a service is deployed together with an operating

system environment certified for this specific service.

High Availability in a Virtualised Environment

High Availability in a Virtualised Environment (HAVEN) [173] is a classification ap-

proach for high availability configurations in virtualised systems based on operational

virtual machine states and the respective life cycle. This classification encompasses sev-

eral checkpoint/restart schemes, including virtual machine states and state transitions,

based on the suspend/resume facility of system-level virtualisation solutions.

It is important to note that the IT and telecommunication industry typically deploys

exactly the same high availability solutions in virtualised systems as in non-virtualised

systems at the service-level, i.e., service-level replication protocols are used. This is pri-

marily due to the fact that system-level replication protocols, such as replicating an entire

virtual machine, have to deal with certain issues regarding possible non-deterministic be-

42

2 Previous Work

haviour of the hypervisor and the operating system sitting on top of it. Replayability,

i.e., feeding a replica with a sequence of input messages to archive a specific state, is often

a requirement of active/hot-standby solutions and a must for any sort of state-machine

replication variant, such as dual-modular redundancy.

2.5 Summary

This Chapter evaluated previous work within the research context of this thesis. De-

tailed past and ongoing research and development for HPC head and service node high

availability included active/standby configurations using shared storage, active/standby

configurations using software state replication, and high availability clustering. Certain

pitfalls involving active/standby configurations using shared storage, such as backup cor-

ruption during failure, have been pointed out. There was no existing solution for HPC

head and service node high availability using symmetric active/active replication, i.e.,

state-machine replication.

Described techniques for HPC compute node high availability included checkpoint/re-

start, message logging, algorithm-based fault tolerance, and proactive fault avoidance.

The underlying software layer often relied on HPC head and service node high availability

for coordination and reconfiguration after a failure.

Examined distributed systems efforts focused on state-machine replication, process

group communication, virtual synchrony, distributed control, and practical Byzantine

fault tolerance. Many of the distributed systems mechanisms were quite advanced in

terms of communication protocol correctness and provided availability. There has been

much less emphasis on high performance.

Detailed IT and telecommunication industry solutions covered a wide range of high

availability configurations. The only two solutions using some variant of state-machine

replication were T2CP-AR and Stratus Continuous Processing, where T2CP-AR targets

TCP-based telecommunication services and Stratus Continuous Processing offers DMR

with hardware-supported instruction-level replication.

43

3 Taxonomy, Architecture, and

Methods

This Chapter lays the theoretical ground work of this thesis by defining a modern service-

level high availability taxonomy, describing existing availability deficiencies in HPC sys-

tem architectures using a generalised model, and detailing methods for providing high

availability for services running on HPC system head and service nodes.

3.1 High Availability Taxonomy

In the following, principles, assumptions and techniques employed in providing high

availability in modern systems are explained. The content of this Section is based on

earlier work in refining a modern high availability taxonomy for generic computing sys-

tems [174, 175]. As part of this research effort, it has been adopted to the complexity

of HPC system architectures, enhanced with more precise definitions for active/standby

replication, and extended with definitions for active/active replication.

For completeness, the text of Section 3.1.1 has been copied from [174] with minor

corrections and added definitions for soft errors and hard errors. Section 3.1.3 also contains

greater parts from [174], while it extends on the original definitions for active/standby

replication, adds definitions for active/active replication, and omits the terms passive and

active replication.

3.1.1 Faults, Failures, and Outages

Conceptually, a fault can be described as an unexpected behaviour of a system and can

be classified as reproducible or non-reproducible. While a fault is any unexpected non-

compliance within the system, a failure is a fault that is externally visible to the end user.

The terms fault and failure are often used synonymously when a distinction between

visible and non-visible faults can‘t be observed.

High availability computing does not make this distinction as a software system can only

pre-empt or react to faults it already expects and can detect, i.e., faults that are visible

44

3 Taxonomy, Architecture, and Methods

either directly as abnormal system behaviour or through detection and event propagation.

There are many different causes for failures in HPC systems:

• Design errors can cause failures, since the system is not designed to correctly perform

the expected behaviour. Programming errors fit under this description as well as any

discrepancies between implementation, specification, and use cases. Such failures

are reproducible if the software itself is deterministic.

• System overloading can cause failures, since the system is being used in a way that

exceeds its resources to perform correctly. An example is a denial-of-service attack.

System overloading can also be triggered by using a system beyond its specification,

i.e., by a preceding design error.

• Wearing down can cause failures, since the system is exposed to mechanical or

thermal stress. Typical examples are power supply, processor, cooling fan, and disk

failures. They are typically non-reproducible with the original hardware as it gets

rendered unusable during the failure.

• Pre-emptive, protective measures of the system can also cause failures if the system

forces a failure in order to prevent permanent or more extensive damage. For ex-

ample, a system may automatically shut down if its processor heat monitor reports

unusually high temperature readings.

• Other causes for failures exist, such as race conditions between processes, distributed

deadlocks, and network transmission errors.

• Further causes are catastrophic events, such as earthquake, flood, hurricane, tornado,

and terrorist attack.

There is a differentiation between hard errors and soft errors. A hard error is related

to the failure of a hardware component that needs replacement, such as a failed memory

chip. A soft error is related to software or data corruption, such as a bit flip in a memory

chip, which can be resolved by simply restarting the system.

There is also a further distinction between benign and malicious (or Byzantine) failures.

While a benign failure, such as a disk crash, is an easily detectable event, a malicious fail-

ure, like in the Byzantine generals problem (Section 2.3.5) [131] or the earlier mentioned

denial-of-service attack, follows a malevolent plan. Extensive failure detection mecha-

nisms, like network intrusion detection for example, often use probabilistic approaches to

identify such failures.

The term outage (or downtime) is used to describe any kind of deviation from specified

system behaviour, whether it is expected or unexpected. All faults and failures can

45

3 Taxonomy, Architecture, and Methods

be categorised as unplanned outages, while intentional prevention of delivering specified

system functionality, such as to perform maintenance operations, software upgrades, etc.,

are planned outages.

3.1.2 Reliability Metrics

Reliability is the property of a component that defines its probability to perform its

intended function during a specified period of time, i.e., it provides information about the

failure-free time period. In contrast to availability (Sections 3.1.3 and 3.1.4), reliability

does not provide information about failure recovery, i.e., how well a component or system

deals with failures. Reliability metrics, such as failure rate λ and MTTF , are essential

aspects of availability metrics (Section 3.1.4).

The failure rate λ is the frequency at which an individual component experiences faults.

Given a large enough population of identical components, a failure rate for this population

can be observed that displays the “bathtub curve” (Figure 3.1) [175]. While the initial

usage period is characterised by a high but rapidly decreasing failure rate (infant mortality

phase), a roughly constant failure rate can be observed for a prolonged period of time.

Finally, the failure rate begins to increase again (wear-out phase).

6 High Availability Fundamentals • November 2000

For most electronic components, the MTBF and failure rate change during the life

cycle of a component, however, since the variance is small, it is safe to assume the

value is a constant. The component failure rate curve of a component’s life cycle is

known as a Bathtub Curve, see FIGURE 1.

FIGURE 1 Component Failure Rate Bathtub Curve

FIGURE 1 is a plot of hardware component failures over time and it demonstrates a

phenomenon known as infant mortality—where a component exhibits high failure

rate during the early stages of its life. To help ensure component failures are

detected early, manufacturers often subject components to a burn-in process

(literally, exposure to high temperatures).

Over time the failure rate gradually reduces until it approaches the constant rate—

which is maintained during its useful life. Eventually, the component enters the

wear-out stage of its life—in this stage, failures increase exponentially. It is

important to note that new technologies can exhibit a similar failure rate during the

early life and useful life time periods.

Common MTBF Misconceptions

MTBF is often confused with a component’s useful life, even though the two

concepts are not related in any way. For example, a battery may have a useful life of

four hours and have an MTBF of 100,000 hours. These figures indicate that in a

population of 100,000 batteries there will be approximately one battery failure every

hour during its four-hour life span. On the other hand, a 64-processor server

platform may last 50,000 hours before it enters its wear-out period while its MTBF

value may only be 2000 hours.

Useful Life
Wear-outEarly

Fa
ilu

re
 R

at
e

Constant Failure Rate

Operating Time (t)

PeriodLife

Figure 3.1: The “bathtub curve”: Failure rate for a given large enough population of
identical components [175]

Manufacturers often subject components to a “burn-in” phase before delivery to pro-

vide customers with products that have passed their infant mortality phase. Customers

requiring high availability also typically replace components before the wear-out phase be-

gins using manufacturer recommendations on component lifetime. Both are very common

procedures in the IT and telecommunication industry as well as in HPC. High availability

solutions mostly need to deal with the prolonged period of time where a constant failure

rate can be observed.

The reliability function R(t) of an individual component is the probability that it will

perform its intended function during a specified period of time 0 ≤ τ ≤ t (Equation 3.1),

46

3 Taxonomy, Architecture, and Methods

while its failure distribution function F (t) is the probability that it will fail during a

specified period of time 0 ≤ τ ≤ t (Equation 3.2) [176].

R(t) =
∫ ∞
t

f(τ)dτ, t ≤ τ ≤ ∞ (3.1)

F (t) =
∫ t

0
f(τ)dτ, 0 ≤ τ ≤ t (3.2)

The probability distribution of both functions is defined by f(τ), a probability density

function (PDF). The reliability function R(t) also defines a component‘s failure rate func-

tion λ(t) (Equation 3.1), and its MTTF (Equation 3.4) [176].

λ(t) =
f(t)

R(t)
=

f(t)∫∞
t f(τ)dτ

, 0 ≤ τ ≤ t (3.3)

MTTF =
∫ ∞
0

R(t)dt (3.4)

A normalized exponential PDF of λe−λt with a constant failure rate λ is typically

assumed for the prolonged centre period of the “bathtub curve”, which is not an exact

match, but close to empirical failure data. All these functions can be simplified to the

following terms [176]:

R(t) = e−λt (3.5)

F (t) = 1− e−λt (3.6)

λ(t) = λ (3.7)

MTTF =
1

λ
(3.8)

Individual components within a system may directly depend on each other, resulting

in a series subsystem. Individual components also may directly provide redundancy for

each other in form of a parallel subsystem. The reliability function R(t) of a n-series or

n-parallel subsystem is as follows [176]:

R(t)series =
n∏
i=1

Ri(t) (3.9)

R(t)parallel = 1−
n∏
i=1

(1−Ri(t)) (3.10)

Assuming an exponential PDF for component i of λe−λit with constant individual com-

ponent failure rates λi, these functions can be simplified to the following terms [176]:

R(t)series = e−λst, λs =
n∑
i=1

λi (3.11)

47

3 Taxonomy, Architecture, and Methods

R(t)parallel = 1−
n∏
i=1

(1− e−λit) (3.12)

The failure rate of a series subsystem is constant as the entire system stops functioning

upon a single failure. The failure rate of a parallel subsystem changes with each failure

of a redundant component as the system continues functioning. The MTTF of a n-

series subsystem with individual constant component failure rates λi and of a n-parallel

subsystem with an equal constant individual component failure rate λ is [176]:

MTTFseries =
1

λs
, λs =

n∑
i=1

λi =
n∑
i=1

1

MTTFi
(3.13)

MTTFparallel =
1

λ

n∑
i=1

1

i
= MTTFcomponent

n∑
i=1

1

i
(3.14)

While MTTF decreases with every component in a series subsystem due to dependency,

it increases with every component in a parallel subsystem due to redundancy. The MTTF

in a series subsystem can be close to 0 in a worst-case scenario, while it can be close to

2 ·MTTFcomponent in the best-case scenario for a parallel subsystem.

Note that these reliability metrics do not include any information about how well a

component or system deals with failures. A system‘s MTTF can be very low, yet its

availability can be very high due to efficient recovery.

3.1.3 Availability Domains and Configurations

Availability is a property that provides information about how well a component or system

deals with outages. It can be generalised into the following three distinctive domains.

Basic Availability

A system which is designed, implemented and deployed with sufficient components (hard-

ware, software, and procedures) to satisfy its functional requirements, but no more, has

basic availability. It will deliver the correct functionality as long as no failure occurs and

no maintenance operations are performed. In case of failures or maintenance operations,

a system outage may be observed.

High Availability

A system that additionally has sufficient redundancy in components (hardware, software,

and procedures) to mask certain defined failures, has high availability. There is a con-

tinuum of high availability configurations with this definition due to the ambiguity of

48

3 Taxonomy, Architecture, and Methods

the terms “sufficient”, “mask”, and “certain”. A further clarification of these ambiguous

terms follows.

“Sufficient”, is a reflection of the system’s requirements to tolerate failures. For comput-

ing systems, this typically implies a particular level of hardware and software redundancy

that guarantees a specific quality of service.

“Certain”, is a recognition of the fact that not all failures can or need to be masked.

Typically, high availability solutions mask the most likely failures. However, mission

critical applications, e.g., military, financial, healthcare, and telecommunication, may

mask even catastrophic failures.

“Masking” a fault implies shielding its external observation, i.e., preventing the oc-

currence of a failure. Since faults are defined as an unexpected deviation from specified

behaviour, masking a fault means that no deviations (or only precisely defined deviations)

from specified behaviour may occur. This is invariably achieved through a replication

mechanism appropriate to the component, a redundancy strategy. When a component

fails, the redundant component replaces it. The degree of transparency in which this

replacement occurs can lead to a wide variation of configurations:

• Manual masking requires human intervention to put the redundant component into

service.

• Cold standby requires an automatic procedure to put the redundant component into

service, while service is interrupted and component state is lost. A cold standby

solution typically provides hardware redundancy, but not software redundancy.

• Warm standby requires some component state replication and an automatic fail-over

procedure from the failed to the redundant component. The service is interrupted

and some service state is lost. A warm standby solution typically provides hardware

redundancy as well as some software redundancy. State is regularly replicated to the

redundant component. In case of a failure, it replaces the failed one and continues

to operate based on the previously replicated state. Only those component state

changes are lost that occurred between the last replication and the failure.

• Hot standby requires full component state replication and an automatic fail-over pro-

cedure from the failed to the redundant component. The service is interrupted, but

no component state is lost. A hot-standby solution provides hardware redundancy

as well as software redundancy. However, state is replicated to the redundant com-

ponent on any change, i.e., it is always up-to-date. In case of a failure, it replaces

the failed one and continues to operate based on the current state.

49

3 Taxonomy, Architecture, and Methods

Manual masking is a rarely employed configuration for computing systems as it needs

human intervention. Cold, warm and hot standby are active/standby configurations com-

monly used in high availability computing. The number of standby components may be

increased to tolerate more than one failure at a time. The following active/active config-

urations require more than one redundant system component to be active, i.e., to accept

and execute state change requests.

• Asymmetric active/active requires two or more active components that offer the

same capabilities at tandem without coordination, while optional standby compo-

nents may replace failing active components. Asymmetric active/active provides

high availability with improved throughput performance. While it is heavily used

in the telecommunication sector for stateless components (n + 1 and n + m high

availability clustering, Sections 2.1.3 and 2.4), it has limited use cases due to the

missing coordination between active components.

• Symmetric active/active requires two or more active components that offer the same

capabilities and maintain a common global component state using state-machine

replication (Section 2.3.1), virtual synchrony (Section 2.3.3), or distributed control

(Section 2.3.4), i.e., using a state change commit protocol. There is no interruption

of service and no loss of state, since active services run in virtual synchrony without

the need to failover.

Continuous Availability

A system that has high availability properties and additionally applies these to planned

outages as well, has continuous availability. This implies a masking strategy for planned

outages, such as maintenance. Furthermore, a service interruption introduced by a high

availability solution is a planned outage that needs to be dealt with as well. Continuous

availability requires complete masking of all outages.

Application areas are typically mission critical, e.g., in the military, financial, health-

care, and telecommunication sectors. Employed technologies range from hot standby with

transparent fail-over and multiple standbys to active/active.

3.1.4 Availability Metrics

A systems availability can be between 0 and 1 (or 0% and 100% respectively), where 0

stands for no availability, i.e., the system is inoperable, and 1 means continuous avail-

ability, i.e., the system does not have any outages. Availability, in the simplest form,

50

3 Taxonomy, Architecture, and Methods

describes a ratio of system uptime tup and downtime tdown:

A =
tup

tup + tdown
(3.15)

Availability can be calculated (Equation 3.16) based on a systems MTTF and MTTR.

While the MTTF is the average interval of time that a system will operate before a failure

occurs, the MTTR of a system is the average amount of time needed to repair, recover, or

otherwise restore its service. However, there is a distinction between MTTF and MTBF ,

which is the average interval of time in which any failure occurs again. A systems MTBF

covers both, MTTF and MTTR (Equation 3.17). The estimated annual unplanned

downtime of a system in terms of hours tdown can be calculated using its availability

(Equation 3.18). Planned outages may be included by respectively adjusting MTTF and

MTTR.

A =
MTTF

MTTF +MTTR
=

1

1 + MTTR
MTTF

(3.16)

MTBF = MTTF +MTTR (3.17)

tdown = 365 · 24 · (1− A) (3.18)

A system is often rated by the number of 9s in its availability figure (Table 3.1). For

example, a system that has a five-nines availability rating, has 99.999% availability and

an annual downtime of 5 minutes and 15.4 seconds. This rating is commonly used for

mission critical systems, e.g., military, financial, healthcare, and telecommunication.

9s Availability Annual Downtime
1 90% 36 days, 12 hours
2 99% 87 hours, 36 minutes
3 99.9% 8 hours, 45.6 minutes
4 99.99% 52 minutes, 33.6 seconds
5 99.999% 5 minutes, 15.4 seconds
6 99.9999% 31.5 seconds

Table 3.1: Availability measured by the “nines”

The availability of a system depends on the availability of its individual components.

System components can be coupled serial, e.g., component 1 depends on component 2,

or parallel, e.g., component 3 is entirely redundant to component 4. The availability of

n-series or n-parallel component compositions is as follows:

Aseries =
n∏
i=1

Ai (3.19)

51

3 Taxonomy, Architecture, and Methods

Aparallel = 1−
n∏
i=1

(1− Ai) (3.20)

The availability of n-series or n-parallel component compositions with equal individual

component availability Acomponent is as follows:

Aseries = Ancomponent (3.21)

Aparallel = 1− (1− Acomponent)n (3.22)

The more dependent, i.e., serial, components a system has, the less availability it pro-

vides. The more redundant, i.e., parallel, components a system has, the more availabil-

ity it offers. High availability systems are build upon adding redundant components

to increase overall system availability. Automatic redundancy solutions, such as ac-

tive/standby (Section 3.1.3), employ parallel subsystems with equal component failure

rates (Section 3.1.2) in series with a fault detection and reconfiguration software subsys-

tem residing on one or more components.

Assuming an equal individual component MTTFcomponent based on observed failure

rate, an equal individual component MTTRcomponent based on the time it takes to manu-

ally replace a component, and an equal individual component MTTRrecovery based on the

time it takes to automatically recover from a component failure, the availability Aredundancy

of an automatic n-redundancy solution can be calculated based on a parallel component

composition for the n redundant components in series with the fault detection and recon-

figuration software subsystem residing on m components as follows:

Aredundancy = [1− (1− Acomponent)n]Areconfiguration (3.23)

Acomponent =
MTTFcomponent

MTTFcomponent +MTTRcomponent

=
1

1 + MTTRcomponent

MTTFcomponent

(3.24)

Areconfiguration =
1
m
MTTFcomponent

1
m
MTTFcomponent +MTTRrecovery

=
1

1 +m MTTRrecovery

MTTFcomponent

(3.25)

The distinction between n and m is a result of the fact that the MTTF of the soft-

ware subsystem depends on the series component composition (Equation 3.13) for which

MTTRrecovery is observed. m = 1 for active/warm-standby, while m = n for active/hot-

standby and symmetric active/active due to consistency requirements. MTTRrecovery is

the primary quality of service metric for a high availability method with an automatic

recovery procedure. The faster recovery takes place, the higher availability is provided.

Efficient redundancy strategies focus on a low MTTRrecovery. They also target a low

replication overhead during failure-free operation as a secondary quality of service metric.

52

3 Taxonomy, Architecture, and Methods

3.1.5 Fail-Stop

The failure model is an important aspect of high availability as it defines the scope of

failures that are masked.

The fail-stop model assumes that system components, such as individual services, nodes,

and communication links, fail by simply stopping. Employed failure detection and recov-

ery mechanisms only work correctly in case of hard errors or catastrophic soft errors, i.e.,

benign failures (Section 3.1.1). Redundancy solutions based on this model do not guaran-

tee correctness if a failing system component violates this assumption by producing false

output due to an occurring soft error or a system design error.

The work presented in this thesis is entirely based on the fail-stop model, since HPC

system nodes typically exhibit this behaviour. Furthermore, HPC is a performance sen-

sitive application area and Byzantine fault tolerance mechanisms (Section 2.3.5) that

handle all kinds of failures, including malicious failures and non-catastrophic soft errors

(Section 3.1.1), incur a higher performance overhead during normal operation due to the

extra measures employed to catch incorrect process behaviour. Fail-stop behaviour can

also be enforced to a certain degree by immediately fencing off failed or incorrect system

components (Section 2.1.4) to avoid further disruption.

3.2 System Architecture

In the following, the design and properties of current HPC system architectures are exam-

ined and generalised. In this context, availability deficiencies are identified and classified.

3.2.1 HPC System Architectures

The emergence of cluster computing in the late 90’s made scientific computing not only

affordable to everyone using commercial off-the-shelf (COTS) hardware, it also introduced

the Beowulf cluster system architecture (Figure 3.2) [177–180] with its single head node

controlling a set of dedicated compute nodes. In this architecture, head node, compute

nodes, and interconnects can be customised to their specific purpose in order to improve

efficiency, scalability, and reliability. Due to its simplicity and flexibility, many supercom-

puting vendors adopted the Beowulf architecture either completely in the form of HPC

Beowulf clusters or in part by developing hybrid HPC solutions.

Most architectures of today‘s HPC systems have been influenced by the Beowulf cluster

system architecture. While they are designed based on fundamentally different system

architectures, such as vector, massively parallel processing (MPP), and single-system

53

3 Taxonomy, Architecture, and Methods

Compute Node Interconnect

Compute
Node

Compute
Node

Compute
Node

Compute
Node

...Head
Node

Users,
I/O &

Storage

Figure 3.2: Traditional Beowulf cluster system architecture

image (SSI), the Beowulf cluster computing trend has led to a generalised architecture

for HPC systems.

In this generalised HPC system architecture (Figure 3.3), a number of compute nodes

perform the actual parallel computation, while a head node controls the system and acts

as a gateway to users and external resources. Optional service nodes may offload specific

head node responsibilities in order to improve performance and scalability. For further

improvement, the set of compute nodes may be partitioned (Figure 3.4), tying individual

service nodes to specific compute node partitions. However, a system‘s architectural

footprint is still defined by its compute node hardware and software configuration as well

as the compute node interconnect.

Compute Node Interconnect

Compute
Node

Compute
Node

Compute
Node

Compute
Node

...Head
Node

I/O
Node

I/O
Node

... Service
Node

Service
Node

...

I/O & Storage

Users

Figure 3.3: Generic modern HPC system architecture

System software, such as OS and middleware, has been influenced by this trend as well,

but also by the need for customisation and performance improvement. Similar to the

Beowulf cluster system architecture, system-wide management and gateway services are

provided by head and service nodes.

However, in contrast to the original Beowulf cluster system architecture with its “fat”

compute nodes running a full OS and a number of middleware services, today‘s HPC

systems typically employ “lean” compute nodes (Figure 3.5) with a basic OS and only

a small amount of middleware services, if any middleware at all. Certain OS parts and

middleware services are provided by service nodes instead.

54

3 Taxonomy, Architecture, and Methods

Partition Compute Node Interconnect

Compute
Node

Compute
Node

Compute
Node

Compute
Node

...
Head
Node

I/O
Node

I/O
Node

... Service
Node

Service
Node

...

I/O & Storage

Users

Compute Node Interconnect

Figure 3.4: Generic modern HPC system architecture with compute node partitions

(a) Fat (b) Lean

Figure 3.5: Traditional fat vs. modern lean compute node software architecture

The following paragraph is an overview description from the Cray XT4 documenta-

tion [181] that illustrates this recent trend in HPC system architectures:

The XT4 is the current flagship MPP system of Cray. Its design builds upon a single

processor node, or processing element (PE). Each PE is comprised of one AMD micropro-

cessor (single, dual, or quad core) coupled with its own memory (1-8 GB) and dedicated

communication resource. The system incorporates two types of processing elements: com-

pute PEs and service PEs. Compute PEs run a lightweight OS kernel, Catamount [182–

184], that is optimised for application performance. Service PEs run standard SUSE

Linux [185] and can be configured for I/O, login, network, or system functions. The

I/O system uses the highly scalable Lustre [41–43] parallel file system. Each compute

55

3 Taxonomy, Architecture, and Methods

blade includes four compute PEs for high scalability in a small footprint. Service blades

include two service PEs and provide direct I/O connectivity. Each processor is directly

connected to the interconnect via its Cray SeaStar2 routing and communications chip

over a 6.4 GB/s HyperTransport path. The router in the Cray SeaStar2 chip provides six

high-bandwidth, low-latency network links to connect to six neighbours in the 3D torus

topology. The Cray XT4 hardware and software architecture is designed to scale steadily

from 200 to 120,000 processor cores.

The Cray XT4 system architecture with its lean compute nodes is not an isolated case.

For example, the IBM Blue Gene [33, 34] solution also uses a lightweight compute node

OS together with service nodes. In fact, the Compute Node Kernel (CNK) on the IBM

Blue Gene forwards most Portable Operating System Interface (POSIX) [186] calls to the

service node for execution using a lightweight RPC [187].

System software solutions for modern HPC architectures, as exemplified by the Cray

XT4 and the IBM Blue Gene, need to deal with certain architectural limitations. For ex-

ample, the compute node OS of the Cray XT4, Catamount, is a non-POSIX lightweight

OS, i.e., it does not provide multiprocessing, sockets, and other POSIX features. Fur-

thermore, compute nodes do not have direct attached storage (DAS), instead they access

networked file system solutions via I/O service nodes.

3.2.2 Availability Deficiencies

Due to the fact that a HPC system depends on each of its nodes and on the network to

function properly, i.e., all HPC system components are interdependent (serially coupled,

Section 3.1.4), single node or network failures trigger system-wide failures. The availability

of a HPC system may be calculated (Equation 3.26) using the availability of its individual

components, such as of its nodes n, network links l, and network routers r. However, this

model is simplistic as it does not include any external dependencies, such as electrical

power, thermal cooling, and network access.

A =
N∏
n=1

An
L∏
l=1

Al
R∏
r=1

Ar (3.26)

Individual availability deficiencies, i.e., deficient components, of any type of system can

be categorised by their system-wide impact into: single points of failure and single points

of control. A failure at a single point of failure interrupts the entire system. However, the

system is able to continue to partially function properly after reconfiguration (recovery)

into a degraded operating mode. Such reconfiguration may involve a full or partial restart

of the system. A failure at a single point of control interrupts the entire system and

56

3 Taxonomy, Architecture, and Methods

additionally renders the system useless until the failure has been repaired.

Partial or complete loss of state may occur in case of any failure. For HPC systems, there

is a distinction between system state and application state. While system state consists of

the states of all system services including related OS state, application state comprises of

the process states of a parallel application running on a HPC system, including dependent

system state, such as communication buffers (in-flight messages).

In the following, individual single points of failure and single points of control of HPC

systems are described. The notion of critical system services is introduced and their

impact on system availability is discussed. The role of individual HPC system nodes is

examined in more detail

Critical System Services

HPC systems run critical and non-critical system services on head, service, and compute

nodes, such as job and resource management, communication services, and file system

metadata services, permitting applications to perform computational jobs in parallel on

the compute nodes using the interconnect for messaging.

A service is critical to its system if it can‘t operate without it. Any such critical system

service is a single point of failure and control for the entire HPC system. As long as

one of them is down, the entire HPC system is not available. Critical system services

may cause a loss of system and application state in case of a failure. If a critical system

service depends on another service, this other service is an additional point of failure and

control for the critical system service and therefore also a critical system service by itself.

Dependent critical system services do not necessarily reside at the same physical location,

i.e., not on the same node. Any node and any network connection a critical system service

depends on is an additional point of failure and control for the critical system service and

therefore also for the entire HPC system.

A service is non-critical to its system if it can operate without it in a degraded mode.

Any such non-critical system service is still a single point of failure for the entire HPC

system. Non-critical system services may also cause a loss of system and application state

in case of a failure.

A system partition service is critical to its system partition if it can‘t operate without

it. Any such service is a single point of failure and control for the respective partition

it belongs to. If the system is not capable of operating in a degraded mode, any such

critical system partition service is also a critical system service. However, if the system

is capable of operating in a degraded mode, any such critical system partition service is

also a non-critical system service.

Typical critical HPC system services are: user login, network file system (I/O forward-

57

3 Taxonomy, Architecture, and Methods

ing, metadata, and storage), job and resource management, communication services, and

in some cases the OS or parts of the OS itself, e.g., for SSI systems. User management,

software management, and programming environment are usually non-critical system ser-

vices, while network file system I/O forwarding and communication services are typical

critical system partition services.

Head Node

If a system has a head node running critical system services, this head node is a single

point of failure and control for the entire HPC system. As long as it is down, the entire

HPC system is not available. A head node failure may cause a loss of system and appli-

cation state. A typical head node on HPC systems may run the following critical system

services: user login, job and resource management, and network file system metadata and

storage. It may also run the following non-critical services: user management, software

management, and programming environment.

Most HPC systems employ a head node, such as clusters, e.g., IBM MareNostrum [188],

vector machines, e.g., Cray X1 [189], MPP systems, e.g., Cray XT4 [181], and SSI solu-

tions, e.g., SGI Altix [190].

Service Nodes

If a system employs service nodes running critical system services, any such service node

is a single point of failure and control for the entire HPC system. As long as one of

them is down, the entire HPC system is not available. Similar to a head node failure,

a service node failure may cause a loss of system and application state. If a system has

service nodes running non-critical system services, any such service node is a single point

of failure for the entire system. A failure of a service node running non-critical system

services may still cause a loss of system and application state.

Service nodes typically offload head node system services, i.e., they may run the same

critical and non-critical system services. Most of the advanced HPC systems currently in

use employ service nodes, e.g., Cray X1 [189], Cray XT4 [181], IBM Blue Gene [33, 34],

and IBM MareNostrum [188].

Partition Service Nodes

If a system has partition service nodes running critical system partition services, any such

partition service node is a single point of failure and control for the respective HPC system

partition it belongs to. As long as any such partition service node is down, the respective

HPC system partition of the system is not available. Similar to a service node failure,

58

3 Taxonomy, Architecture, and Methods

a partition service node failure may cause a loss of system and application state. If the

system is not capable of operating in a degraded mode, any such partition service node

is a single point of failure and control for the entire HPC system. As long as any one of

them is down, the entire HPC system is not available.

Partition service nodes typically offload critical head/service node system services, but

not non-critical system services. They can be found in more advanced large-scale cluster

and MPP systems, e.g., Cray XT4 [181] and IBM Blue Gene [33, 34]. Furthermore,

federated cluster solutions use head nodes of individual clusters as partition service nodes,

e.g., NASAs SGI Altix Supercluster Columbia [191].

Compute Nodes

Each compute node running critical system services is a single point of failure and control

for the entire HPC system. As long as any such compute node is down, the entire HPC

system is not available. A failure of a compute node running critical system services may

cause a loss of system and application state. Each compute node not running critical

system services is still a single point of failure for the entire HPC system. If the system is

not capable of operating in a degraded mode, any such compute node is a single point of

failure and control for the entire HPC system. As long as one of them is down, the entire

HPC system is not available. A failure of a compute node not running critical system

services may cause a loss of application state, but not a loss of system state.

Compute nodes that do run critical system services may be found in some HPC systems.

Sometimes communication services and in some cases the OS are critical system services

running on compute nodes, e.g., in SSI systems, like SGI‘s Altix [190]. Compute nodes

that do not run critical system services can be found in most HPC systems, similar to

partition compute nodes that do not run critical system services (following Section).

Partition Compute Nodes

Each partition compute node running critical system partition services is a single point of

failure and control for the respective HPC system partition it belongs to. As long as any

such partition compute node is down, the respective partition of the HPC system is not

available. Similar to a failure of a compute node, a failure of a partition compute node

running critical system services may cause a loss of system and application state. If the

system is not capable of operating in a degraded mode, any partition compute node is a

single point of failure and control for the entire HPC system. As long as any one of them

is down, the entire HPC system is not available.

Each partition compute node not running critical system services is still a single point of

59

3 Taxonomy, Architecture, and Methods

failure for the respective partition it belongs to. If the system is not capable of operating

in a degraded mode, any such compute node is a single point of failure and control for the

entire system. A failure of a partition compute node not running critical system services

may cause a loss of application state, but not a loss of system state.

Partition compute nodes may run the same critical system services that run on normal

compute nodes. Partition compute nodes that do run critical system services can be found

in federated SSI solutions, e.g., NASAs SGI Altix Supercluster Columbia [191], where each

partition is a SSI system. Partition compute nodes that do not run critical system services

can be found in more advanced large-scale MPP systems, e.g., Cray XT4 [181] and IBM

Blue Gene [33, 34].

System Scale

Theory (Equation 3.26) and recent empirical studies [2, 3] show that the availability

of a system decreases proportionally with its number of dependent (serial) components.

Additionally, the MTTR of a system grows with the number of its components, if the

recovery involves reconfiguration of the entire system and not just of the single failed

component.

The more nodes a HPC system consists of, the more frequent is the occurrence of failures

and the more time is needed for a system-wide recovery, such as restart from a checkpoint

(Section 2.2.1). Moreover, the total number of nodes in a HPC system also negatively

influences the efficiency of recovery strategies during normal operation. Checkpointing a

HPC system needs to be counted as planned outage and will take longer the more nodes

are involved.

Section 1.2 already referred to two studies [20, 21] performed at Los Alamos National

Laboratory that estimate MTBF and recovery overhead on next-generation large-scale

HPC systems. Extrapolating from current HPC system performance, scale, and overall

system MTTF, the first study suggests that the MTBF will fall to only 1.25 hours of

useful computation on a 1 PFlop/s next-generation supercomputer. It also estimates

that more than 60% of the processing power (and investment) may be lost due to the

overhead of dealing with reliability issues. The second study estimates a MTTF of 1.5

hours for non-recoverable radiation-induced soft errors (double-bit memory or single-bit

logic error) on a Cray XD1 system [22] with the same number of processors as the ASCI

Q system [23], with almost 18,000 FPGAs and 16,500 GB of ECC memory.

60

3 Taxonomy, Architecture, and Methods

3.3 High Availability Methods

Previous work on providing high availability for HPC head and service nodes (Section 2.1)

relies on service-level solutions and customised replication environments, resulting in in-

sufficient reuse of code. This causes not only rather extensive development efforts for each

new high availability method and service, but also makes their correctness validation an

unnecessary repetitive task. Furthermore, replication techniques can‘t be seamlessly in-

terchanged for a specific service in order to find the most appropriate solution based on

quality of service requirements.

In the following, a more generic approach toward service-level high availability for HPC

head and service nodes is presented to alleviate and eventually eliminate these issues. In

a first step, a conceptual service model is defined. In a second step, various service-level

high availability methods and their properties are described based on this model. In

a third step, individual service-level high availability methods are compared with each

other with regards to their performance overhead and provided availability. Similarities

and differences in their programming interfaces are examined as well.

3.3.1 Service Model

A more generic approach toward service-level high availability relies on the definition of a

service as a communicating process (Figure 3.6), which interacts with other local or remote

clients, services, and users via an input/output interface, such as network connection(s),

command line interface(es), and/or other forms of inter-process and user communication.

Interaction is performed using input messages, such as network messages, command line

executions, etc., which may trigger output messages to the interacting clients, services,

and users in a request/response fashion, or to other clients, services, and users in a

trigger/forward fashion.

Service p

Request Messages:
rp

1, rp
2 rp

3, ...

Query Messages:
qp

1,1,qp
1,2, qp

2,1 qp
3,1, ...

Output Messages:
op

1,1,1, op
1,2,1, op

2,1,1,
op

3,1,1, op
3,1,2,...

Output Messages:
op

1,1,op
1,2, op

3,1 ,op
3,2, ...

Deterministic
State Machine

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Figure 3.6: Generic service model

61

3 Taxonomy, Architecture, and Methods

While a stateless service does not maintain internal state and reacts to input with

a predefined output independently of any previous input, stateful services do maintain

internal state and change it accordingly to input messages. Stateful services perform state

transitions and produce output based on a deterministic state machine.

However, non-deterministic service behaviour may be caused by non-deterministic ser-

vice input, such as by a system timer sending input messages signalling a specific timeout

or time. If a stateless or stateful service relies on such a non-deterministic component

invisible to the outside world it is considered non-deterministic. Examples for sources of

non-determinism are:

• unsynchronised random number generators,

• unsynchronised timers,

• uncoordinated multiplexed I/O, e.g., select with multiple file descriptors, and

• uncoordinated multithreading, e.g., uncoordinated read/write in multiple threads.

Non-deterministic service behaviour has serious consequences for service-level replica-

tion techniques for stateful services as deterministic replay using the same input messages

can‘t be guaranteed, i.e., using the same input messages two identical services may reach

different state and/or may produce different output.

Sources of non-determinism may be eliminated by forcing determinism onto them, such

as by synchronising timers and random number generators across nodes or by coordinating

I/O accesses and threads within a service.

As most services in HPC systems are stateful and deterministic, like for example the

parallel file system metadata service, we will explore their conceptual service model and

service-level high availability programming models. Non-determinism, such as displayed

by a batch job management system, may be avoided by configuring the service to behave

deterministic, for example by using a deterministic batch job scheduling policy or by

synchronising timers across head nodes.

The state of service p at step t is defined as Stp, and its initial state as S0
p . A state

transition from St−1
p to Stp is triggered by request message rtp processed by service p at step

t − 1, such that request message r1
p triggers the state transition from S0

p to S1
p . Request

messages are processed in order at the respective service state, such as that service p

receives and processes the request messages r1
p, r

2
p, r

3
p, There is a linear history of

state transitions S0
p , S

1
p , S

2
p , . . . in direct context to a linear history of request messages

r1
p, r

2
p, r

3
p,

Service state remains unmodified when processing the xth query message qt,xp by service

p at step t. Multiple query messages may be processed at the same service state out of

62

3 Taxonomy, Architecture, and Methods

order, such as that service p processes the query messages rt,3p , rt,1p , rt,2p , . . . , previously

received as rt,1p , rt,2p , rt,3p ,

Each processed request message rtp may trigger any number of y output messages . . . ,

ot,y−1
p , ot,yp related to the specific state transition St−1

p to Stp, while each processed query

message qt,xp may trigger any number of y output messages . . . , ot,x,y−1
p , ot,x,yp .

A deterministic service always has replay capability, i.e., different instances of a service

have the same state if they have the same linear history of request messages. Furthermore,

not only the current state, but also past service states may be reproduced using the

respective linear history of request messages.

A service may provide an interface to atomically obtain a snapshot of the current

state using a query message qt,xp and its output message ot,x,1p , or to atomically overwrite

its current state using a request message rtp with an optional output message ot,1p as

confirmation. Both interface functions are needed for service state replication.

The failure mode of a service is fail-stop (Section 3.1.4), i.e., the service itself, its

node, or its communication links, fail by simply stopping. Appropriate failure detection

mechanisms may be deployed to assure fail-stop behaviour in certain cases, such as to

detect incomplete, garbled, or otherwise erroneous messages.

The availability Acomponent of a service can be calculated based on its MTTFcomponent

and MTTRcomponent (Equation 3.16 in Section 3.1.4). The availability Aredundancy of a

service redundancy solution can be calculated based on MTTFcomponent, MTTRcomponent,

MTTRrecovery, n, and m (Equation 3.23 in Section 3.1.4). MTTRrecovery, i.e., the time

it takes to automatically recover from a component failure, is the primary quality of

service metric. The goal of the following service replication mechanisms is to provide for

service redundancy with a low MTTRrecovery. The availability of a service approaches 1,

i.e., 100%, if MTTRrecovery approaches 0. A low replication overhead during failure-free

operation is a secondary quality of service metric.

3.3.2 Active/Standby Replication

In the active/standby replication method for service-level high availability, at least one

additional standby service B is monitoring the primary service A for a fail-stop event and

assumes the role of the failed active service when detected. The standby service B should

preferably reside on a different node, while fencing the node of service A after a detected

failure to enforce the fail-stop model (node fencing, Section 2.1.4).

Service-level active/standby replication (Figure 3.7) is based on assuming the same

initial states for the primary service A and the standby service B, i.e., S0
A = S0

B, and

on replicating the service state from the primary service A to the standby service B by

63

3 Taxonomy, Architecture, and Methods

guaranteeing a linear history of state transitions. This can be performed in two distinctive

ways, as active/warm-standby and active/hot-standby replication.

Service ..

Service A

Request Messages:
rA

1, rA
2 rA

3, ...

Query Messages:
qA

1,1,qA
1,2, qA

2,1 qA
3,1, ...

Output Messages:
oA

1,1,1, oA
1,2,1, oA

2,1,1,
oA

3,1,1, oA
3,1,2,...

Output Messages:
oA

1,1,oA
1,2, oA

3,1 ,oA
3,2, ...

Active Service

Standby Service(s)

Service B

Backup

Connection
Fail-Over

Connection
Fail-Over

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Figure 3.7: Active/standby method

In the warm-standby replication method, service state is replicated regularly from the

primary service A to the standby service B in a consistent fashion, i.e., the standby

service B assumes the state of the primary service A once it has been transferred and

validated. Replication may be performed by the primary service A using an internal

trigger mechanism, such as a timer, to atomically overwrite state of the standby service

B. It may also be performed in the reverse form by the standby service B using a similar

trigger mechanism to atomically obtain a snapshot of the state of the primary service A.

The latter case already provides a failure detection mechanism using a timeout for the

response from the primary service A.

A failure of the primary service A triggers the fail-over procedure to the standby service

B, which becomes the new primary service A′ based on the last replicated state. Since

the warm-standby method does assure a linear history of state transitions only up to the

last replicated service state, all dependent clients, services, and users need to be notified

about a possible service state rollback. However, the new primary service A′ is unable to

verify by itself if a rollback has occurred.

In the hot-standby method, service state is replicated on change from the primary

service A to the standby service B in a consistent fashion, i.e., using a commit protocol,

in order to provide a fail-over capability without state loss. Service state replication is

performed by the primary service A when processing request messages. A previously

received request message rtA is forwarded by the primary service A to the standby service

B as request message rtB. The standby service B replies with an output message ot,1B as

an acknowledgement and performs the state transition St−1
B to StB without generating any

output. The primary service A performs the state transition St−1
A to StA and produces

output accordingly after receiving the acknowledgement ot,1B from the standby service B

64

3 Taxonomy, Architecture, and Methods

or after receiving a notification of a failure of the standby service B.

A failure of the primary service A triggers the fail-over to the standby service B, which

becomes the new primary service A′ based on the current state. In contrast to the warm-

standby replication method, the hot-standby method does guarantee a linear history of

state chance transitions up to the current state. However, the primary service A may have

failed before sending all output messages . . . , ot,y−1
A , ot,yA for an already processed request

message rtA. Furthermore, the primary service A may have failed before sending all output

messages . . . , ot,x−1,y−1
A , ot,x−1,y

A , ot,x,y−1
A , ot,x,yA for previously processed query messages . . . ,

qt,x−1
A , qt,xA . All dependent clients, services, and users need to be notified that a fail-over has

occurred. The new primary service A′ resends all output messages . . . , ot,y−1
A′ , ot,yA′ related

to the previously processed request message rtA′ , while all dependent clients, services, and

users ignore duplicated output messages. Unanswered query messages . . . , qt,x−1
A , qt,xA are

reissued to the new primary service A′ as query messages . . . , qt,x−1
A′ , qt,xA′ by dependent

clients, services, and users.

The active/standby method always requires to notify dependent clients, services, and

users about the fail-over. Active/standby replication also always implies a certain inter-

ruption of service until a failure has been detected and a fail-over has been performed.

The MTTRrecovery of the active/warm-standby method depends on the time to detect a

failure, the time needed for fail-over, time to reconfigure client connections, and the time

needed by clients and service to catch up based on the last replicated service state. The

MTTRrecovery of the active/hot-standby method only depends on the time to detect a

failure, the time needed for fail-over, and the time to reconfigure client connections.

The only performance impact of the active/warm-standby method is the atomic ser-

vice state snapshot, which briefly interrupts the primary service. The active/hot-standby

method adds communication latency to every request message, as forwarding to the sec-

ondary node and waiting for the respective acknowledgement is needed. This overhead

can be expressed as CL = 2lA,B, where lA,B is the communication latency between the

primary service A and the standby service B. An additional communication latency and

throughput overhead may be introduced if the primary service A and the standby service

B are not connected by a dedicated communication link equivalent to the communication

link(s) of the primary service A to all dependent clients, services, and users.

Using multiple standby services B, C, . . . may provide higher availability as more re-

dundancy is provided. However, consistent service state replication to the n− 1 standby

services B, C, . . . requires fault tolerant multicast capability, i.e., service group mem-

bership management and reliable multicast (Section 2.3.2). The introduced overhead

directly depends on the protocol and may be O(log2(n)) in the best case. Furthermore, a

priority-based fail-over policy, e.g., A to B to C to . . . , is needed as well.

65

3 Taxonomy, Architecture, and Methods

3.3.3 Asymmetric Active/Active Replication

In the asymmetric active/active replication method (Figure 3.8), two or more active ser-

vices A, B, . . . provide essentially the same service capability at tandem without state

coordination, while optional standby services α, β, . . . in an n+ 1 or n+m configuration

may replace failing active services. There is no synchronisation or replication between the

active services.

Service ..

Service ..

Service A

Request Messages:
rA

1, rB
2 rC

3, ...

Query Messages:
qC

1,1,qA
1,2, qB

2,1 qA
3,1, ...

Output Messages:
oC

1,1,1, oA
1,2,1, oB

2,1,1,
oA

3,1,1, oA
3,1,2,...

Output Messages:
oA

1,1,oA
1,2, oC

3,1 ,oC
3,2, ...

Active Service(s)

Optional Standby Service(s)

Service α

Backup

Connection
Fail-Over

Connection
Fail-Over

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Figure 3.8: Asymmetric active/active method

Service state replication is only performed from the active services A, B, . . . to the

optional standby services α, β, . . . in an active/standby fashion as previously explained.

The only additional requirement is a priority-based fail-over policy, e.g., A > B > . . ., if

there are more active than standby services (n > m), and load balancing for using the

active services at tandem.

Load balancing of request and query messages needs to be performed at the granularity

of user/service groups, as there is no coordination between active services. Individual

active services may be assigned to specific user/service groups in a static load balancing

scenario. A more dynamic solution is based on sessions, where each session is a time

segment of interaction between user/service groups and specific active services. Sessions

may be assigned to active services at random, using specific networking hardware, or using

a separate service. However, introducing a separate service for session scheduling adds a

dependency to the system, which requires its own redundancy strategy.

Similar to the active/standby method, the asymmetric active/active replication method

requires notification of dependent clients, services, and users about a fail-over and about

an unsuccessful priority-based fail-over.

It also always implies a certain interruption of a specific active service until a failure

has been detected and a fail-over has been performed. The MTTRrecovery for a a specific

active service depends on the active/standby replication strategy. However, other active

66

3 Taxonomy, Architecture, and Methods

services are available during a fail-over, which interact with their specific user/service

groups and sessions and respond to new user/service groups and sessions.

The performance of single active services in the asymmetric active/active replication

method is equivalent to the active/standby case. However, the overall service provided

by the active service group A, B, . . . allows for a higher throughput performance and

respectively for a lower respond latency under high-load conditions due to the availability

of more resources and load balancing.

3.3.4 Symmetric Active/Active Replication

In the symmetric active/active replication method for service-level high availability (Fig-

ure 3.9), two or more active services A, B, . . . offer the same capabilities and maintain a

common global service state.

Service A

Service B

Service ..

Request Messages:
rA

1, rB
2 rC

3, ...

Query Messages:
qC

1,1,qA
1,2, qB

2,1 qA
3,1, ...

Output Messages:
oC

1,1,1, oA
1,2,1, oB

2,1,1,
oA

3,1,1, oA
3,1,2,...

Output Messages:
oA

1,1,oA
1,2, oC

3,1 ,oC
3,2, ...

Client ..

Dependent Clients,
Services, and Users

Active Service(s)

Virtual
Synchrony

Connection
Fail-Over/

Load Balacing

Connection
Fail-Over/

Load Balancing

...

User ..

Service ..Service ..

User ..

Service ..Client ..

Dependent Clients,
Services, and Users

User ..

Service ..Service ..

User ..

Figure 3.9: Symmetric active/active method

Service-level symmetric active/active replication is based on assuming the same initial

states for all active services A, B, . . . , i.e., S0
A = S0

B = . . ., and on replicating the ser-

vice state by guaranteeing a linear history of state transitions using virtual synchrony

(Section 2.3.3). Service state replication among the active services A, B, . . . is performed

by totally ordering all request messages rtA, rtB, . . . and reliably delivering them to all

active services A, B, A process group communication system (Section 2.3.2) is used

to perform total message order, reliable message delivery, and service group membership

management. Furthermore, consistent output messages ot,1A , ot,1B , . . . related to the specific

state transitions St−1
A to StA, St−1

B to StB, . . . produced by all active services A, B, . . . is

unified either by simply ignoring duplicated messages or by using the process group com-

munication system for a distributed mutual exclusion. The latter is required if duplicated

messages can‘t be simply ignored by dependent clients, services, and users.

67

3 Taxonomy, Architecture, and Methods

If needed, the distributed mutual exclusion is performed by adding a local mutual exclu-

sion variable and its lock and unlock functions to the active services A, B, However,

the lock has to be acquired and released by routing respective multicast request messages

rtA,B,... through the process group communication system for total ordering. Access to

the critical section protected by this distributed mutual exclusion is given to the active

service sending the first locking request, which in turn produces the output accordingly.

Dependent clients, services, and users are required to acknowledge the receiving of output

messages to all active services A, B, . . . for internal bookkeeping using a reliable multicast.

In case of a failure, the membership management notifies everyone about the orphaned

lock and releases it. The lock is reacquired until all output is produced accordingly to a

state transition. A distributed mutual exclusion implies a high overhead lock-step mech-

anism for exact-once output delivery. It should be avoided whenever possible. Message

duplication and respective filters at the receiving end should be used instead.

The number of active services is variable at runtime and can be changed by either

forcing an active service to leave the active service group or by joining a new service with

the service group. Forcibly removed services or failed services are simply deleted from the

service group membership without any additional reconfiguration. Multiple simultaneous

removals or failures are handled as sequential ones in the order they occur or based on

a predetermined priority. New services join the service group by atomically overwriting

their service state with the service state snapshot from a service group member, e.g., StA,

before receiving following request messages, e.g., rt+1
A , rt+2

A ,

Query messages qt,xA , qt,xB , . . . may be send directly to respective active services through

the process group communication system to assure total order with conflicting request

messages, but without replicating them across all service group members. Related output

messages . . . , ot,x,y−1
A , ot,x,yA , ot,x,y−1

B , ot,x,yB are sent directly to the dependent service or

user. In case of a failure, unanswered query messages, e.g., . . . , qt,x−1
A , qt,xA , are reissued by

dependent clients, services, and users to a different active service, e.g., B, in the service

group as query messages, e.g., . . . , qt,x−1
B , qt,xB .

The symmetric active/active method also always requires to notify dependent clients,

services, and users about failures in order to reconfigure their access to the service group

through the process group communication system and to reissue outstanding queries.

There is no interruption of service and no loss of state as long as one active service is

alive, since active services run in virtual synchrony without the need for extensive recon-

figuration. The MTTRrecovery only depends on the time to reconfigure client connections.

However, the process group communication system introduces a latency overhead, which

increases with the number of active nodes n. This overhead may be in the best case 2lA,B

for two active services and O(log2(n)) for more.

68

3 Taxonomy, Architecture, and Methods

3.3.5 Comparison

All presented service-level high availability methods show certain interface and behaviour

similarities. They all require to notify dependent clients, services, and users about failures.

Transparent masking of this requirement may be provided by an underlying adaptable

framework, which keeps track of active services, their current high availability method,

fail-over and rollback scenarios, message duplication, and unanswered query messages.

The requirements for service interfaces in these service-level high availability methods

are also similar. A service must have an interface to atomically obtain a snapshot of

its current state and to atomically overwrite its current state. Furthermore, for the

active/standby service-level high availability method, a service must either provide the

described special standby mode for acknowledging request messages and muting output,

or an underlying adaptable framework needs to emulate this capability.

The internal algorithms of the active/hot-standby and the symmetric active/active

service-level high availability methods are equivalent for reliably delivering request mes-

sages in total order to all standby or active services. In fact, the active/hot-standby

service-level high availability method uses a centralised process group communication

commit protocol with fail-over capability for the central message sequencer. However, the

overhead for active/hot-standby is typically lower as only one service is active.

Based on the presented conceptual service model and service-level high availability

methods, active/warm-standby provides the lowest runtime overhead in a failure-free

environment and the highest recovery impact in case of a failure (Table 3.2). Con-

versely, symmetric active/active together with active/hot-standby offer the lowest recov-

ery impact, while symmetric active/active incurs the highest runtime overhead. However,

this comparison highly depends on actual implementation details and possible perfor-

mance/redundancy tradeoffs.

Method MTTRrecovery Latency Overhead
Warm-Standby Td + Tf + Tr + Tc 0
Hot-Standby Td + Tf + Tr 2lA,B, O(log2(n)), or worse
Asymmetric with Warm-Standby Td + Tf + Tr + Tc 0
Asymmetric with Hot-Standby Td + Tf + Tr 2lA,α, O(log2(n)), or worse
Symmetric Td + Tf + Tr 2lA,B, O(log2(n)), or worse

Td, time between failure occurrence and detection
Tf , time between failure detection and fail-over
Tc, time to recover from checkpoint to previous state
Tr, time to reconfigure client connections

lA,B and lA,α, communication latency between A and B, and A and α

Table 3.2: Comparison of replication methods

69

3 Taxonomy, Architecture, and Methods

It is also noted that symmetric active/active and active/hot-standby have a n-times

lower MTTF for the software subsystem for which MTTRrecovery is observed (Equa-

tion 3.23 in Section 3.1.4). When comparing the MTTRrecovery

MTTFcomponent
ratio, symmetric ac-

tive/active and active/hot-standby have a n-times higher ratio than active/warm-standby.

Since previous work on providing high availability for HPC head and service nodes

(Section 2.1) focused primarily on active/standby replication (Sections 2.1.1 and 2.1.2)

and secondarily on asymmetric active/active replication (Section 2.1.3), this thesis targets

symmetric active/active replication.

3.4 Summary

This Chapter provided the theoretical ground work of the research presented in this thesis.

An extended generic taxonomy for service-level high availability has been presented that

introduced new terms, such as asymmetric active/active and symmetric active/active, to

resolve existing ambiguities of terms, such as active/active. The taxonomy also clearly

defined the various configurations for achieving high availability of service and relevant

metrics for measuring service availability. This extended taxonomy represented a major

contribution to service availability research and development with respect to incorporating

state-machine replication theory and resolving ambiguities of terms.

Current HPC system architectures were examined in detail and a more generalised HPC

system architecture abstraction was introduced to allow identification of architectural

availability deficiencies. HPC system services were categorised into critical and non-

critical to describe their impact on overall system availability, while HPC system nodes

were categorised into single points of failure and single points of control to pinpoint their

involvement in system failures, to describe their impact on overall system availability,

and to identify their individual need for a high availability solution. This analysis of

architectural availability deficiencies of HPC systems represented a major contribution to

the understanding of high availability aspects in the context of HPC environments.

Using the taxonomy and a conceptual service model, various methods for providing

service-level high availability were defined and their mechanisms and properties were de-

scribed in detail. A theoretical comparison of these methods with regards to their perfor-

mance overhead and provided availability was presented. This comparison represented a

major contribution to service availability research and development with respect to incor-

porating state-machine replication theory. It clearly showed that symmetric active/active

replication provides the highest form of availability, while its performance impact highly

depends on the employed process group communication protocol.

70

4 Prototypes

Chapter 3 identified individual critical system services running on HPC system head and

service nodes that represent single points of failure and single points of control as major

availability deficiencies, such as the job and resource management system service and

the parallel file system metadata system service. Furthermore, it clearly showed that

symmetric active/active replication provides the highest form of availability.

This Chapter details objectives, technical approach, architecture, design, test results,

and conclusions for each of the following developed proof-of-concept prototypes:

• external symmetric active/active replication for the critical HPC job and resource

management system service,

• internal symmetric active/active replication for the critical HPC parallel file system

metadata system service,

• transparent symmetric active/active replication framework for services, and

• transparent symmetric active/active replication framework for dependent services.

The developed proof-of-concept prototypes centre around a multi-layered symmetric ac-

tive/active high availability framework concept that coordinates individual solutions with

regards to their respective field, and offers a modular approach that allows for adaptation

to system properties and application needs. In the following, the symmetric active/active

high availability framework concept is explained in more detail and the overarching ap-

proach for the developed proof-of-concept prototypes is explained.

4.1 Symmetric Active/Active High Availability

Framework Concept

The symmetric active/active high availability framework concept (Figure 4.1) consists of

four layers: communication drivers, group communication system, virtual synchrony run-

time environment and applications/services. At the lowest layer, communication drivers

71

4 Prototypes

provide reliable point-to-point and multicast messaging capability. The group communi-

cation system additionally offers process group membership management and total order

multicast. The virtual synchrony runtime environment offers adaptation of the group

communication system capabilities to the virtual synchrony approach for service-level

high availability in the form of easy-to-use interfaces for applications/services.

Figure 4.1: Symmetric active/active high availability framework concept

4.1.1 Communication Drivers

Today‘s HPC system architectures come with a variety of communication technologies,

such as Myrinet, Infiniband, Quadrics Elan4, Cray portals, shared memory, and Ethernet.

The symmetric active/active high availability framework concept is capable of supporting

vendor supplied high-performance network technologies as well as established standards,

such as IP, using communication drivers, thus enabling efficient communication.

The concept of using communication drivers to adapt specific APIs of different network

technologies to a unified communication API in order to make them interchangeable and

interoperable can be found in some existing solutions. For example, Open MPI (Sec-

tion 2.2.3) uses a component-based framework that encapsulates communication drivers

using interchangeable and interoperable components.

72

4 Prototypes

4.1.2 Group Communication System

The group communication system contains all essential protocols and services to run

virtual synchronous services for symmetric active/active high availability. Many (60+)

group communication algorithms can be found in literature (Section 2.3.2). A pluggable

component-based framework provides an experimental platform for comparing existing

solutions and for developing new ones. Implementations with various replication and con-

trol strategies using a common API allow adaptation to system properties and application

needs. Pluggable component-based frameworks for group communication mechanisms can

be found in some existing solutions, such as in Horus (Section 2.3.3).

4.1.3 Virtual Synchrony Runtime Environment

The supported APIs at the virtual synchrony runtime environment are based on appli-

cation properties. Deterministic and fully symmetrically replicated applications may use

replication interfaces for state-machines and databases. Nondeterministic or asymmetri-

cally replicated applications may use more advanced replication interfaces for replicated

RPCs or remote method invocations (RMIs). This adaptation of group communication

system capabilities to the virtual synchrony approach for service-level high availability

is needed due to the group communication system‘s limited knowledge about individual

application/service properties.

4.1.4 Applications/Services

There are many, very different, applications for the symmetric active/active high avail-

ability framework concept. This thesis primarily focuses on critical HPC system services

that represent a single point of failure and control, such as the job and resource man-

agement service typically located on the head node or the parallel file system metadata

service typically located on a dedicated service node. However, symmetric active/active

replication can be used in any service-oriented architecture (SOA) to re-enforce critical

services with appropriate redundancy strategies.

4.1.5 Approach

Since this thesis research targets efficient software state replication mechanisms for re-

dundancy of services running on HPC head and service nodes, the developed proof-of-

concept prototypes described in the following Sections 4.2-4.5 primarily focus on the

virtual synchrony runtime environment within this symmetric active/active high avail-

ability framework concept. The implementations rely on an existing IP-based process

73

4 Prototypes

group communication system, since the lower layers of the symmetric active/active high

availability framework concept can be found in various already existing solutions, such as

Open MPI (Section 2.2.3) with its pluggable runtime environment and high-performance

network components, or the Horus system (Section 2.3.3) with its stackable component

approach for group communication services. Future work may combine these existing

solutions with the virtual synchrony runtime environment presented in this thesis.

The first two proof-of-concept prototypes (Sections 4.2 and 4.3) demonstrate two new

approaches for providing symmetric active/active high availability for two different HPC

system services, the HPC job and resource management service and the HPC parallel file

system metadata service. The two proof-of-concept prototypes offer completely different

interfaces between service and group communication system. The first utilises the external

service interface that is visible to clients (Section 4.2), while the second tightly integrates

with the internal service interface (Section 4.3). Advantages and shortcomings of both

proof-of-concept prototypes are examined.

The next two preliminary proof-of-concept prototypes (Sections 4.4 and 4.5) demon-

strate mechanisms within the virtual synchrony runtime environment and abstractions

at the virtual synchrony runtime environment interface to provide transparent symmetric

active/active replication in client-service scenarios (Section 4.4) as well as in scenarios

with with dependent services (Section 4.5). Accomplishments and limitations of both

preliminary proof-of-concept prototypes are discussed.

4.2 External Symmetric Active/Active Replication for

the HPC Job and Resource Management Service

One of the most important HPC system services running on the head node is the job and

resource management service, also commonly referred to as batch job scheduler or simply

the scheduler. If this critical HPC system service goes down, all currently running jobs,

i.e., applications running on the HPC system, loose the service they report back to, i.e.,

their logical parent. They typically have to be restarted once the HPC job and resource

management service is up and running again after the head node has been repaired.

Previous research and development efforts offered active/standby and asymmetric ac-

tive/active high availability solutions (Sections 2.1.2 and 2.1.3) for various HPC job and

resource management services, such as for OpenPBS [44–46] and for Moab [50, 51].

The research and development effort presented in this Section targets symmetric ac-

tive/active high availability for the HPC job and resource management service. As part

of this effort, the fully functional JOSHUA [192–194] proof-of-concept prototype has been

74

4 Prototypes

developed in C on Linux to provide symmetric active/active high availability for the Teras-

cale Open-Source Resource and QUEue Manager (TORQUE) [195, 196] using the external

replication approach. TORQUE is a fork of the original OpenPBS version 2.3.12 [47] that

has been significantly enhanced. It is maintained and commercially supported by Cluster

Resources Inc.. TORQUE is used in many small-to-mid size HPC systems.

While the symmetric active/active high availability concept and the external replication

approach was developed by me [192, 197, 198], the detailed software design and the actual

implementation was carried out under my supervision by Kai Uhlemann [193, 194] during

his internship at Oak Ridge National Laboratory, USA, for his Master of Science (MSc)

thesis at the University of Reading, UK. His thesis [194], titled “High Availability for

High-End Scientific Computing”, primarily focuses on the developed JOSHUA proof-of-

concept prototype. It appropriately references my prior work in symmetric active/active

high availability [129, 198, 199]. The work performed under my supervision has been

published in a co-authored paper [193].

4.2.1 Objectives

Since no previous solution for providing symmetric active/active high availability for a

HPC system service existed, the development of this proof-of-concept prototype had the

following primary objectives:

• development of the first fully functional symmetric active/active prototype,

• development of an external symmetric active/active replication infrastructure,

• measuring the introduced symmetric active/active replication overhead, and

• gaining experience with symmetric active/active replication in HPC environments.

The HPC job and resource management service was chosen for this proof-of-concept

prototype as it is the most important HPC system service running on the head node

and it is not response-latency sensitive, i.e., a higher response latency of service requests,

such as for adding a job to the job queue or reporting job statistics back to the user, is

acceptable to a certain degree if this performance trade-off results in higher availability.

TORQUE was chosen for this proof-of-concept prototype as it is widely used, open

source, and supported by Cluster Resources Inc. as well as the open source community.

A TORQUE-based proof-of-concept prototype can be easily adapted to other HPC job

and resource management services as it supports the widely-used Portable Batch System

(PBS) [47] interface standard.

75

4 Prototypes

4.2.2 Technical Approach

The concept of external symmetric active/active replication (Figure 4.2) avoids modifi-

cation of existing code by wrapping a service into a virtually synchronous environment.

Interaction with other services or with the user is intercepted, totally ordered and reliably

delivered to the service group using a process group communication system that mimics

the service interface using separate event handler routines.

Node C

Interceptor

Service

Interceptor

Node B

Interceptor

Service

Interceptor

Node A

Interceptor

Service

Interceptor

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

Service Interface Service Interface

Service Interface Service Interface

Service Interface Service Interface

Service Interface Service Interface
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
t

Figure 4.2: Symmetric active/active replication architecture using external replication by
service interface utilisation

For example, the command line interface of a service is replaced with an interceptor

command that behaves like the original, but forwards all input to an interceptor process

group. Once totally ordered and reliably delivered, each interceptor process group member

calls the original command to perform operations at each replicated service. Service

output may be routed through the interceptor process group for at-most-once delivery if

dependent clients, services, or users can‘t handle duplicated messages (Section 3.3.4).

This method wraps an existing solution into a virtually synchronous environment with-

out modifying it, which allows reusing the same solution for different services with the

same interface. However, the missing adaptation of the service to the event-based pro-

gramming model of the process group communication system may lead to performance

degradation as external replication implies coarse-grain synchronisation of state changes

at the service interface level, i.e., lock-step execution of service queries and requests.

76

4 Prototypes

The technical approach for providing symmetric active/active high availability for the

HPC job and resource management service focuses on the external replication method,

since HPC job and resource management implementations are very complex and typically

support the PBS [47] service interface. While modification of service code is prohibitively

time consuming and error prone, the PBS service interface is a widely supported standard.

The HPC job and resource management service TORQUE [195, 196] supports the PBS

service interface as well as OpenPBS [44–46], Moab [50, 51], and Sun Grid Engine [35].

4.2.3 Architecture and Design

The JOSHUA solution is a generic approach for offering symmetric active/active high

availability for HPC job and resource management services with a PBS compliant service

interface. It represents a virtually synchronous environment using external replication

based on the PBS service interface (Figure 4.3) providing symmetric active/active high

availability without any interruption of service and without any loss of state.

Head Node C

Joshua

Torque

(PBS Service
& Mom, Maui)

JMutex

(Prologue
 of PBS Mom)

Head Node B

Joshua

Torque

(PBS Service
& Mom, Maui)

JMutex

(Prologue
 of PBS Mom)

Head Node A

Joshua

Torque

(PBS Service
& Mom, Maui)

JMutex

(Prologue
 of PBS Mom)

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

PBS Interface PBS Interface

PBS Interface PBS Interface

PBS Interface PBS Interface

PBS Interface PBS Interface

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
t

Figure 4.3: External replication architecture of the symmetric active/active HPC job and
resource management service

A process group communication system is used for total ordering of incoming messages

and for at-most-once job launch, i.e., for unifying output to the PBS job start mechanism.

Consistently produced output to PBS clients is delivered from every active head node.

Clients filter duplicated messages based on a simple message sequencing scheme.

77

4 Prototypes

Group Communication System

In HPC systems, multiple concurrent queries and requests are expected to arrive simul-

taneously. In the particular case of the HPC job and resource management service, two

users may want to schedule a job at the same time. A communication history algorithm

(Section 2.3.2) is preferred to order queries and requests in a symmetric active/active

head node scenario, since it performs well under heavy load with concurrent messages.

However, for relatively light-load scenarios, the post-transmission delay is high.

The JOSHUA proof-of-concept prototype implementation uses the Transis process

group communication system (Section 2.3.3) for reliable message delivery, total message

order, and membership management, since Tansis uses a communication history algo-

rithm, provides a sophisticated extended virtual synchrony mechanism, offers an easy-to-

use programming interface, and is easily deployable in POSIX-compliant OSs [186], such

as Linux. The post-transmission delay issue is not as important, since the HPC job and

resource management service is not response-latency sensitive.

Software Design

Conceptually, the JOSHUA prototype implementation software design (Figure 4.4) con-

sists of the following major parts:

• the JOSHUA client commands, jsub, jdel, and jstat, reflecting PBS compliant

behaviour to the user, equivalent to the PBS client commands, sub, del, and stat;

• the Transis process group communication system with its extended virtual syn-

chrony implementation for reliable, totally ordered message delivery and fault-

tolerant process group membership management, a service running on each active

head node;

• the JOSHUA service running on each active head node and imitating PBS compliant

client behaviour by locally invoking the original PBS client commands: sub, del,

and stat;

• the original PBS service on running each active head node and the original PBS

Mom service running on a single compute node, a subset, or all compute nodes;

• the distributed mutual exclusion client scripts, jmutex and jdone, needed for at-

most-once job launch on the compute nodes; and

• a watchdog service running each active head node to guard the other services and

to ensure fail-stop behaviour by shutting down all local services of a active head

node if one of them fails, a self-fencing technique (Section 2.1.4).

78

4 Prototypes

Transis
Service A

JOSHUA
Service A

Watchdog
Service A

jsub
Client

jstat
Client

jdel
Client

1. Input Message

3. Input Message

6. Output Message

7. Output Message

PBS
Service A

4. Input Command

5. Command Output

2. Total Ordering
of Input Messages

PBS Mom
Service A

8. Job Launch
Message

jmutex
Client

9. Lock Call

12. Lock Return

10. Lock Message

11. Lock Message
13. Job Launch

14. Job Termination
15. Unlock Call

18. Unlock Return

16. Unlock Message

17. Unlock Message

19. Job Termination
Message

Head Node A

Compute Node X

Head Node B

jdone
Client

Figure 4.4: External replication design of the symmetric active/active HPC job and re-
source management service

Note that the JOSHUA prototype implementation does not provide a JOSHUA client

command for signalling an executing batch job, i.e., a qsig equivalent, as this operation

is asynchronous in nature and does not change the state of the HPC job and resource

management service. The original PBS client command may be executed on any replicated

head node independently of the deployed replication infrastructure.

Failure-Free Operation

The proof-of-concept implementation prototype is based on the PBS compliant TORQUE

HPC job and resource management system that employs the TORQUE PBS service to-

gether with the Maui [200] scheduler on each active head node and a single or a set of PBS

mom services on compute nodes. Each PBS mom service is capable of communicating to

each TORQUE PBS service on every active head node (TORQUE v2.0p1 feature), which

allows the reuse of PBS mom services. However, this is not a requirement of the JOSHUA

solution. Dedicated PBS mom services may be used for each TORQUE PBS service in-

stance. The Maui scheduling policy is set to FIFO (default) to produce deterministic

scheduling behaviour on all active head nodes.

During normal operation, the JOSHUA client commands, jsub, jdel, and jstat, per-

79

4 Prototypes

form job submission, deletion and statistics retrieval by connecting to the JOSHUA ser-

vice group, issuing the respective command, sub, del, and stat, locally at all active head

nodes, and relaying the output back to the user. Fundamentally, the JOSHUA client

commands and service act in concert as an interceptor for PBS user commands to pro-

vide global ordering of user input for virtual synchrony on all active head nodes. The

JOSHUA client commands may be invoked on any of the active head nodes or from a

separate login service node as the commands contact the JOSHUA service group via the

network. The JOSHUA client commands may even replace the original PBS commands

in the user context using a shell alias, e.g., ‘alias qsub=jsub’, in order to offer 100%

PBS service interface compliance at the user level.

Once a submitted job is first in the TORQUE job queue and there is an appropriate

amount of resources available, each TORQUE service connects to one PBS mom service

on the compute nodes to start the job. The JOSHUA distributed mutual exclusion client

scripts are part of the job start prologue and perform a distributed mutual exclusion using

the Transis process group communication system to ensure that the job gets started only

once, and to emulate the job start for all other attempts for this particular job. Once the

job has finished, the distributed mutual exclusion is released and all TORQUE services

receive the respective job statistics report.

Failure Handling

Upon failure of an active head node, Transis informs all JOSHUA services to exclude the

failed head node from any further communication. The PBS mom services simply ignore

the failed head node when sending job statistics reports, while the distributed mutual

exclusion performed by the JOSHUA distributed mutual exclusion client scripts rely on

the Transis process group membership management for releasing any locks.

The JOSHUA client commands receive duplicated output from all active head nodes

and are not affected by a head node failure. Transis delivers all messages even if a client

needs to reconnect to the service group via a different service group member, a Transis

specific caching feature for temporary absences of clients.

There is no service failover necessary as the healthy active head nodes continue to

provide the service and the system parts on the compute nodes are able to adapt. Since

Transis is able to deal with multiple simultaneous failures in the same way it deals with

multiple sequential failures, the HPC job and resource management service is provided

transparently as long as one head node survives.

Head node failures degrade the overall availability of the system by reducing the num-

ber of redundant components. Replacement of head nodes that are about to fail, e.g., due

to a recent fan fault, allows to sustain and guarantee a certain availability. The JOSHUA

80

4 Prototypes

solution permits head nodes to join and leave using the Transis process group communi-

cation system for coordination. Leaving the active service group is actually handled as

a forced failure by causing the JOSHUA service to shutdown via a signal. Joining the

active service group involves copying the current state of an active service over to the

joining head node.

The current JOSHUA proof-of-concept prototype implementation uses configuration

file modification and PBS command replay to copy the state of one TORQUE service

over to another. This is due to the fact that the PBS interface does not provide a solution

for starting up a replica. As a consequence, it also is impossible to support holding and

releasing jobs as the PBS command replay causes inconsistencies in the job queue of the

joining TORQUE service when holding jobs.

4.2.4 Test Results

The fully functional JOSHUA v0.1 prototype implementation has been deployed on a

dedicated Linux cluster for functional and performance testing. Each node contained

dual Intel Pentium III 450MHz processors with 512MB of memory and 8GB of disk

space. All nodes were connected via a single Fast Ethernet (100MBit/s full duplex) hub.

Debian GNU/Linux 3.1 has been used as OS in conjunction with Transis v1.03, TORQUE

v2.0p5, and Maui v3.2.6p13. Performance results are averages over 100 test runs. Failures

were simulated by unplugging network cables and by forcibly shutting down individual

processes.

The job submission latency overhead (Figure 4.5 or Section A.1.1) introduced by the

network communication between the JOSHUA client commands, the Transis service and

the JOSHUA service is in an acceptable range. The latency overhead between TORQUE

and TORQUE+JOSHUA on a single head node, 36ms or 37%, can be attributed to

additional communication on the head node between Transis and the JOSHUA service,

and to the delegated execution of the TORQUE client commands by the JOSHUA service.

The significant latency overhead on two head nodes, 163ms or 170%, can be explained

by the Transis process group communication protocol overhead. Overall a job submission

latency overhead of only 251ms or 256% for a four head node system is still acceptable

for a HPC system.

The job submission throughput overhead (Figure 4.6 or Section A.1.1) reflects similar

characteristics. Considering high throughput HPC scenarios, such as in computational

biology or on-demand cluster computing, adding 100 jobs to the job queue in 33.32s or

at 31% of original job submission throughput performance for a four head node system is

also acceptable.

81

4 Prototypes

100%

150%

200%

250%

300%

350%

400%

1 2 3 4

Number of Active Head Nodes

La
te

nc
y

in
 M

illi
se

co
nd

s_

TORQUE TORQUE+JOSHUA

Figure 4.5: Normalised job submission latency performance of the symmetric active/active
HPC job and resource management service prototype (averages over 100 tests)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

Number of Active Head Nodes

Th
ro

ug
hp

ut
 in

 J
ob

s/
S

ec
on

d_

TORQUE TORQUE+JOSHUA

Figure 4.6: Normalised job submission throughput performance of the symmetric ac-
tive/active HPC job and resource management service prototype (100 submissions, aver-
ages over 100 tests)

82

4 Prototypes

Extensive functional testing revealed correct behaviour during normal system operation

and in case of single and multiple simultaneous failures. Head nodes were able to join

the service group, leave it voluntary, and fail, while job and resource management state

was maintained consistently at all head nodes and service was provided transparently to

applications and users. However, the PBS mom service and the JOSHUA distributed

mutual exclusion client scripts run on compute nodes. The developed proof-of-concept

prototype is not capable of tolerating failures of these compute nodes.

The experienced MTTRrecovery was dominated by the heartbeat interval of the Transis

process group communication system, i.e., by the communication timeout between group

members, which is configurable at startup and was set to 500 milliseconds. The developed

proof-of-concept prototype provided an extraordinary service availability (Figure 4.7 or

Section A.1.1) due to its low MTTRrecovery.

93%

94%

95%

96%

97%

98%

99%

100%

1 2 3 4

Number of Active Head Nodes

A
va

ila
bi

lit
y_

MTTF 500 hours MTTF 1,000 hours MTTF 5,000 hours
MTTF 10,000 hours MTTF 50,000 hours

Figure 4.7: Availability of the symmetric active/active HPC job and resource management
service prototype

Using Equation 3.23 in Section 3.1.4 and a MTTRcomponent of 36 hours, service avail-

ability could be improved for a MTTFcomponent of 1,000 hours from 96.248% to 99.998%

in a four-node system. With a MTTFcomponent of 5,000 hours, service availability could be

improved from 99.285% to 99.995% in a two-node system, an increase from a two-nines

to a four-nines rating just by using a second node (Table 3.1 in Section 3.1.4). Adding

another node would increase service availability to 99.99996%, a six-nines rating.

It has to be noted that when approaching the 100% availability mark with this solution,

certain catastrophic failures, such as a site-wide power outage, are not masked due to a

missing multi-site redundancy strategy. A local redundancy strategy of 2-3 symmetric

active/active head nodes should be sufficient to cover common failures.

83

4 Prototypes

4.2.5 Conclusions

With the JOSHUA proof-of-concept prototype, the first fully functional solution for pro-

viding symmetric active/active high availability for a HPC system service was developed

using the external replication approach that wraps an existing service into a virtually syn-

chronous environment. The prototype performed correctly and offered an acceptable job

submission latency and throughput performance. Significant experience was gained with

respect to architecture, design, and performance challenges for symmetric active/active

replication in HPC environments.

The developed proof-of-concept prototype provided an extraordinary availability. As-

suming a node MTTF of 5,000 hours, service availability improved from 99.285% to

99.995% in a two-node system, and to 99.99996% with three nodes. A change from a

two-nines rating to four nines in a two-node system, and to six nines with three nodes.

The reliance of the PBS service on the PBS mom service on the compute nodes revealed

the existence of more complex interdependencies between individual system services on

head, service and compute nodes. Providing high availability for a critical system service

also needs to deal with dependent critical system services due to the serial availability

coupling of dependent system components (Equations 3.19 and 3.21 in Section 3.1.4).

Although the job submission latency overhead of 251ms on four symmetric active/active

head nodes is in an acceptable range for the HPC job and resource management, this

may not be true for more latency-sensitive services, such as the HPC parallel file system

metadata service. Significant performance improvements may be necessary.

4.3 Internal Symmetric Active/Active Replication for the

HPC Parallel File System Metadata Service

One of the second most important HPC system services running on the head node of

small-scale HPC systems and one of the most important HPC system services running

on a dedicated service node in large-scale HPC systems is the metadata service (MDS)

of the parallel file system. Since the MDS keeps the records of all directories and files

located on storage services of the parallel file system, a failure of this critical HPC system

service results in an inability for applications running on the HPC system to access and

store their data, and may result in file system corruption and loss of stored data.

Previous research and development efforts offered active/standby high availability so-

lutions using a shared storage device (Section 2.1.1) for various MDSs, such as for the

parallel Virtual File System (PVFS) [38–40] and for the Lustre cluster file system [41–43],

with questionable correctness and quality of service.

84

4 Prototypes

The research and development effort presented in this Section targets a symmetric

active/active high availability solution for the MDS of a parallel file system. As part of

this effort, a fully functional proof-of-concept prototype [201] has been developed in C on

Linux to provide symmetric active/active high availability for the MDS of PVFS using

the internal replication approach.

While the symmetric active/active high availability concept and the internal replication

approach was developed by me [192, 197, 198], the detailed software design and the actual

implementation was carried out under my supervision by Li Ou [201–204] during his

internship at Oak Ridge National Laboratory, USA, for his Doctor of Philosophy (PhD)

thesis at the Tennessee Technological University, USA. His thesis [204], titled “Design of a

High-Performance and High-Availability Distributed Storage System”, primarily focuses

on various performance aspects of distributed storage systems and secondarily on the high

availability aspect. It appropriately references my prior work in symmetric active/active

high availability [197–199]. The work performed under my supervision has been published

in two co-authored papers [201, 203]. Another co-authored paper [202] has been submitted

to a journal and is currently under review.

4.3.1 Objectives

Since the first proof-of-concept prototype for providing symmetric active/active high avail-

ability for a HPC system service (Section 4.2) focused on the less response-latency sensitive

HPC job and resource management service and on an external symmetric active/active

replication infrastructure, the development of this proof-of-concept prototype had the

following primary objectives:

• development of a fully functional symmetric active/active prototype for a response-

latency sensitive critical HPC system service,

• development of an internal symmetric active/active replication infrastructure,

• measuring the introduced symmetric active/active replication overhead, and

• gaining further experience with symmetric active/active replication in HPC envi-

ronments, especially with regards to possible performance enhancements.

The MDS of a parallel file system was chosen for this prototype as it is one of the

second most important HPC system services running on the head node of small-scale

HPC systems and one of the most important HPC system services running on a dedicated

service node in large-scale HPC systems. It is very response-latency sensitive, i.e., a higher

response latency of service requests, such as for opening the MPI executable or creating

85

4 Prototypes

a checkpoint file for each compute node, is not acceptable if this performance trade-off

results in a significant slowdown of such common file system operations.

PVFS was chosen for this proof-of-concept prototype as it is widely used in HPC,

open source, and supported by the PVFS development team as well as the open source

community. A PVFS-based proof-of-concept prototype can be easily adapted to other

parallel file systems as it has a modular architecture and is mostly in user space. In

contrast to PVFS, the Lustre cluster file system is entirely in kernel space, which offers

better performance but significantly complicates development, e.g., a crash of Lustre

clients or services results in a kernel module crash requirering a reboot.

4.3.2 Technical Approach

The concept of internal symmetric active/active replication (Figure 4.8) allows each active

service of a replicated service group to accept query and request messages from external

clients individually, while using a process group communication system for total state

change message order and reliable state change message delivery to all members of the

service group. All state changes are performed in the same order at all services, thus

virtual synchrony is given. Consistently produced service group output may be routed

through the process group communication system for at-most-once delivery if dependent

clients, services, and users can‘t handle duplicated messages (Section 3.3.4)

For example, a networked service that changes its state based on RPCs, such as the

MDS of a parallel file system, is modified to replicate all state changes in form of messages

to all services in the service group. Upon delivery, state changes are performed in virtual

synchrony. RPCs and respective state changes are decoupled and executed by separate

event handler routines. RPC return messages may be unified via the process group com-

munication system, delivered by every process group member, or delivered by only one

process group member and temporarily cached by others.

This method requires modification of existing service code, which may be unsuitable

for complex and/or large services. The amount of modification necessary may result

in a complete redesign and reimplementation. However, adaptation of the service to

the event-based programming model of the process group communication system may

lead to performance enhancements. Furthermore, internal replication allows fine-grain

synchronisation of state changes, such as pipelining, due to the decoupling of incoming

requests and respective state changes.

The technical approach for providing symmetric active/active high availability for the

MDS of a parallel file system focuses on the internal replication method, since the MDS

is very response-latency sensitive.

86

4 Prototypes

Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

Group
Communication

Group
Communication

M
1

M
2

M
3

M
1,

 M
2,

 M
3

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
tService Interface Service Interface

Service Interface Service Interface

Figure 4.8: Symmetric active/active replication architecture using internal replication by
service modification/adaptation

4.3.3 Architecture and Design

The developed proof-of-concept prototype is a customised implementation for offering

symmetric active/active high availability for the MDS of PVFS. It is based on the internal

RPC and state change mechanisms of PVFS and utilises adaptors as part of the internal

replication architecture (Figure 4.9) to provide symmetric active/active high availability

without any interruption of service and without any loss of state.

The process group communication system is only used for total ordering of state

changes. Consistently produced MDS output to clients is delivered by only one active

service node, the service node the client is directly connected to. The last produced out-

put to a not directly connected client is cached to allow seamless connection fail-over. An

incoming message from a client serves as an acknowledgement for a previously produced

output message, since clients can‘t have outstanding queries or requests while issuing new

ones, i.e., file system operations are atomic at the client, a POSIX consistency requirement

for file system access [186].

Group Communication System

The reliable, atomic multicast protocol of the Transis process group communication sys-

tem has been improved to provide for lower latency overhead, especially in situations

87

4 Prototypes

Node C

Adapter

PVFS
MDS

Adapter

Node B

Adapter

PVFS
MDS

Adapter

Node A

Adapter

PVFS
MDS

Adapter

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

O
ut

pu
t

In
pu

t

Send

Process

Receive

M
1,

 M
2,

 M
3

M
1,

 M
2,

 M
3

Group
Communication

Group
Communication

M
1

M
2

M
3

M
2

In
pu

t

In
pu

t

In
pu

t

O
ut

pu
tPVFS MDS Interface PVFS MDS Interface

PVFS MDS Interface PVFS MDS Interface

M
1O
ut

pu
t

M
3O
ut

pu
t

Figure 4.9: Internal replication architecture of the symmetric active/active HPC parallel
file system metadata service

where the network is underutilised. The new fast delivery protocol optimises the total

message ordering process by waiting for messages only from a subset of the group, and

by fast acknowledging messages on behalf of other machines. This new feature drastically

reduces the post-transmission delay of the communication history algorithm for total

message order in Transis.

Total Order Broadcast in Transis The original Transis process group communication

algorithm for total order broadcast uses message sequencing by senders in conjunction

with a logical clock for the sequence counter at each sender to assure causal order broad-

cast at a lower layer. In the layer above, total order broadcast is achieved using the

message sequence number, i.e., causal order, and using sender Identifier (Id) order in case

of messages with equal sequence numbers, i.e., a predetermined order for independent

simultaneous messages based on origin.

Transis uses a negative acknowledgement scheme, i.e., retransmissions are requested if

there is a missing message. A heartbeat mechanism generates periodic acknowledgements

by each process group member to assure progress of the communication history algorithm

in light-load scenarios, and for failure detection. The heartbeat interval is configurable

at startup and represents a trade-off between latency in heavy- and light-load scenarios.

Frequent heartbeats result in faster delivery, but also in more network traffic.

88

4 Prototypes

The developed fast delivery protocol separates the communication history algorithm

progress responsibility from the heartbeat mechanism by allowing idle processes to ac-

knowledge on behalf of others. This leads to a faster delivery of totally ordered messages

as well as to an adaptation of the acknowledgement scheme to current network usage.

Notation and Definition A partition P consists of a group of processes {p1, p2, · · · , pN}.
Each process in the group P has a distinct Id. For a process p, function id(p) returns its

Id. If the number of processes in the primary group P is N ,

∀p, q ∈ P, id(p), id(q) ∈ {1, 2, · · · , N}, id(p) 6= id(q) (4.1)

Each process p ∈ P is associated with the functions prefix and suffix:

prefix(p) = {q|∀q ∈ P, id(q) < id(p)} (4.2)

suffix(p) = {q|∀q ∈ P, id(q) > id(p)} (4.3)

The input to the fast delivery protocol is a stream of causally ordered messages from the

underlying Transis broadcasting service. The ith message sent by process q is denoted as

mq,i, where function sender(mq,i) = q. If message mq,i is delivered before mk,j in process

p, then function deliver(mq,i) < deliver(mk,j).

A pending message is a received, causally ordered message that has not been totally

ordered, i.e., delivered. A candidate message is a pending message that follows a message

that has been delivered. The set of concurrent candidate messages is called the candidate

set Mp = {m1,m2, · · · ,mk}, which is the set of messages that are considered for the next

slot in the total message order. It is associated with the function senders:

senders(Mp) = {sender(mi)|∀mi ∈Mp} (4.4)

The deliver set Mdp is the set of messages ready to be delivered, i.e., totally ordered,

at process p, where Mdp ⊆Mp.

Fast Delivery Protocol The fast delivery protocol (Figure 4.10) forms the total message

order by waiting for messages only from a subset of the process group. Assuming a

candidate message m is in candidate set Mp, the following delivery criterion is used to

define which messages a process has to wait for before delivering m:

1. Add m into deliver set Mdp when:

prefix(sender(m)) ⊆ senders(Mp) (4.5)

89

4 Prototypes

2. Deliver the messages in the Mdp with the following order:

∀mi,mj ∈Mdp, id(sender(mi)) < id(sender(mj)) −→ deliver(mi) < deliver(mj)

(4.6)

When receiving a regular message m in machine p:

if (m is a new candidate message) {
add m into candidate set Mp

}

if (Mp 6= φ) {
for all (mi ∈Mp) {

if (prefix(sender(mi)) ⊆ senders(Mp)) {
add mi into delivery set Mdp

}
}

}

if (Mdp 6= φ) {
deliver all messages mj in Mdp in the order of id(sender(mj))

}

if (sender(m) ∈ suffix(p)) and
(message m is a total order message) and
(no messages are waiting to be broadcast from p) and
(6 ∃mi ∈Mp, id(sender(mi)) = p) {
fast acknowledge m

}

Figure 4.10: Fast delivery protocol for the Transis group communication system

To speedup the delivery of m, idle processes should immediately acknowledge m on

behalf of other processes. If a process q receives a message m, and q is idle, q broadcasts

a fast acknowledgement when:

sender(m) ∈ suffix(q) (4.7)

Fast acknowledgement reduces the latency of message delivery, however, it injects more

network traffic. If communication is heavy, fast acknowledgement may burden network

and processes, thus increase delivery latency. To reduce the cost of fast acknowledgement,

90

4 Prototypes

the following acknowledgement criterion is defined. Fast acknowledge a message m from

a process q when:

1. message m is a total order message, and

2. there is no message waiting to be sent from the process q, and

3. there is no message from the process q in the candidate set Mp, i.e.,

6 ∃mj ∈Mp, id(sender(mj)) = q (4.8)

There are almost no additional acknowledgements injected into the network when com-

munication in the process group is heavy, since conditions 2 and 3 are very unlikely to be

satisfied simultaneously.

Software Design

Conceptually, the symmetric active/active PVFS MDS prototype implementation soft-

ware design (Figure 4.11) consists of the following major parts:

• modified PVFS MDS clients running on compute nodes;

• the modified PVFS MDS service running on each active head or service node;

• the Transis process group communication system with the fast delivery protocol for

total message order, a service running on each active head or service node; and

• a watchdog service running each active head node to guard the other services and

to ensure fail-stop behaviour.

Note that PVFS storage services are not included in the symmetric active/active PVFS

MDS architecture and design as PVFS clients access storage services independently and

directly, after receiving proper authorisation from the MDS. Data redundancy strategies

for PVFS storage services, such as distributed RAID, are ongoing research and develop-

ment efforts [205–207] and outside the scope of this thesis.

Failure-Free Operation

To balance workloads among multiple active MDSs, a client either randomly chooses one

MDS out of the active MDS group to send a message or uses a preferred active MDS

associated to its specific HPC system partition.

91

4 Prototypes

Transis
Service A

PVFS MDS
Service A

Watchdog
Service AModified

PVFS
Library

MDS Client

Modified
PVFS
Kernel
Module

MDS Client

1. Input Message

5. Output Message

2. Request Message

4. Request Message

3. Total Ordering of
Request Messages

Service Node A

Service Node B

Adaptor

Figure 4.11: Internal replication design of the symmetric active/active HPC parallel file
system metadata service

4. Output
Message

1. Query
Message

3. Output Message

2. Query Message

(a) Queries

8. Output
Message

1. Request
Message

2. State Change
Message

7. Output Message

4. State Change
Message

5. State Change
Schedule

3. State Change
Message

6. State Change
Message

(b) Requests

Figure 4.12: Query and request handling of the symmetric active/active HPC parallel file
system metadata service

All incoming messages are received and pre-processed by the MDS request interface

module (Figure 4.12), which interprets the message content and detects if the message

requests a state change.

Query messages do not request state changes and are immediately processed by the

MDS module (Figure 4.12a). Respective output messages are returned through the MDS

request interface module directly to the client.

Request messages do result in state changes and respective state change messages are

forwarded to the Transis process group communication system after an initial prepara-

tion of the expected state change (Figure 4.12b). Once ordered, Transis delivers state

change messages to the MDS scheduler module that manages a queue of totally ordered

state change messages. The MDS scheduler module decouples incoming, totally ordered

state change messages from their execution to allow in-order execution of concurrent state

92

4 Prototypes

changes and out-of-order execution of non-concurrent state changes. The transaction con-

trol module provides the necessary locking mechanisms to hold concurrent state changes

until they become non-concurrent. The execution of state changes is performed by the

MDS module and respective output messages are returned through the MDS request

interface module directly to the client.

The MDS scheduler module also decouples the receiving of totally ordered state change

messages via Transis from scheduling, execution, and output delivery using a separate

thread to further improve throughput performance.

The MDS module performs all necessary state lookups, such as getting a file attribute,

and state changes, such as creation of a new file or directory. Some request messages

trigger a series of state lookups and changes as part of their state change. For example,

the request to create a new file involves the following three MDS module operations: (1)

reading the directory to make sure that no other object has the same name, (2) creation

of the file object, and (3) adding the file object handle to the parent directory object. All

operations are atomic and directly depend on each others‘ result. The concurrency control

of the transaction module is used to allow other, independent operations to interleave with

such dependent series of operations (Table 4.1).

MDS Operation Type Read Update Write
Read Execute Execute Queue
Update Execute Queue Queue
Write Queue Queue Queue

Table 4.1: Transaction control module locking table of the symmetric active/active HPC
parallel file system metadata service

Note that since all incoming state change requests from Transis are totally ordered and

all MDS modules, including the scheduler module and the transaction control module, are

deterministic, virtual synchrony is provided for all request messages. Query messages are

not executed in virtual synchrony with request messages, since a single client always needs

to wait for a completion of a request before issuing another query, a POSIX consistency

requirement for file system access [186].

Failure Handling

Upon failure of an active service node, the Transis process group communication system

informs all MDSs to exclude the failed service node from any further communication.

Only those clients that are directly connected to the failed service node are affected and

initiate a connection fail-over. After reconnecting to an active service group member, the

93

4 Prototypes

previously produced output message cached at the service group member is resent and

may be ignored by the client if duplicated.

There is no service failover necessary as the healthy active service nodes continue to

provide the service. Since Transis is able to deal with multiple simultaneous failures in

the same way it deals with multiple sequential failures, the parallel file system metadata

service is provided transparently as long as one service node survives.

Similarly to the JOSHUA solution (Section 4.2), service nodes may be forcibly removed

from the active service group for replacement and new service nodes may be added to the

active service group. State transfer from an active service group member to a new service

is performed by a membership management module inside the MDS.

4.3.4 Test Results

The fully functional proof-of-concept prototype implementation has been deployed on a

dedicated Linux cluster for functional and performance testing. Each node contained dual

Intel Pentium IV 2GHz processors with 768MB of memory and 40GB of disk space. All

nodes were connected via a single Fast Ethernet (100MBit/s full duplex) hub. Federa Core

5 has been used as OS in conjunction with the modified Transis v1.03 and the modified

PVFS v1.3.2. A MPI-based benchmark is used to perform and measure total message

ordering by Transis using the fast delivery protocol, 5,000 messages per group member

per test run. A second MPI-based benchmark is used to perform and measure concurrent

MDS queries and requests from multiple clients, 5,000 MDS queries or requests per client

per test run. Performance results are averages over 100 test runs with disabled client

and service caches. Failures were simulated by unplugging network cables and by forcibly

shutting down individual processes.

Fast Delivery Protocol

The improved Transis total message order latency performance (Figure 4.13 or Sec-

tion A.1.2) shows an excellent performance in a testbed of 1-8 processes with 235-1,348µs

for a single sender and 971-3,514µs when all group members send messages. The single

sender tests resemble the idle case of the fast delivery protocol, while the all group mem-

bers tests resemble scenarios with heavy load. The latency is consistent in scaling for both

idle and busy systems. The fast acknowledgement algorithm aggressively acknowledges

total order messages to reduce the latency of idle systems when only a single process is

active. The protocol is smart enough to hold its acknowledgements when the network

communication is heavy because more processes are involved.

94

4 Prototypes

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

Number of Processes (P)

La
te

nc
y

in
 M

ic
ro

se
co

nd
s_

Transis with 1 Sender (Minimum) Improved Transis with 1 Sender
Transis with P Senders Improved Transis with P Senders

Maximum of Transis 1 sender = heartbeat interval, e.g., ≈500,000 microseconds

Figure 4.13: Latency performance of the fast delivery protocol (averages over 100 tests)

Compared to the original communication history algorithm of the Transis process group

communication system, the post-transmission delay impact is apparent. The original

Transis total message order latency performance is not consistent and its maximum is

equivalent to the heartbeat interval in the worst case scenario. The heartbeat interval of

Transis can be adjusted, but is typically in the order of several hundred milliseconds. The

latency of the fast delivery protocol is almost exactly the same as the minimum measured

with the original Transis. The fast delivery protocol provides total message order with

consistent optimal performance.

Symmetric Active/Active Metadata Service

The MDS request latency performance (Figure 4.14 or Section A.1.2) is remarkably good.

The overhead introduced by the network communication between the PVFS service and

the Transis process group communication service is within 2-26ms when comparing all

tested configurations. The significant latency performance overhead reduction to the

previous JOSHUA solution (Section 4.2) can be attributed to the internal replication

approach, the improved Transis process group communication algorithm using the fast

delivery protocol, and to the fine grain synchronisation of state changes performed by the

scheduler and transaction control modules of the symmetric active/active PVFS MDS

proof-of-concept prototype.

It is also noted that the request latency performance scales quite well to 32 clients with

an only slightly increasing absolute overhead, a drastically decreasing relative overhead.

95

4 Prototypes

100%

110%

120%

130%

140%

150%

160%

1 2 4 8 16 32

Number of Metadata Clients

La
te

nc
y

in
 M

illi
se

co
nd

s_

1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure 4.14: Normalised request latency performance of the symmetric active/active HPC
parallel file system metadata service (averages over 100 tests)

The MDS query latency performance was not tested as queries are processed by the

the symmetric active/active PVFS MDS proof-of-concept prototype almost exactly as

by the baseline PVFS MDS. The query throughput performance tests (Figure 4.15 or

Section A.1.2) not only verify this argument, but also show the throughput performance

of 300-380% of PVFS MDS baseline performance in a four service node system due to

load balancing and local processing of queries. Note that the query throughput does not

scale linear with the number of active service nodes due to the sharing of the network.

100%

150%

200%

250%

300%

350%

400%

1 2 4 8 16 32

Number of Metadata Clients

Th
ro

ug
hp

ut
 in

 Q
ue

rie
s/

S
ec

on
d_

1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure 4.15: Normalised query throughput performance of the symmetric active/active
HPC parallel file system metadata service (averages over 100 tests)

96

4 Prototypes

The MDS request throughput performance (Figure 4.16 or Section A.1.2) shows the

impact of the Transis process group communication system. Throughput drops down to

79% of PVFS MDS baseline performance in a two service node system, while it drops

down to 73% in a four service node system. However, the relative difference between all

configurations becomes much smaller the more PVFS MDS clients are involved.

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32

Number of Metadata Clients

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s/
S

ec
on

d_
1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure 4.16: Normalised request throughput performance of the symmetric active/active
HPC parallel file system metadata service (averages over 100 tests)

Extensive functional testing revealed correct behaviour during normal system operation

and in case of single and multiple simultaneous failures. Service nodes were able to join the

service group, leave it voluntary, and fail, while MDS state was maintained consistently

at all service nodes and service was provided transparently to applications.

Although the acknowledgement scheme for total message ordering within the Tran-

sis process group communication system has been changed, the heartbeat interval is

still responsible for detecting member failures through a communication timeout. The

MTTRrecovery of the previous proof-of-concept prototype (Section 4.2, 500 milliseconds)

remained unchanged with this proof-of-concept prototype. Similarly, the provided avail-

ability remained unchanged with this proof-of-concept prototype as well.

4.3.5 Conclusions

With the symmetric active/active PVFS MDS proof-of-concept prototype, a second fully

functional solution for providing symmetric active/active high availability for a HPC sys-

tem service was developed. This is the first prototype that uses the internal replication

approach, which modifies an existing service to inferface it with a process group commu-

97

4 Prototypes

nication system for virtual synchrony. The prototype performed correctly and offered a

remarkable latency and throughput performance. Significant experience was added with

respect to architecture, design, and performance challenges for symmetric active/active

replication in HPC environments. The developed proof-of-concept prototype provided an

extraordinary availability.

Since the MDS of a parallel file system is very response-latency sensitive, the latency

performance results are not only convincing, but also encouraging for widely deploying

symmetric active/active replication infrastructures in HPC systems to re-enforce critical

HPC system services with high-performance redundancy. The developed fast delivery

protocol with its low-latency total order messaging performance was instrumental to the

success for this proof-of-concept prototype.

While the internal replication approach provides very good performance, it requires

modification of existing services. The PVFS MDS is an easy-to-modify solution due to

the small size and complexity of its clients and service. This may not be true with other

services, such as the MDS of the Lustre cluster file system (Section 2.1.1).

4.4 Transparent Symmetric Active/Active Replication

Framework for Services

The two developed symmetric active/active replication proof-of-concept prototypes, for

the HPC job and resource management service (Section 4.2) and for the HPC parallel file

system metadata service (Section 4.3), are fully functional solutions, provide adequate

performance, and offer extraordinary service availability. However, there is an insufficient

reuse of code between individual prototype implementations. Each service requires a

customised symmetric active/active environment, either externally using interceptors or

internally using adaptors.

The research and development effort presented in this Section targets a transparent

symmetric active/active replication software framework for service-level high availability.

As part of this effort, a preliminary proof-of-concept prototype [208] has been developed in

C on Linux to provide symmetric active/active high availability transparently to services

with a minimum amount of adaptation and performance overhead.

4.4.1 Objectives

With the exception of the Transis group communication system, there is an insufficient

reuse of code between the two developed symmetric active/active replication proof-of-

98

4 Prototypes

concept prototypes (Sections 4.2 and 4.3). The development of this preliminary proof-of-

concept prototype had the following primary objectives:

• development of a symmetric active/active replication framework that provides for

more reuse of code between individual implementations,

• development of interfaces and mechanisms to transparently provide symmetric ac-

tive/active replication to services with a minimum amount of adaptation,

• measuring any additional overhead introduced by the developed symmetric ac-

tive/active replication framework and its mechanisms, and

• gaining further experience with service-level symmetric active/active replication.

This proof-of-concept prototype focuses on the underlying symmetric active/active

replication framework and not on a specific service. With the experience from the pre-

viously developed prototypes (Sections 4.2 and 4.3), interactions of the symmetric ac-

tive/active replication framework with services are generalised.

4.4.2 Technical Approach

In the external or internal symmetric active/active replication software architecture, a

service-side interceptor or adaptor component deals with receiving incoming request mes-

sages and routing them or related state changes through the process group communication

system for total message order and reliable message delivery (Figure 4.17).

The service-side interceptor or adaptor also routes output back to the client, which

interacts with the service-side interceptor or adaptor component instead with the original

service. In case of a failure, clients need to be reconfigured in order to interact with the

service-side interceptor or adaptor component of another member of the active service

group. This requires clients to be informed about service group membership and to

perform a consistent connection fail-over in case of a failure. Clients need to be made

aware of the service-level symmetric active/active replication technique and need to be

modified for external or internal service-side replication.

The main idea behind the service-side interceptor/adaptor concept of the external/in-

ternal symmetric active/active replication software architecture is to hide the interaction

of the service with the group communication system from the service. While the internal

replication method tightly integrates the service with the service-side adaptor, the external

replication method utilises the service interface. In both cases, the client interacts with

the service-side interceptor/adaptor.

99

4 Prototypes

Service Service Service

Service-Side
Interceptor

Service-Side
Interceptor

Service-Side
Interceptor

Client Client

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Non-Transparent Connection Fail-Over

Client Node A Client Node B

(a) External

Service Service Service

Service-Side
Adapter

Service-Side
Adapter

Service-Side
Adapter

Service Node A Service Node B Service Node C

Client Client
Group Communication

Peer-to-Peer Communication

Non-Transparent Connection Fail-Over

Client Node A Client Node B

(b) Internal

Figure 4.17: Symmetric active/active replication software architecture with non-transpar-
ent client connection fail-over

100

4 Prototypes

The transparent symmetric active/active replication software framework accommodates

both replication methods, external and internal, by using a virtual communication layer

(VCL). The original external and internal symmetric active/active replication methods

are refined to utilise service- and client-side interceptors/adaptors in order to provide

total transparency. Adaptation of these interceptors/adaptors to clients and services is

only needed with regards to the used communication protocols and its semantics. Clients

and services are unaware of the symmetric active/active replication infrastructure as it

provides all necessary mechanisms internally.

4.4.3 Architecture and Design

In the refined symmetric active/active replication software architecture with transpar-

ent client connection fail-over (Figure 4.18), an additional client-side interceptor/adaptor

hides the interaction of the client with the service-side interceptor/adaptor from the client

in the same fashion the service-side interceptor/adaptor hides the interaction of the service

with the service-side interceptor/adaptor.

Similar to the service-side interceptor/adaptor, the client-side interceptor may be im-

plemented externally by utilising the service interface at the client-side, and the client-side

adaptor may be implemented internally by tightly integrating it with the client. In both

cases, the client recognises the client-side interceptor/adaptor as the service.

The client- and service-side interceptors/adaptors maintain a VCL, which client and

service are unaware of. In fact, the client is only aware of a connection to a local service

represented by the client-side interceptor/adaptor, while the service is only aware of a

connection to a local client represented by the service-side interceptor/adaptor.

External interceptors offer transparency at the networking layer, i.e., the client-side

interceptor process establishes a local interceptor service at a certain network port that

acts like the replicated service and the service-side interceptor process acts as a network

client for the replicated service. Internal adapter libraries, however, provide a certain

level of transparency at the messaging layer, i.e., calls to network functions are inter-

cepted/replaced with calls to adaptor library functions mimicking network function be-

haviour at the client and service side.

The VCL enforces the needed process group communication semantics at the service

side as well as at the client-side based on the existing symmetric active/active replication

software architecture. In addition to maintaining the previous process group commu-

nication role of service-side interceptors/adaptors of performing total message ordering,

the VCL assures that client-side interceptors/adaptors are informed about service group

membership and perform a consistent connection fail-over in case of a failure.

101

4 Prototypes

Virtual Communication Layer

Service Service Service

Service-Side
Interceptor

Service-Side
Interceptor

Service-Side
Interceptor

Client-Side
Interceptor

Client-Side
Interceptor

Client Client

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Transparent Connection Fail-Over

Client Node A Client Node B

(a) External

Virtual Communication Layer

Client Client

Service Service Service

Service-Side
Adapter

Service-Side
Adapter

Service-Side
Adapter

Client-Side
Adapter

Client-Side
Adapter

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Transparent Connection Fail-Over

Client Node A Client Node B

(b) Internal

Figure 4.18: Symmetric active/active replication software architecture with transparent
client connection fail-over

102

4 Prototypes

Figure 4.19 shows an example that explains how the VCL would provide full trans-

parency to clients and services in the external replication design of the symmetric ac-

tive/active HPC job and resource management service proof-of-concept prototype (for

the original non-transparent design see Figure 4.4 in Section 4.2). The interceptor pro-

cess on client nodes together with the Transis group communication service, the JOSHUA

service, and the distributed mutual exclusion client scripts on each redundant head node

form the VCL. Full transparency is provided as clients recognise the interceptor process on

client nodes as their local HPC job and resource management service, while the HPC job

and resource management service on each redundant head node recognises the JOSHUA

service as their local client.

Transis
Service A

JOSHUA
Service A

Watchdog
Service A

PBS sub
Client

PBS stat
Client

PBS del
Client

PBS
Service A

PBS Mom
Service A

jmutex
Client

Head Node A

Compute Node X

Head Node B

jdone
Client

In
te

rc
ep

to
r

Client Node

Virtual Communication Layer

Virtual Communication LayerVirtual Communication Layer

Figure 4.19: Example: Transparent external replication design of the symmetric ac-
tive/active HPC job and resource management service

Figure 4.20 shows an example that explains how the VCL would provide partial trans-

parency to clients and services in the internal replication design of the symmetric ac-

tive/active HPC parallel file system metadata system service proof-of-concept prototype

(for the original non-transparent design see Figure 4.11 in Section 4.3). The adaptors for

the PVFS metadata clients on client nodes together with the Transis group communi-

cation service and the adaptor for the PVFS metadata service on each redundant head

node form the VCL. Transparency is provided as clients recognise their adaptor on client

103

4 Prototypes

nodes as their local PVFS metadata service, while the PVFS metadata service on each

redundant head node recognises its adaptor as local client. However, transparency is only

partial as client and service need to be modified to interact with their adaptors.

Transis
Service A

PVFS MDS
Service A

Watchdog
Service APVFS

Library
MDS Client

PVFS
Kernel
Module

MDS Client

Service Node A

Service Node B

Adaptor

Virtual Communication Layer

Adaptor

Adaptor

Figure 4.20: Example: Transparent internal replication design of the symmetric ac-
tive/active HPC parallel file system metadata service

Failure Handling

In addition to the fault-tolerant group communication mechanisms handled at the service

side (Section 3.3.4), the VCL provides communication fail-over for client connections in

a transparent fashion, i.e., clients are unaware of the failure of a service.

Upon initial connection to a service-side interceptor/adaptor, the client-side intercep-

tor/adaptor receives the current list of group members. All client-side interceptors/adap-

tors are notified about membership changes by the service-side interceptor/adaptor they

are connected to after the service group members agree.

A client-side interceptor/adaptor that detects a failure of its service-side intercep-

tor/adaptor performs a connection fail-over to another service-side interceptor/adaptor

based on its current list of group members. After reconnection, a recovery protocol re-

trieves any undelivered messages cached at the service group.

The connection between client- and service-side interceptors/adaptors uses message se-

quencing and acknowledgements in both directions to assure reliable message delivery.

While the message sequencing assures that already received messages can be ignored, ac-

knowledgements are used in certain intervals to clear cached messages at the service group.

However, acknowledgements from the client-side interceptor/adaptor are interleaved with

request messages, reliably multicast, and totally ordered, such that each service-side in-

terceptor/adaptor is able to maintain a consistent message cache for service-side output

messages in order to perform the connection fail-over transparently.

104

4 Prototypes

In case of a connection fail-over, all cached messages are resent by the new service-side

interceptor/adaptor in the same order and duplicated messages are ignored accordingly

to the sequence number of the last received message before the failure.

4.4.4 Test Results

Introducing external client-side interceptors into the communication path of a client-

service system inherently results in a certain performance degradation. The introduction

of internal client-side adaptors does not significantly affect performance.

A test mockup of the preliminary proof-of-concept prototype implementation has been

deployed on a dedicated Linux cluster for performance testing. Each node contained dual

Intel Pentium IV 2GHz processors with 768MB of memory and 40GB of disk space. All

nodes were connected via a single Fast Ethernet (100MBit/s full duplex) hub. Federa Core

5 has been used as OS. A simple benchmark is used to perform and measure emulated

RPC patterns by sending a payload to the service and waiting for its return. The RPCs

are symmetric, i.e., requests and responses have the same payload.

The tests do not include any process group communication system as its performance

impact is service dependent, e.g., on message size, and has been studied in the previous

proof-of-concept prototype for providing symmetric active/active replication for the MDS

of the parallel file system (Section 4.3). The process group communication system latency

of 235-3,514µs for 1-8 members can be simply added to the measured RPC latency for

a generic comparison, since the tests are performed in the same testbed and intercep-

tor communication and process group communication do not interfere with each other.

Performance results are averages over 100 test runs.

The message ping-pong, i.e., emulated RPC, latency performance tests (Figure 4.21 or

Section A.1.3) of the transparent symmetric active/active replication framework proof-of-

concept prototype using external replication show that performance decreases with more

interceptors in the communication path. The performance penalty for small payloads

(0.1kB) for using client- and service-side interceptors can be as high as 22% in comparison

to an unmodified client/service system, in contrast to the penalty of 11% when using

service-side interceptors only. However, the performance impact dramatically decreases

with increasing payload.

With a latency performance of 150-178µs for 0-2 interceptors using small payloads

(0.1kB), the previously measured process group communication system latency of 235-

3,514µs for 1-8 members is clearly the dominant factor. However, with a latency per-

formance of 1900-2000µs for 0-2 interceptors using bigger payloads (10kB), the process

group communication system latency becomes equal or less important.

105

4 Prototypes

100%

105%

110%

115%

120%

125%

0.1 1 10 100

Payload in Kilobytes

La
te

nc
y

in
 M

ill
is

ec
on

ds
_

Without Interceptors With Service Interceptor With Both Interceptors

Figure 4.21: Normalised message ping-pong (emulated remote procedure call) latency per-
formance of the transparent symmetric active/active replication framework using external
replication (averages over 100 tests)

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0.1 1 10 100

Payload in Kilobytes

Ba
nd

w
id

th
 in

 M
eg

ab
yt

es
/S

ec
on

d_

Without Interceptors With Service Interceptor With Both Interceptors

Figure 4.22: Normalised message ping-pong (emulated emulated remote procedure call)
bandwidth performance of the transparent symmetric active/active replication framework
using external replication (averages over 100 tests)

106

4 Prototypes

The message ping-pong bandwidth performance tests (Figure 4.22 or Section A.1.3) also

show that performance decreases with more interceptors in the client-service communica-

tion path. The performance for small payloads (0.1kB) for using client- and service-side

interceptors can be as low as 83% of an unmodified client/service system, in contrast to

the 91% when using service-side interceptors only. However, the performance impact also

dramatically decreases with increasing payload.

Both, latency and bandwidth performance are also highly dependent on the request/

query processing latency of a service. The performed tests assume a request/query pro-

cessing latency of 0µs, which is unrealistic but represents the worst-case scenario for the

symmetric active/active replication infrastructure. The higher the request/query pro-

cessing latency, the lesser is the impact of the latency and bandwidth performance of the

symmetric active/active replication infrastructure.

4.4.5 Conclusions

With this preliminary proof-of-concept prototype, a symmetric active/active replication

software architecture has been designed that uses a VCL to accommodate both replication

methods, internal and external, and to allow for transparent client connection fail-over as

well as for more reuse of code between individual service-level replication implementations.

With the introduction of client-side interceptors/adaptors in addition to those on the

service side, the developed solution additionally hides the interaction of the client with

the service-side interceptor/adaptor from the client in the same fashion the service-side

interceptor/adaptor hides the interaction of the service with the service-side intercep-

tor/adaptor. Adaptation of interceptors/adaptors to clients and services is only needed

with regards to the used communication protocol and its semantics. Clients and services

are unaware of the symmetric active/active replication infrastructure as it provides all

necessary mechanisms internally via the VCL.

The developed symmetric active/active replication prototype is able to transparently

provide service-level high availability using the symmetric active/active replication ap-

proach for services in parallel and distributed computing systems. It is applicable to any

service-oriented or service-dependent architecture.

The transparency provided by the VCL also hides any communication across admin-

istrative domains, i.e., communication appears to be local. This has two consequences.

First, client and service still need to perform any necessary authentication and authori-

sation using the client- and service-side interceptors/adaptors as virtual protocol routers.

Second, the VCL itself may need to perform similar mechanisms to assure its own integrity

across administrative domains.

107

4 Prototypes

The experience gained with this preliminary proof-of-concept prototype is important

with respect to applying symmetric active/active replication to other HPC system ser-

vices. The performance results can be used as a guideline for choosing between the

internal and external replication method depending on the performance requirements and

architectural complexity of a specific service.

4.5 Transparent Symmetric Active/Active Replication

Framework for Dependent Services

The previously developed software framework (Section 4.4) offers transparent symmetric

active/active replication. However, this preliminary proof-of-concept prototype is limited

to client-service scenarios. While they are quite common, as exemplified with the symmet-

ric active/active replication proof-of-concept prototype for the HPC parallel file system

metadata service (Section 4.3), dependencies between critical HPC system services exist.

The Lustre cluster file system (Section 2.1.1), for example, employs a MDS as well as

object storage services (OSSs). File system drivers on compute nodes communicate in a

client-service fashion with these services. However, in contrast to PVFS (Sections 2.1.1

and 4.3), MDS and OSSs communicate with each other in a service-to-service fashion

incompatible with the current client-service replication architecture.

The previously developed symmetric active/active replication proof-of-concept proto-

type for the HPC job and resource management service (Section 4.2) also showed exactly

this deficiency, as the job management service on the head node of a HPC system, i.e.,

the PBS service, and the parallel job start and process monitoring service on the compute

nodes, i.e., the PBS mom service, depend on each other to function correctly.

The developed preliminary proof-of-concept prototype of a transparent symmetric ac-

tive/active replication framework does not clearly address dependent services. The re-

search and development effort presented in this Section targets the extension of the de-

veloped preliminary proof-of-concept prototype to replication scenarios with dependent

services using its already existing mechanisms and features. As part of this effort, a sec-

ond preliminary proof-of-concept prototype [209] has been developed in C on Linux to

provide symmetric active/active high availability transparently to dependent services.

This preliminary proof-of-concept prototype was primarily motivated by the experience

gained from an attempt to apply the previously developed software framework to the

Lustre cluster file system metadata service. A preliminary proof-of-concept prototype

implementation in C on Linux was carried out under my supervision by Matthias Weber

during his internship at Oak Ridge National Laboratory, USA, for his MSc thesis at the

108

4 Prototypes

University of Reading, UK. His thesis [210], titled “High Availability for the Lustre File

System”, revealed the incompatibility of the client-service oriented transparent symmetric

active/active replication framework with the service interdependencies in Lustre. The

following approach for a transparent symmetric active/active replication framework for

dependent services was a direct result of this experienced limitation.

4.5.1 Objectives

The developed transparent symmetric active/active replication software framework only

addresses client-service scenarios, but more complex service-service relationships between

critical HPC system services exist. The development of this preliminary proof-of-concept

prototype had the following primary objectives:

• extension of the developed symmetric active/active replication framework to provide

high availability to dependent services,

• utilisation of existing mechanisms and features to avoid an unnecessary increase in

framework size and complexity,

• measuring any additional overhead introduced by the extended symmetric active/ac-

tive replication framework in scenarios with dependent services, and

• gaining further experience with service-level symmetric active/active replication.

This proof-of-concept prototype focuses on the underlying transparent symmetric ac-

tive/active replication framework and not on a specific service. With the experience

from the previously developed prototype for the HPC job and resource management ser-

vice (Section 4.2) and based on the architecture of the Lustre cluster file system (Sec-

tion 2.1.1), interactions of the symmetric active/active replication framework in scenarios

with dependent services are generalised.

4.5.2 Technical Approach

Two networked services depend on each other, when one service is a client of the other

service or when both services are clients of each other. More than two services may depend

on each other through a composition of such service-to-service dependencies.

In the previously introduced example of the Lustre cluster file system architecture, MDS

and OSSs are not only services for the file system driver client on the compute nodes of

a HPC system, but also clients for each other. Assuming n compute, 1 MDS and m OSS

nodes, this architecture consists of a n-to-1 dependency for file system driver and MDS,

109

4 Prototypes

a n-to-m dependency for file system driver and OSSs, a m-to-1 dependency for OSSs and

MDS, and a 1-to-m dependency for MDS and OSSs.

In order to deal with such dependencies between services, the existing transparent

symmetric active/active replication framework is extended to service-service scenarios

by using its already existing mechanisms and features for client-service systems. While

each interdependency between two services is decomposed into two respective orthogonal

client-service dependencies, services utilise separate client-side interceptors/adapters for

communication to services they depend on.

4.5.3 Architecture and Design

A high-level abstraction of the existing transparent symmetric active/active replication

framework architecture helps to illustrate dependencies between clients and services, and

to decompose dependencies between services into respective client-service dependencies.

With the help of the VCL that hides the replication infrastructure as much as possible, the

framework architecture can be simplified into five components: nodes, clients, services,

VCLs, and connections (Figure 4.23). This high-level abstraction is independent of the

replication method, internal or external, while it clearly identifies clients, services, replicas,

client-service dependencies, and decomposed service-to-service dependencies.

Figure 4.23: Transparent symmetric active/active replication framework architecture for
client/service scenarios

In this abstraction, a node represents some specific service state. Each node may host

only one service and multiple clients, where clients on a node that hosts a service belong

to that service. Each VCL belongs to one group of replicated services and their clients.

Any client or service may belong to only one VCL.

110

4 Prototypes

The notion of node in this abstraction may not directly fit to real-world applications

as a single physical service node may host multiple services, like the head node in a HPC

system. This may be noted in the abstraction by using a node for each service that runs

independently on a physical node. Multiple services that do depend on each other and

run on the same physical node are considered as one service, since they are replicated as

one single deterministic state machine.

Service-independent clients may be noted by using a node for each client. Independent

clients may not be grouped together on a node in the abstraction, even if they reside on

the same physical node. This allows to differentiate between the states of clients.

For the respective VCL they are connected to, clients utilise their client-side intercep-

tor/adaptor and services utilise their service-side interceptor/adaptor. The client-side

interceptors/adaptors of a replicated service form a single virtual client in the VCL layer,

thus allowing client-side interceptors/adaptors of clients or of non-replicated services to

connect to the same VCL.

Based on this high-level abstraction, a variety of scenarios can be expressed using the

existing transparent symmetric active/active replication framework.

Figure 4.24 depicts a scenario with a group of clients, client nodes 1-3, accessing a

replicated service group, service nodes 1A-C, which itself relies on another replicated

service group, service nodes 2X-Z. The service nodes 1A-C provide a replicated service

to client nodes 1-3, while they are clients for service nodes 2X-Z. Each of the two VCLs

performs the necessary replication mechanisms for its replicated service.

The scenario depicted in Figure 4.24 solves the issue of the HPC job and resource

management service. Services 1A-C represent the replicated job management service

process running on HPC system head nodes and services 2X-Z represent the replicated

parallel job start and process monitoring service process running on HPC system compute

nodes. Both services can be fully and transparently replicated by using serial VCLs to

hide the replication infrastructure from both services.

Figure 4.25a shows a group of clients, client nodes 1-3, communicating with two different

replicated service groups, service nodes 1A-B and 2Y-Z. The client nodes 1-3 host two

clients, each for a different VCL belonging to a different replicated service group.

Figure 4.25b illustrates a scenario with two interdependent replicated service groups.

The service nodes 1A-B provide a replicated service and are clients of 2Y-Z, while the

service nodes 2Y-Z provide a replicated service and are clients of 1A-B.

The presented high-level abstraction can be used to guide the deployment of the trans-

parent symmetric active/active replication framework in more complex scenarios with

dependent HPC system services using one of the presented scenarios or a combination of

the presented scenarios.

111

4 Prototypes

Figure 4.24: Transparent symmetric active/active replication framework architecture for
client/client+service/service scenarios

(a) Client/2 services scenarios (b) Service/service scenarios

Figure 4.25: Transparent symmetric active/active replication framework architecture for
client/2 services and service/service scenarios

112

4 Prototypes

Going back to the Lustre cluster file system example, Figure 4.26 illustrates a highly

available Lustre deployment using this high-level abstraction. This example uses 3 file

system driver clients (client nodes 1-3), a replicated MDS service group, MDS nodes W-X,

and one replicated OSS service group, OSS nodes Y-Z. This architecture is a combination

of a group of clients communicating with two different replicated service groups (Fig-

ure 4.25a) and two interdependent replicated service groups (Figure 4.25b). Since Lustre

supports many clients and several OSSs, the depicted example may be extended with

respective components if needed.

Figure 4.26: Example: Transparent symmetric active/active replication framework archi-
tecture for the Lustre cluster file system

4.5.4 Test Results

This enhancement of the previously developed preliminary proof-of-concept prototype

of a symmetric active/active replication framework introduces two new basic replication

configurations: (1) multiple serial VCLs, i.e., nodes with a service and one or more

clients (Figure 4.24), and (2) multiple parallel VCLs, i.e., nodes with multiple clients

(Figure 4.25a). Service-to-service scenarios (Figure 4.25b) are a combination of both.

In addition to the normal interference between multiple services communicating with

their clients at the same time over the same network, multiple parallel VCLs may interfere

with each other if the process group communication traffic is routed through the same

network, i.e., via the same network switch. Since this interference is highly application

dependent, e.g., bandwidth usage, collisions, and network quality of service, a generic

performance evaluation does not make much sense. Furthermore, a separation of process

group communication traffic for additional performance may be implemented by deploying

a separate network between replicated service nodes.

Multiple serial VCLs interfere with each other by adding latency in a request/response

scenario commonly used by HPC system services in the form of RPCs.

113

4 Prototypes

Reiterating the Lustre cluster file system example, the file system driver client on the

compute nodes communicates with the MDS, which in turn communicates with OSSs.

This scenario can be observed when deleting a file, where the MDS deletes the file record

and notifies the OSSs to delete the file object before returning a response back to the file

system driver client that initiated the file deletion request.

Since some HPC system services, such as the set of services deployed by Lustre, tend to

be response-latency sensitive, tests were performed with a generic client/service/service

architecture to measure the performance impact of using interceptor processes, i.e., ex-

ternal replication, in a serial VCL configuration.

Two test series were performed using (1) a single service and (2) two serial services,

each with and without interceptor processes, i.e., using external and internal replication,

between client and service 1, and service 1 and service 2 (Figure 4.24).

A test mockup of the preliminary proof-of-concept prototype implementation has been

deployed on a dedicated cluster for performance testing. Each node contained dual Intel

Pentium D 3GHz processors with 2GB of memory and 210GB of disk space. All nodes

were connected via a single Gigabit Ethernet (1GBit/s full duplex) hub. Federa Core 5

64bit has been used as OS. A simple benchmark is used to perform and measure emulated

RPC patterns by sending a payload to the service and waiting for its return. The RPCs

are symmetric, i.e., requests and responses have the same payload. Performance results

are averages over 100 test runs.

Similar to the previous preliminary proof-of-concept prototype implementation (Sec-

tion 4.4), the tests do not include any process group communication system as its perfor-

mance impact is service dependent and has been studied before (Section 4.3).

The message ping-pong, i.e., emulated RPC, latency performance tests (Figure 4.27 or

Section A.1.4) of the transparent symmetric active/active replication framework proof-of-

concept prototype in a serial VCL configuration clearly show the increasing performance

impact of adding interceptor processes into the communication path of dependent services.

The highest latency performance impact can be observed with small message payloads.

The performance penalty for small payloads (0.1kB) for using client and service-side in-

terceptors can be as high as 85% in comparison to an unmodified serial client/service

system, in contrast to the penalty of 35% when using service-side interceptors only. How-

ever, the relative performance impact dramatically decreases when increasing the payload

to 100KB, after which it increases again.

The message ping-pong bandwidth performance tests (Figure 4.28 or Section A.1.4) also

clearly show the increasing impact of adding interceptor processes into the communication

path. Similar to the latency impact, the highest bandwidth performance impact is with

small messages. The performance for small payloads (0.1kB) for using client and service-

114

4 Prototypes

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

200%

0.1 1 10 100 1000

Payload in Kilobytes

La
te

nc
y

in
 M

illi
se

co
nd

s_

1 Service, 0 Interceptors 1 Service, 2 Interceptors 2 Services, 0 Interceptors
2 Services, 2 Interceptors 2 Services, 4 Interceptors

Figure 4.27: Normalised message ping-pong (emulated emulated remote procedure call)
latency performance of the transparent symmetric active/active replication framework in
a serial virtual communication layer configuration (averages over 100 tests)

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.1 1 10 100 1000

Payload in Kilobytes

B
an

dw
ith

 in
 M

eg
ab

yt
es

/S
ec

on
d_

1 Service, 0 Interceptors 1 Service, 2 Interceptors 2 Services, 0 Interceptors
2 Services, 2 Interceptors 2 Services, 4 Interceptors

Figure 4.28: Normalised message ping-pong (emulated emulated remote procedure call)
bandwidth performance of the transparent symmetric active/active replication framework
in a serial virtual communication layer configuration (averages over 100 tests)

115

4 Prototypes

side interceptors can be as low as 55% of an unmodified serial client/service system,

in contrast to the 76% when using service-side interceptors only. However, the relative

performance impact also dramatically decreases when increasing the payload to 100KB,

after which it also increases again.

There are two factors that influence both performance impacts: (1) latency added

by the interceptor processes, and (2) local traffic, and respective congestion, added by

the interceptor processes. Both are due to the fact that the interceptor processes cause

network traffic to go twice through the OS, once to send/receive to/from the network and

once to send/receive to/from its client or service.

Similar to the previous preliminary proof-of-concept prototype implementation (Sec-

tion 4.4), latency and bandwidth performance are also highly dependent on the re-

quest/query processing latency of a service. The performed tests assume the worst-case

scenario for the symmetric active/active replication infrastructure, a service request/query

processing latency of 0µs.

4.5.5 Conclusions

With this preliminary proof-of-concept prototype, one important limitation of the previ-

ously developed preliminary proof-of-concept prototype of a transparent symmetric ac-

tive/active replication framework has been addressed. Its deficiency, the inability to deal

with dependent services, has been resolved by extending the replication framework us-

ing its already existing mechanisms and features to allow services to be clients of other

services, and services to be clients of each other.

By using a high-level abstraction, dependencies between clients and services, and de-

compositions of service-to-service dependencies into respective orthogonal client-service

dependencies can be mapped onto an infrastructure consisting of multiple symmetric

active/active replication subsystems. Each subsystem utilises the VCL to hide the repli-

cation infrastructure for a specific service group as much as possible.

The enhanced preliminary proof-of-concept prototype is able to transparently provide

high availability for dependent HPC system services by utilising existing mechanisms and

features, thus avoiding an unnecessary increase in framework size and complexity.

The additional experience gained with this proof-of-concept prototype is important with

respect to applying symmetric active/active replication to dependent HPC system services

in practice. The performance results can be used as a guideline for choosing between the

internal and external replication method depending on the performance requirements and

architectural complexity of a specific service or service group.

116

4 Prototypes

4.6 Summary

This Chapter detailed objectives, technical approach, architecture, design, test results,

and conclusions for each developed proof-of-concept prototype. First, a symmetric ac-

tive/active high availability framework concept was outlined. This multi-layered frame-

work concept coordinated individual solutions with regards to their respective field, and

offered a modular approach that allows for adaptation to system properties and appli-

cation needs. The four developed prototypes primarily focused on the virtual synchrony

runtime environment of this framework concept as implementations of the other layers

can be found in existing solutions. Future work may combine existing solutions with the

virtual synchrony runtime environment presented in this Chapter.

The first prototype was the very first fully functional solution for providing symmetric

active/active high availability for a HPC system service using the external replication

approach that wraps an existing service into a virtually synchronous environment. It

provided high availability for the TORQUE job and resource management service with

an acceptable performance. A distributed mutual exclusion to unify replicated output

was showcased. The developed proof-of-concept prototype provided an extraordinary

service availability. With a node MTTF of 5,000 hours, service availability could be

improved from 99.285% to 99.995% in a two-node system, an increase from a two-nines

to a four-nines rating just by using a second node. Adding another node would increase

service availability to 99.99996%, a six-nines rating. Experienced limitations included a

certain latency performance overhead unacceptable for more latency-sensitive services,

and complex interdependencies between individual system services on head, service and

compute nodes incompatible with the client-service replication infrastructure.

The second prototype was a fully functional solution for providing symmetric ac-

tive/active high availability for the MDS of PVFS using the internal replication approach,

which modifies an existing service to inferface it with a process group communication sys-

tem for virtual synchrony. The prototype offered a remarkable latency and throughput

performance due to significant improvements in the process group communication total

message order protocol. This improvement solved one of the experienced limitations of

the first prototype. Similar to the previous prototype, this prototype provided an extraor-

dinary service availability. While this particular MDS was an easy-to-modify solution due

to the small size and complexity of its clients and service, other parallel file systems, such

as Lustre, are rather complex.

The third prototype was a symmetric active/active replication software architecture

that uses a VCL to accommodate both replication methods, internal and external, to

allow for transparent client connection fail-over as well as for more reuse of code be-

117

4 Prototypes

tween individual service-level replication implementations. With the introduction of

client-side interceptors/adaptors, clients and services were unaware of the symmetric ac-

tive/active replication infrastructure provided by this preliminary proof-of-concept pro-

totype as it supports all necessary mechanisms internally via the VCL. Adaptation of

interceptors/adaptors to clients and services is only needed with regards to the used

communication protocol and its semantics. This improvement solved the experienced

limitation of the first two prototypes. The provided generic performance results can be

used as a guideline for choosing between the internal and external replication method

depending on the performance requirements or complexity of a specific service.

The fourth prototype removed another limitation, the inability to deal with depen-

dent services. The third prototype was extended using its already existing mechanisms

and features to allow services to be clients of other services, and services to be clients

of each other. By using a high-level abstraction, this preliminary proof-of-concept proto-

type, in addition to normal dependencies between clients and services, maps decomposi-

tions of service-to-service dependencies into respective orthogonal dependencies between

clients and services onto a replication infrastructure consisting of multiple symmetric ac-

tive/active replication subsystems. Similar to the previous preliminary prototype, generic

performance results are provided to be used as a guideline for choosing between the in-

ternal and external replication method depending on the performance requirements or

complexity of a specific service or service group.

118

5 Summary, Conclusions, and Future

Work

This Chapter concludes this thesis with an overall summary and evaluation of the pre-

sented research, and a discussion of future directions.

5.1 Summary

In the following, individual chapter summaries are reiterated to give an overall summary

of the presented work.

Chapter 1 provided a more detailed description of the overall thesis research back-

ground, motivation, objectives, methodology, and contribution. The research background

of scientific HPC and its significance to other science areas, such as climate dynamics,

nuclear astrophysics, and fusion energy, has been explained. The trend toward larger-

scale HPC systems beyond 100,000 computational, networking, and storage components

and the resulting lower overall system MTTF has been detailed. The main objective of

this thesis, efficient software state replication mechanisms for the redundancy of services

running on HPC head and service nodes, has been stated and motivated by the fact that

such service components are the “Achilles heel” of a HPC system.

The methodology and major research contributions of this thesis have been outlined

with respect to theoretical ground work (see summary for Chapter 3) and proof-of-concept

prototype development (see summary for Chapter 4).

Chapter 2 evaluated previous work within the research context of this thesis. Detailed

past and ongoing research and development for HPC head and service node high availabil-

ity included active/standby configurations using shared storage, active/standby configu-

rations using software state replication, and high availability clustering. Certain pitfalls

involving active/standby configurations using shared storage, such as backup corruption

during failure, have been pointed out. There was no existing solution using symmetric

active/active replication, i.e., state-machine replication.

119

5 Summary, Conclusions, and Future Work

Described techniques for HPC compute node high availability included checkpoint/re-

start, message logging, algorithm-based fault tolerance, and proactive fault avoidance.

The underlying software layer often relied on HPC head and service node high availability

for coordination and reconfiguration after a failure.

Examined distributed systems efforts focused on state-machine replication, process

group communication, virtual synchrony, distributed control, and practical Byzantine

fault tolerance. Many of the distributed systems mechanisms were quite advanced in

terms of communication protocol correctness and provided availability. There has been

much less emphasis on high performance.

Detailed IT and telecommunication industry solutions covered a wide range of high

availability configurations. The only two solutions using some variant of state-machine

replication were T2CP-AR for TCP-based telecommunication services and Stratus Con-

tinuous Processing for DMR with hardware-supported instruction-level replication.

Chapter 3 provided the theoretical ground work of the research presented in this thesis.

An extended generic taxonomy for service-level high availability has been presented that

introduced new terms, such as asymmetric active/active and symmetric active/active, to

resolve existing ambiguities of existing terms, such as active/active. The taxonomy also

clearly defined the various configurations for achieving high availability of service and

relevant metrics for measuring service availability. This extended taxonomy represented

a major contribution to service availability research and development with respect to

incorporating state-machine replication theory and resolving ambiguities of terms.

Current HPC system architectures were examined in detail and a more generalised ar-

chitecture abstraction was introduced to allow the identification of availability deficiencies.

HPC system services were categorised into critical and non-critical to describe their im-

pact on overall system availability. HPC system nodes were categorised into single points

of failure and single points of control to pinpoint their involvement in system failures, to

describe their impact on overall system availability, and to identify their individual need

for a high availability solution. This analysis of architectural availability deficiencies of

HPC systems represented a major contribution to the understanding of high availability

aspects in the context of HPC environments.

Using the taxonomy and a conceptual service model, various methods for providing

service-level high availability were defined and their mechanisms and properties were de-

scribed in detail. A theoretical comparison of these methods with regards to their perfor-

mance overhead and provided availability was presented. This comparison represented a

major contribution to service availability research and development with respect to incor-

porating state-machine replication theory. It clearly showed that symmetric active/active

120

5 Summary, Conclusions, and Future Work

replication provides the highest form of availability, while its performance impact highly

depends on the employed process group communication protocol.

Chapter 4 detailed the developed proof-of-concept prototypes. First, a multi-layered

symmetric active/active high availability framework concept was outlined that coordi-

nated individual solutions with regards to their respective field and offered a modular

approach for adaptation to system properties and application needs. The four developed

proof-of-concept prototypes primarily focused on the virtual synchrony runtime environ-

ment as implementations of the other layers can be found in existing solutions.

The first proof-of-concept prototype was the very first fully functional solution for

providing symmetric active/active high availability for a HPC system service using the

external replication approach that wraps an existing service into a virtually synchronous

environment. It provided extraordinary high availability for the TORQUE job and re-

source management service with an acceptable performance. With a node MTTF of 5,000

hours, service availability could be improved from 99.285% to 99.995% in a two-node sys-

tem, an increase from a two-nines to a four-nines rating just by using a second node. A

distributed mutual exclusion to unify replicated output was showcased. Experienced lim-

itations included a certain performance overhead unacceptable for more latency-sensitive

services, and complex interdependencies between individual system services on head, ser-

vice and compute nodes incompatible with the client-service replication infrastructure.

The second proof-of-concept prototype was a fully functional solution for providing

symmetric active/active high availability for the MDS of PVFS using the internal repli-

cation approach, which modifies an existing service to inferface it with a process group

communication system for virtual synchrony. The proof-of-concept prototype offered a

remarkable latency and throughput performance due to significant improvements in the

process group communication protocol. This improvement solved the experienced limita-

tion of the first proof-of-concept prototype, while it continued to provide an extraordinary

service availability. While this particular MDS was an easy-to-modify solution due to the

small size and complexity of its clients and service, other parallel file systems, such as

Lustre, are rather complex.

The third proof-of-concept prototype was a symmetric active/active replication software

architecture that uses a VCL to accommodate both replication methods, internal and

external, to allow for transparent client connection fail-over as well as for more reuse

of code. Clients and services were unaware of the symmetric active/active replication

infrastructure provided by this preliminary proof-of-concept prototype as it supports all

necessary mechanisms internally via the VCL. Adaptation of interceptors/adaptors to

clients and services is only needed with regards to the used communication protocol. This

121

5 Summary, Conclusions, and Future Work

improvement solved an experienced limitation of the first two proof-of-concept prototypes.

Provided generic performance results can be used as a guideline for choosing between the

internal and external replication method depending on service performance requirements

and architectural complexity.

The fourth proof-of-concept prototype removed another limitation, the inability to deal

with dependent services. The third proof-of-concept prototype was extended using its

already existing mechanisms and features to allow services to be clients of other services,

and services to be clients of each other. By using a high-level abstraction, this prelimi-

nary proof-of-concept prototype, in addition to normal dependencies between clients and

services, maps decompositions of service-to-service dependencies into respective orthogo-

nal dependencies between clients and services onto a replication infrastructure consisting

of multiple symmetric active/active replication subsystems. Generic performance results

are provided to be used as a guideline for choosing between the internal and external

replication method performance requirements and architectural complexity of a specific

service or service group.

5.2 Conclusions

The theoretical ground work of this thesis research is an important contribution to a

modern taxonomy for service-level high availability as well as a significant step in under-

standing high availability aspects in the context of HPC environments.

The introduction of the terms asymmetric and symmetric active/active replication

resolved existing ambiguities, while it integrated state-machine replication theory with

service-level high availability taxonomy. This provides the high availability research and

development community with a common language across all high availability configura-

tions and mechanisms.

The identification of critical and non-critical system services as well as of individual

single points of failure and single points of control within a generalised HPC system

architecture revealed several availability deficiencies and the need for high availability

solutions for various service components, i.e., for head and service nodes. This results

in a greater awareness within the HPC community of such availability deficiencies and of

needed high availability solutions.

The comparison of service-level high availability methods using a conceptual service

model and a common taxonomy for employed algorithms, provided availability, and in-

curred performance overhead, showed that active/hot-standby and symmetric active/ac-

tive replication provide the highest form of availability. In case of symmetric active/active

replication, the performance impact highly depended on the employed process group com-

122

5 Summary, Conclusions, and Future Work

munication protocol. This comparison results in a greater awareness within the high avail-

ability research and development community about the various high availability methods

and their properties.

The developed proof-of-concept prototypes documented in this thesis represent a giant

leap forward in providing high availability for HPC system services as well as an important

contribution in offering symmetric active/active high availability transparently to clients

and services.

The symmetric active/active high availability proof-of-concept prototype for a HPC

job and resource management service not only showed that high availability can be pro-

vided without modifying a service, but also demonstrated the giant advantage symmetric

active/active replication offers with its extremely low failure recovery impact and extraor-

dinary high availability. With a MTTF of 5,000 hours for a single head node, service avail-

ability was improved from 99.285% to 99.995% in a two-node system, and to 99.99996%

with three nodes. This proof-of-concept prototype offers a convincing argument to the

high availability community in general and to the HPC community in specific that sym-

metric active/active high availability is implementable and provides the highest degree of

service availability.

The symmetric active/active high availability proof-of-concept prototype for a HPC

parallel file system metadata service additionally showed that high availability can be

provided in conjunction with high performance. While the original metadata service was

modified for adaptation to a process group communication system, it was also enhanced

with the capability to interleave non-concurrent state changes for better performance.

The improvement of the process group communication protocol was instrumental to the

displayed high performance. This proof-of-concept prototype offers a convincing argument

to the high availability community in general and to the HPC community in specific

that symmetric active/active high availability is simply better or at least equal to its

active/standby and asymmetric active/active competitors.

The two preliminary proof-of-concept prototypes for a transparent symmetric active/ac-

tive replication software framework for client-service and dependent service scenarios

showed that transparent or semi-transparent deployment of the replication infrastruc-

ture completely or partially invisible to clients and services is possible. Based on the

symmetric active/active high availability framework concept of this thesis, both prelimi-

nary proof-of-concept prototypes represent a path toward a production-type transparent

symmetric active/active replication software infrastructure.

123

5 Summary, Conclusions, and Future Work

5.3 Future Work

Possible future work focuses on the following four research and development directions:

(1) development of a production-type symmetric active/active replication software infras-

tructure, (2) development of production-type high availability support for HPC system

services, (3) extending the transparent symmetric active/active replication software frame-

work proof-of-concept prototype to support active/standby and asymmetric active/active

configurations as well, and (4) extending the lessons learned and the prototypes developed

to other service-oriented or service-dependent architectures.

The two preliminary proof-of-concept prototypes for a transparent symmetric active/ac-

tive replication software framework for client-service and dependent service scenarios

already show the path toward a production-type solution. Using the symmetric ac-

tive/active high availability framework concept of this thesis, these preliminary proof-of-

concept prototypes may be combined with other existing solutions to offer a production-

type symmetric active/active replication software infrastructure. For example, the compo-

nent-based framework of Open MPI (Section 2.2.3) that encapsulates communication

drivers using interchangeable and interoperable components, the component-based frame-

work for group communication mechanisms in Horus (Section 2.3.3), and the VCL of the

symmetric active/active replication software framework proof-of-concept prototype for de-

pendent service scenarios may be integrated to implement a production-type transparent

symmetric active/active replication software framework.

Furthermore, the same two preliminary proof-of-concept prototypes for a transparent

symmetric active/active replication software framework for client-service and dependent

service scenarios may be used to develop production-type high availability support for

HPC system services beyond the proof-of-concept prototype stage. The developed sym-

metric active/active high availability proof-of-concept prototype for the HPC job and

resource management service and for the metadata service of the parallel file system were

custom implementations. Production-type deployment and continued support within the

code base of a service requires a transparent replication infrastructure with a standard

API, such as the VCL of the preliminary proof-of-concept prototype for a transparent

symmetric active/active replication software framework for dependent services.

The comparison of service-level high availability methods (Section 3.3) revealed that the

interfaces and mechanisms of all methods are quite similar. A replication software frame-

work that supports all these methods, such as active/standby, asymmetric active/active,

and symmetric active/active, may be of great practical value. This would not only allow

a practical comparison, but it would also yield a tunable replication infrastructure that

allows adaptation to individual performance and availability needs.

124

5 Summary, Conclusions, and Future Work

Lastly, the work presented in this thesis, including theory and proof-of-concept proto-

types, may be applied to other service-oriented or service-dependent architectures, such

as to critical Web services (providers, brokers, . . .), critical infrastructure services in peer-

to-peer or collaborative environments (directory servers, share points, . . .), and critical

enterprise services (inventory and personnel databases, payroll services, . . .).

125

6 References

[1] Hans Meuer, Erich Strohmaier, Jack J. Dongarra, and Horst Simon. Top 500 list of

supercomputer sites, 2007. URL http://www.top500.org.

[2] Bianca Schroeder and Garth A. Gibson. Understanding failures in petascale com-

puters. In Journal of Physics: Proceedings of the Scientific Discovery through Ad-

vanced Computing Program (SciDAC) Conference 2007, volume 78, pages 2022–

2032, Boston, MA, USA, June 24-28, 2007. Institute of Physics Publishing, Bristol,

UK. URL http://www.iop.org/EJ/abstract/1742-6596/78/1/012022.

[3] John T. Daly, Lori A. Pritchett-Sheats, and Sarah E. Michalak. Application MT-

TFE vs. platform MTTF: A fresh perspective on system reliability and application

throughput for computations at scale. In Proceedings of the 8th IEEE International

Symposium on Cluster Computing and the Grid (CCGrid) 2008: Workshop on Re-

siliency in High Performance Computing (Resilience) 2008, Lyon, France, May 19-

22, 2008. IEEE Computer Society. URL http://xcr.cenit.latech.edu/resilience2008/

program/resilience08-10.pdf.

[4] Salim Hariri and Manish Parashar. Tools and Environments for Parallel and

Distributed Computing. Wiley InterScience, John Wiley & Sons, Inc., Hoboken,

NJ, USA, January 2004. ISBN 978-0-471-33288-6. URL http://www.wiley.com/

WileyCDA/WileyTitle/productCd-0471332887.html.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Sim-

ulations, and Advanced Topics, 2nd Edition. Wiley InterScience, John Wiley &

Sons, Inc., Hoboken, NJ, USA, March 2004. ISBN 978-0-471-45324-6. URL

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471453242.html.

[6] David E. Culler, Jaswinder P. Singh, and Anoop Gupta. Parallel Computer Architec-

ture: A Hardware/Software Approach. Morgan Kaufmann Publishers, Burlington,

MA, USA, August 1998. ISBN 978-1-558-60343-1. URL http://books.elsevier.com/

us/mk/us/subindex.asp?isbn=9781558603431.

126

http://www.top500.org
http://www.iop.org/EJ/abstract/1742-6596/78/1/012022
http://xcr.cenit.latech.edu/resilience2008/program/resilience08-10.pdf
http://xcr.cenit.latech.edu/resilience2008/program/resilience08-10.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471332887.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471332887.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471453242.html
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=9781558603431
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=9781558603431

References

[7] Michael T. Heath. Scientific Computing, 2nd Edition. McGraw-Hill, New York,

NY, USA, August 2001. ISBN 978-0-072-39910-3. URL http://catalogs.mhhe.com/

mhhe/viewProductDetails.do?isbn=0072399104.

[8] National Center for Atmospheric Research, Boulder, CO, USA. Community Climate

System Model (CCSM) documentation, 2007. URL http://www.ccsm.ucar.edu.

[9] The Nobel Foundation, Stockholm, Sweden. The Nobel Peace Prize 2007, Octo-

ber 11, 2007. URL http://nobelprize.org/nobel prizes/peace/laureates/2007.

[10] Intergovernmental Panel on Climate Change (IPCC). Press release: IPCC expresses

surprise and gratitude at announcement of Nobel Peace Prize, October 12, 2007.

URL http://www.ipcc.ch/press/prpnp12oct07.htm.

[11] National Center for Atmospheric Research, Boulder, CO, USA. Press release:

NCAR scientists and technical staff share in Nobel Peace Prize with IPCC colleagues

around the world, October 11, 2007. URL http://www.ncar.ucar.edu/news/press/

press release.php?id=2840.

[12] Oak Ridge National Laboratory, Oak Ridge, TN, USA. Terascale Supernova Initia-

tive (TSI) documentation, 2007. URL http://www.phy.ornl.gov/tsi.

[13] National Center for Computational Sciences, Oak Ridge, TN, USA. Jaguar Cray

XT system documentation, 2007. URL http://www.nccs.gov/computing-resources/

jaguar.

[14] National Center for Computational Sciences, Oak Ridge, TN, USA. Leadership

science, 2007. URL http://www.nccs.gov/leadership-science.

[15] Mark Seager. Operational machines: ASCI White. Talk at the 7th Workshop on

Distributed Supercomputing (SOS) 2003, March 4-6, 2003. URL http://www.cs.

sandia.gov/SOS7/presentations/seager white.ppt.

[16] Chung-Hsing Hsu and Wu-Chun Feng. A power-aware run-time system for high-

performance computing. In Proceedings of the IEEE/ACM International Conference

on High Performance Computing and Networking (SC) 2005, Seattle, WA, USA,

November 12-18, 2005. IEEE Computer Society. ISBN 1-59593-061-2. URL http:

//dx.doi.org/10.1109/SC.2005.3.

[17] National Energy Research Scientific Computing Center (NERSC), Lawrence Berke-

ley National Laboratory (LBNL), Berkeley, CA, USA. Current and past HPC system

availability statistics, 2007. URL http://www.nersc.gov/nusers/status/AvailStats.

127

http://catalogs.mhhe.com/mhhe/viewProductDetails.do?isbn=0072399104
http://catalogs.mhhe.com/mhhe/viewProductDetails.do?isbn=0072399104
http://www.ccsm.ucar.edu
http://nobelprize.org/nobel_prizes/peace/laureates/2007
http://www.ipcc.ch/press/prpnp12oct07.htm
http://www.ncar.ucar.edu/news/press/press_release.php?id=2840
http://www.ncar.ucar.edu/news/press/press_release.php?id=2840
http://www.phy.ornl.gov/tsi
http://www.nccs.gov/computing-resources/jaguar
http://www.nccs.gov/computing-resources/jaguar
http://www.nccs.gov/leadership-science
http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1109/SC.2005.3
http://www.nersc.gov/nusers/status/AvailStats

References

[18] John Morrison. The ASCI Q system at Los Alamos. Talk at the 7th Workshop on

Distributed Supercomputing (SOS) 2003, March 4-6, 2003. URL http://www.cs.

sandia.gov/SOS7/presentations/seager white.ppt.

[19] Frederick H. Streitz. Simulating solidification in metals at high pressure –

The drive to petascale computing. Keynote address at the 12th Annual

San Diego Supercomputer Center (SDSC) Summer Institute 2006, July 17-21,

2006. URL http://www.sdsc.edu/us/training/workshops/2006summerinstitute/

docs/SI2006 Streitz keynote.ppt.

[20] Ian R. Philp. Software failures and the road to a petaflop machine. In Proceedings

of the 1st Workshop on High Performance Computing Reliability Issues (HPCRI)

2005, in conjunction with the 11th International Symposium on High Performance

Computer Architecture (HPCA) 2005, San Francisco, CA, USA, February 12-16,

2005. IEEE Computer Society.

[21] Heather Quinn and Paul Graham. Terrestrial-based radiation upsets: A cau-

tionary tale. In Proceedings of the 13th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM) 2005, pages 193–202, Napa,

CA, USA, April 18-20, 2005. IEEE Computer Society. ISBN 0-7695-2445-1. URL

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1508539.

[22] Cray Inc., Seattle, WA, USA. Cray XD1 computing platform documentation, 2007.

URL http://www.cray.com/products/legacy.html.

[23] Hans Meuer, Erich Strohmaier, Jack J. Dongarra, and Horst Simon. Top 500 list of

supercomputer sites: The advanced simulation and computing initiative (ASCI) Q

system, 2007. URL http://www.top500.org/system/6359.

[24] Alan L. Robertson. The evolution of the Linux-HA project. In Proceedings

of the UKUUG LISA/Winter Conference – High-Availability and Reliability –

2004, Bournemouth, UK, June 21, 2004. URL http://www.linux-ha.org/ cache/

TechnicalPapers HBevolution.pdf.

[25] Alan L. Robertson. Linux-HA heartbeat design. In Proceedings of the 4th Annual

Linux Showcase and Conference 2000, Atlanta, Georgia, October 10-14, 2000. URL

http://www.linuxshowcase.org/2000/2000papers/papers/robertson/robertson.pdf.

[26] Linux-HA (High-Availability Linux) project. Heartbeat program documentation,

2007. URL http://www.linux-ha.org/HeartbeatProgram.

128

http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://www.sdsc.edu/us/training/workshops/2006summerinstitute/docs/SI2006_Streitz_keynote.ppt
http://www.sdsc.edu/us/training/workshops/2006summerinstitute/docs/SI2006_Streitz_keynote.ppt
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1508539
http://www.cray.com/products/legacy.html
http://www.top500.org/system/6359
http://www.linux-ha.org/_cache/TechnicalPapers__HBevolution.pdf
http://www.linux-ha.org/_cache/TechnicalPapers__HBevolution.pdf
http://www.linuxshowcase.org/2000/2000papers/papers/robertson/robertson.pdf
http://www.linux-ha.org/HeartbeatProgram

References

[27] Pedro Pla. Drbd in a heartbeat. Linux Journal (LJ), September 2006. URL

http://www.linuxjournal.com/article/9074.

[28] Philipp Reisner and Lars Ellenberg. Drbd v8 – Replicated storage with shared

disk semantics. In Proceedings of the 12th International Linux System Technology

Conference (Linux-Kongress) 2005, Hamburg, Germany, October 11-14, 2005. URL

http://www.drbd.org/fileadmin/drbd/publications/drbd8.pdf.

[29] Philipp Reisner and Lars Ellenberg. Distributed Replicated Block Device (DRDB)

documentation, 2007. URL http://www.drbd.org.

[30] Susanne M. Balle and Dan Palermo. Enhancing an open source resource manager

with multi-core/multi-threaded support. In Lecture Notes in Computer Science:

Proceedings of the 13th Workshop on Job Scheduling Strategies for Parallel Process-

ing (JSSP) 2007, volume 4942, pages 37–50, Seattle, WA, USA, June 17, 2007.

Springer Verlag, Berlin, Germany. ISBN 978-3-540-78698-6, ISSN 0302-9743. URL

http://www.cs.huji.ac.il/∼feit/parsched/jsspp07/p2-balle.pdf.

[31] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Simple Linux utility

for resource management. In Lecture Notes in Computer Science: Proceedings of

the 9th International Workshop on Job Scheduling Strategies for Parallel Process-

ing (JSSPP) 2003, volume 2862, pages 44–60, Seattle, WA, USA, June 24, 2003.

Springer Verlag, Berlin, Germany. ISBN 978-3-540-20405-3, ISSN 0302-9743. URL

http://www.springerlink.com/content/c4pgx63utdajtuwn.

[32] Lawrence Livermore National Laboratory, Livermore, CA, USA. Simple Linux

Utility for Resource Management (SLURM) documentation, 2007. URL http:

//www.llnl.gov/linux/slurm.

[33] José Moreira, Michael Brutman, nos José Casta Thomas Engelsiepen, Mark Gi-

ampapa, Tom Gooding, Roger Haskin, Todd Inglett, Derek Lieber, Pat McCarthy,

Mike Mundy, Jeff Parker, and Brian Wallenfelt. Designing a highly-scalable operat-

ing system: The Blue Gene/L story. In Proceedings of the IEEE/ACM International

Conference on High Performance Computing, Networking, Storage and Analysis

(SC) 2006, page 118, Tampa, FL, USA, November 11-17, 2006. ACM Press, New

York, NY, USA. ISBN 0-7695-2700-0. URL http://doi.acm.org/10.1145/1188455.

1188578.

[34] IBM Corporation, Armonk, NY, USA. IBM Blue Gene computing platform docu-

mentation, 2007. URL http://www-03.ibm.com/servers/deepcomputing/bluegene.

html.

129

http://www.linuxjournal.com/article/9074
http://www.drbd.org/fileadmin/drbd/publications/drbd8.pdf
http://www.drbd.org
http://www.cs.huji.ac.il/~feit/parsched/jsspp07/p2-balle.pdf
http://www.springerlink.com/content/c4pgx63utdajtuwn
http://www.llnl.gov/linux/slurm
http://www.llnl.gov/linux/slurm
http://doi.acm.org/10.1145/1188455.1188578
http://doi.acm.org/10.1145/1188455.1188578
http://www-03.ibm.com/servers/deepcomputing/bluegene.html
http://www-03.ibm.com/servers/deepcomputing/bluegene.html

References

[35] Sun Microsystems, Inc, Santa Clara, CA, USA. Sun Grid Engine (SGE) documen-

tation, 2007. URL http://www.sun.com/software/gridware.

[36] Sun Microsystems, Inc, Santa Clara, CA, USA. Open Source Grid Engine docu-

mentation, 2007. URL http://gridengine.sunsource.net.

[37] James Coomer. Introduction to the cluster grid – Part 1. Sun Blueprints, August

2002. Sun Microsystems, Inc., Palo Alto, CA, USA. URL http://www.sun.com/

blueprints/0802/816-7444-10.pdf.

[38] Philip H. Carns. PVFS2 high-availability clustering using Heartbeat 2.0, 2007. URL

http://www.pvfs.org/doc/pvfs2-ha-heartbeat-v2.pdf.

[39] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:

A parallel file system for linux clusters. In Proceedings of the 4th Annual Linux

Showcase and Conference 2000, pages 317–327, Atlanta, Georgia, October 10-

14, 2000. URL http://www.linuxshowcase.org/2000/2000papers/papers/robertson/

robertson.pdf.

[40] PVFS Development Team. Parallel Virtual File System (PVFS) documentation,

2007. URL http://www.pvfs.org/.

[41] Weikuan Yu, Ranjit Noronha, Shuang Liang, and Dhabaleswar K. Panda. Bene-

fits of high speed interconnects to cluster file systems: A case study with Lustre.

In Proceedings of the 20st IEEE International Parallel and Distributed Processing

Symposium (IPDPS) 2006, pages 8–15, Rhodes Island, Greece, April 25-29, 2006.

IEEE Computer Society. ISBN 1-4244-0054-6. URL http://nowlab.cse.ohio-state.

edu/publications/conf-papers/2006/yu-cac06.pdf.

[42] Sun Microsystems, Inc., Santa Clara, CA, USA. Lustre file system – High-

performance storage architecture and scalable cluster file system, 2007. URL http://

www.sun.com/software/products/lustre/docs/lustrefilesystem wp.pdf. White pa-

per.

[43] Cluster File Systems, Inc., Boulder, CO, USA. Lustre Cluster File System docu-

mentation, 2007. URL http://www.lustre.org.

[44] Ibrahim Haddad, Chokchai Leangsuksun, Stephen L. Scott, and Tong Liu. HA-

OSCAR: Towards highly available linux clusters. Linux World Magazine, March

2004. URL http://linux.sys-con.com/read/43713.htm.

130

http://www.sun.com/software/gridware
http://gridengine.sunsource.net
http://www.sun.com/blueprints/0802/816-7444-10.pdf
http://www.sun.com/blueprints/0802/816-7444-10.pdf
http://www.pvfs.org/doc/pvfs2-ha-heartbeat-v2.pdf
http://www.linuxshowcase.org/2000/2000papers/papers/robertson/robertson.pdf
http://www.linuxshowcase.org/2000/2000papers/papers/robertson/robertson.pdf
http://www.pvfs.org/
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2006/yu-cac06.pdf
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2006/yu-cac06.pdf
http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf
http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf
http://www.lustre.org
http://linux.sys-con.com/read/43713.htm

References

[45] Kshitij Limaye, Chokchai Leangsuksun, Zeno Greenwood, Stephen L. Scott, Chris-

tian Engelmann, Richard M. Libby, and Kasidit Chanchio. Job-site level fault toler-

ance for cluster and grid environments. In Proceedings of the 7th IEEE International

Conference on Cluster Computing (Cluster) 2005, pages 1–9, Boston, MA, USA,

September 26-30, 2005. IEEE Computer Society. ISBN 0-7803-9486-0, ISSN 1552-

5244. URL http://www.csm.ornl.gov/∼engelman/publications/limaye05job-site.

pdf.

[46] Louisiana Tech University, Ruston, LA, USA. High Availability Open Source Cluster

Application Resources (HA-OSCAR) documentation, 2007. URL http://xcr.cenit.

latech.edu/ha-oscar.

[47] Altair Engineering, Troy, MI, USA. OpenPBS documentation, 2007. URL http:

//www.openpbs.org.

[48] Altair Engineering, Troy, MI, USA. PBS Pro documentation, 2007. URL http:

//www.pbsgridworks.com.

[49] Altair Engineering, Troy, MI, USA. PBS Pro for Cray computing platforms, 2007.

URL http://www.pbsgridworks.com/PBS/pdfs/PBSPro Cray.pdf.

[50] Cluster Resources, Inc, Salt Lake City, UT, USA. Moab Workload Manager adminis-

trator‘s guide, 2007. URL http://www.clusterresources.com/products/mwm/docs.

[51] Cluster Resources, Inc, Salt Lake City, UT, USA. Moab Workload Manager docu-

mentation, 2007. URL http://www.clusterresources.com/products/mwm.

[52] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Lebofsky.

SETI@home – Massively distributed computing for SETI. Computing in Science

& Engineering, 3(1):78–83, 2001. IEEE Computer Society. ISSN 1521-9615. URL

http://setiathome.berkeley.edu/sah papers/CISE.pdf.

[53] David P. Anderson. BOINC: A system for public-resource computing and storage.

In Proceedings of the 5th International Workshop on Grid Computing (Grid) 2004,

pages 4–10, Pittsburgh, PA, USA, November 8, 2004. IEEE Computer Society. ISBN

0-7695-2256-4, ISSN 1550-5510. URL http://boinc.berkeley.edu/grid paper 04.pdf.

[54] Space Sciences Laboratory, University of California, Berkeley, CA, USA.

SETI@HOME documentation, 2007. URL http://setiathome.ssl.berkeley.edu.

[55] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: The Condor experience. Concurrency and Computation: Practice and

131

http://www.csm.ornl.gov/~engelman/publications/limaye05job-site.pdf
http://www.csm.ornl.gov/~engelman/publications/limaye05job-site.pdf
http://xcr.cenit.latech.edu/ha-oscar
http://xcr.cenit.latech.edu/ha-oscar
http://www.openpbs.org
http://www.openpbs.org
http://www.pbsgridworks.com
http://www.pbsgridworks.com
http://www.pbsgridworks.com/PBS/pdfs/PBSPro_Cray.pdf
http://www.clusterresources.com/products/mwm/docs
http://www.clusterresources.com/products/mwm
http://setiathome.berkeley.edu/sah_papers/CISE.pdf
http://boinc.berkeley.edu/grid_paper_04.pdf
http://setiathome.ssl.berkeley.edu

References

Experience, 17(2-4):323–356, 2005. Wiley InterScience, John Wiley & Sons, Inc.,

Hoboken, NJ, USA. ISSN 1532-0626. URL http://www.cs.wisc.edu/condor/doc/

condor-practice.pdf.

[56] Jim Basney and Miron Livny. Deploying a high throughput computing cluster.

In Rajkumar Buyya, editor, High Performance Cluster Computing: Architectures

and Systems, Volume 1. Prentice Hall PTR, Upper Saddle River, NJ, USA, May

1999. ISBN 978-0-130-13784-5. URL http://www.informit.com/store/product.

aspx?isbn=0130137847.

[57] Computer Sciences Department, University of Wisconsin, Madison, WI, USA. Con-

dor documentation, 2007. URL http://www.cs.wisc.edu/condor.

[58] Chokchai Leangsuksun, Venkata K. Munganuru, Tong Liu, Stephen L. Scott,

and Christian Engelmann. Asymmetric active-active high availability for high-

end computing. In Proceedings of the 2nd International Workshop on Oper-

ating Systems, Programming Environments and Management Tools for High-

Performance Computing on Clusters (COSET-2) 2005, in conjunction with the

19th ACM International Conference on Supercomputing (ICS) 2005, Cambridge,

MA, USA, June 19, 2005. URL http://www.csm.ornl.gov/∼engelman/publications/

leangsuksun05asymmetric.pdf.

[59] Linux-HA (High-Availability Linux) project. Node fencing explained, 2007. URL

http://www.linux-ha.org/NodeFencing.

[60] Paul H. Hargrove and Jason C. Duell. Berkeley Lab Checkpoint/Restart (BLCR)

for Linux clusters. In Journal of Physics: Proceedings of the Scientific Discovery

through Advanced Computing Program (SciDAC) Conference 2006, volume 46, pages

494–499, Denver, CO, USA, June 25-29, 2006. Institute of Physics Publishing, Bris-

tol, UK. URL http://www.iop.org/EJ/article/1742-6596/46/1/067/jpconf6 46 067.

pdf.

[61] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason

Duell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart frame-

work: System-initiated checkpointing. In Proceedings of the Los Alamos Computer

Science Institute (LACSI) Symposium 2003, Santa Fe, NM, USA, October 27-29,

2003. URL http://ftg.lbl.gov/CheckpointRestart/lacsi-2003.pdf.

[62] Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Berkeley Lab Check-

point/Restart (BLCR) documentation, 2007. URL http://ftg.lbl.gov/checkpoint.

132

http://www.cs.wisc.edu/condor/doc/condor-practice.pdf
http://www.cs.wisc.edu/condor/doc/condor-practice.pdf
http://www.informit.com/store/product.aspx?isbn=0130137847
http://www.informit.com/store/product.aspx?isbn=0130137847
http://www.cs.wisc.edu/condor
http://www.csm.ornl.gov/~engelman/publications/leangsuksun05asymmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/leangsuksun05asymmetric.pdf
http://www.linux-ha.org/NodeFencing
http://www.iop.org/EJ/article/1742-6596/46/1/067/jpconf6_46_067.pdf
http://www.iop.org/EJ/article/1742-6596/46/1/067/jpconf6_46_067.pdf
http://ftg.lbl.gov/CheckpointRestart/lacsi-2003.pdf
http://ftg.lbl.gov/checkpoint

References

[63] Jeffrey M. Squyres and Andrew Lumsdaine. A component architecture for

LAM/MPI. In Lecture Notes in Computer Science: Proceedings of the 10th Eu-

ropean PVM/MPI Users‘ Group Meeting (EuroPVM/MPI) 2003, volume 2840,

pages 379–387, Venice, Italy, September 29 - October 2, 2003. Springer Ver-

lag, Berlin, Germany. ISBN 978-3-540-20149-6, ISSN 0302-9743. URL http:

//www.lam-mpi.org/papers/euro-pvmmpi2003/euro-pvmmpi-2003.pdf.

[64] Indiana University, Bloomington, IN, USA. Local Area Multicomputer Message

Passing Interface (LAM-MPI) documentation, 2007. URL http://www.lam-mpi.

org.

[65] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack J. Dongarra.

MPI: The Complete Reference (Vol. 1), 2nd Edition. MIT Press, Cambridge, MA,

USA, September 1998. ISBN 978-0-262-69215-1. URL http://mitpress.mit.edu/

catalog/item/default.asp?ttype=2&tid=3898.

[66] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. Trans-

parent, incremental checkpointing at kernel level: A foundation for fault tolerance

for parallel computers. In Proceedings of the IEEE/ACM International Conference

on High Performance Computing and Networking (SC) 2005, page 9, Seattle, WA,

USA, November 12-18, 2005. IEEE Computer Society. ISBN 1-59593-061-2. URL

http://hpc.pnl.gov/people/fabrizio/papers/sc05.pdf.

[67] Pacific Northwest National Laboratory, Richland, WA, USA. TICK: Transparent

Incremental Checkpointing at Kernel-level documentation, 2007. URL http://hpc.

pnl.gov/sft/tick.html.

[68] Joseph F. Ruscio, Michael A. Heffner, and Srinidhi Varadarajan. DejaVu: Trans-

parent user-level checkpointing, migration, and recovery for distributed systems. In

Proceedings of the 21st IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS) 2007, Long Beach, CA, USA, March 26-30, 2007. ACM Press, New

York, NY, USA. ISBN 978-1-59593-768-1. URL http://doi.ieeecomputersociety.org/

10.1109/IPDPS.2007.370309.

[69] Srinidhi Varadarajan. An evaluation of the EverGrid Deja Vu checkpoint/restart

software. Technical Report LBNL/PUB-960, Lawrence Berkeley National Labora-

tory, Berkeley, CA, USA, Baltimore, MD, USA, 2006. URL http://www.lbl.gov/

cs/html/reports.html.

[70] Evergrid, Fremont, CA, USA. Evergrid Availability Services documentation, 2007.

URL http://www.evergrid.com/products/availability-services.html.

133

http://www.lam-mpi.org/papers/euro-pvmmpi2003/euro-pvmmpi-2003.pdf
http://www.lam-mpi.org/papers/euro-pvmmpi2003/euro-pvmmpi-2003.pdf
http://www.lam-mpi.org
http://www.lam-mpi.org
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3898
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3898
http://hpc.pnl.gov/people/fabrizio/papers/sc05.pdf
http://hpc.pnl.gov/sft/tick.html
http://hpc.pnl.gov/sft/tick.html
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2007.370309
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2007.370309
http://www.lbl.gov/cs/html/reports.html
http://www.lbl.gov/cs/html/reports.html
http://www.evergrid.com/products/availability-services.html

References

[71] Youngbae Kim, James S. Plank, and Jack J. Dongarra. Fault tolerant matrix oper-

ations for networks of workstations using diskless checkpointing. Journal of Paral-

lel and Distributed Computing (JPDC), 43(2):125–138, 1997. Elsevier, Amsterdam,

The Netherlands. ISSN 0743-7315. URL http://dx.doi.org/10.1006/jpdc.1997.1336.

[72] James S. Plank, Kai Li, and Michael A. Puening. Diskless checkpointing. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 9(10):972–986, 1998.

IEEE Computer Society. ISSN 1045-9219. URL http://doi.ieeecomputersociety.

org/10.1109/71.730527.

[73] Luis M. Silva and Joao Gabriel Silva. An experimental study about diskless check-

pointing. In Proceedings of the 24th Euromicro Conference on Engineering Systems

and Software for the Next Decade 1998, page 10395, Vesteras, Sweden, August 25-

27, 1998. IEEE Computer Society. ISBN 8186-8646-4-1, ISSN 1089-6503. URL

http://doi.ieeecomputersociety.org/10.1109/EURMIC.1998.711832.

[74] Christian Engelmann and George A. Geist. A diskless checkpointing algorithm

for super-scale architectures applied to the fast fourier transform. In Proceed-

ings of the Challenges of Large Applications in Distributed Environments Work-

shop (CLADE) 2003, in conjunction with the 12th IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC) 2003, page 47, Seat-

tle, WA, USA, June 21, 2003. IEEE Computer Society. ISBN 0-7695-1984-9. URL

http://www.csm.ornl.gov/∼engelman/publications/engelmann03diskless.pdf.

[75] Christian Engelmann and George A. Geist. Super-scalable algorithms for computing

on 100,000 processors. In Lecture Notes in Computer Science: Proceedings of the 5th

International Conference on Computational Science (ICCS) 2005, Part I, volume

3514, pages 313–320, Atlanta, GA, USA, May 22-25, 2005. Springer Verlag, Berlin,

Germany. ISBN 978-3-540-26032-5, ISSN 0302-9743. URL http://www.csm.ornl.

gov/∼engelman/publications/engelmann05superscalable.pdf.

[76] Aurélien Bouteiller, Thomas Herault, Géraud Krawezik, Pierre Lemarinier, and

Franck Cappello. MPICH-V: A multiprotocol fault tolerant MPI. International

Journal of High Performance Computing and Applications (IJHPCA), 20(3):319–

333, 2006. SAGE Publications, Thousand Oaks, CA, USA. ISSN 1094-3420. URL

http://mpich-v.lri.fr/papers/ijhpca mpichv.pdf.

[77] Darius Buntinas, Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pi-

lard, Ala Rezmerita, Eric Rodriguez, and Franck Cappello. Non-blocking co-

ordinated checkpointing for large-scale fault tolerant MPI. In Proceedings of

134

http://dx.doi.org/10.1006/jpdc.1997.1336
http://doi.ieeecomputersociety.org/10.1109/71.730527
http://doi.ieeecomputersociety.org/10.1109/71.730527
http://doi.ieeecomputersociety.org/10.1109/EURMIC.1998.711832
http://www.csm.ornl.gov/~engelman/publications/engelmann03diskless.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05superscalable.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05superscalable.pdf
http://mpich-v.lri.fr/papers/ijhpca_mpichv.pdf

References

the IEEE/ACM International Conference on High Performance Computing, Net-

working, Storage and Analysis (SC) 2006, page 18, Tampa, FL, USA, Novem-

ber 11-17, 2006. ACM Press, New York, NY, USA. ISBN 0-7695-2700-0. URL

http://mpich-v.lri.fr/papers/mpichv sc2006.pdf.

[78] University of Paris-South, France. MPICH-V message logging layer documentation,

2007. URL http://mpich-v.lri.fr.

[79] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global

states of distributed systems. ACM Transactions on Computer Systems (TOCS),

3(1):63–75, 1985. ACM Press, New York, NY, USA. ISSN 0734-2071. URL http:

//doi.acm.org/10.1145/214451.214456.

[80] Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. Fault-tolerant MPI

for the Harness metacomputing system. In Lecture Notes in Computer Science:

Proceedings of the 1st International Conference on Computational Science (ICCS)

2002, Part I, volume 2073, pages 355–366, San Francisco, CA, USA, May 28-30,

2001. Springer Verlag, Berlin, Germany. URL http://www.netlib.org/utk/people/

JackDongarra/PAPERS/ft-harness-iccs2001.ps.

[81] Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. Harness and fault

tolerant MPI. Parallel Computing, 27(11):1479–1495, 2001. Elsevier, Amsterdam,

The Netherlands. ISSN 0167-8191. URL http://dx.doi.org/10.1016/S0167-8191(01)

00100-4.

[82] Innovative Computing Laboratory (ICL), Computer Science Department, Univer-

sity of Tennessee, Knoxville, TN, USA. FT-MPI documentation, 2007. URL

http://icl.cs.utk.edu/ftmpi.

[83] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-

garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,

Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and

Timothy S. Woodall. Open MPI: Goals, concept, and design of a next generation

MPI implementation. In Lecture Notes in Computer Science: Proceedings of the

11th European PVM/MPI Users‘ Group Meeting (EuroPVM/MPI) 2004, volume

3241, pages 97–104, Budapest, Hungary, September 19-22, 2004. Springer Verlag,

Berlin, Germany. ISBN 3-540-23163-3. URL http://www.open-mpi.org/papers/

euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf.

[84] Open MPI Team. Open MPI documentation, 2007. URL http://www.open-mpi.org.

135

http://mpich-v.lri.fr/papers/mpichv_sc2006.pdf
http://mpich-v.lri.fr
http://doi.acm.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://www.netlib.org/utk/people/JackDongarra/PAPERS/ft-harness-iccs2001.ps
http://www.netlib.org/utk/people/JackDongarra/PAPERS/ft-harness-iccs2001.ps
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://icl.cs.utk.edu/ftmpi
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org

References

[85] Zizhong Chen and Jack J. Dongarra. Algorithm-based checkpoint-free fault toler-

ance for parallel matrix computations on volatile resources. In Proceedings of the 20st

IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2006,

page 10, Rhodes Island, Greece, April 25-29, 2006. IEEE Computer Society. ISBN

1-4244-0054-6. URL http://icl.cs.utk.edu/news pub/submissions/checkpoint free.

pdf.

[86] Arun B. Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott.

Proactive fault tolerance for HPC with Xen virtualization. In Proceedings of the

21st ACM International Conference on Supercomputing (ICS) 2007, pages 23–

32, Seattle, WA, USA, June 16-20, 2007. ACM Press, New York, NY, USA.

ISBN 978-1-59593-768-1. URL http://www.csm.ornl.gov/∼engelman/publications/

nagarajan07proactive.pdf.

[87] Anand Tikotekar, Geoffroy Vallée, Thomas Naughton, Stephen L. Scott, and

Chokchai Leangsuksun. Evaluation of fault-tolerant policies using simulation. In

Proceedings of the 9th IEEE International Conference on Cluster Computing (Clus-

ter) 2007, Austin, TX, USA, September 17-20, 2007. IEEE Computer Society. URL

http://www.csm.ornl.gov/∼engelman/publications/tikotekar07evaluation.pdf.

[88] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems.

ACM Transactions on Programming Languages and Systems (TOPLAS), 6(2):254–

280, 1984. ACM Press, New York, NY, USA. ISSN 0164-0925. URL http://doi.

acm.org/10.1145/2993.2994.

[89] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

ACM Press, New York, NY, USA. ISSN 0360-0300. URL http://doi.acm.org/10.

1145/98163.98167.

[90] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-

tems (TOCS), 16(2):133–169, 1998. ACM Press, New York, NY, USA. ISSN 0734-

2071. URL http://doi.acm.org/10.1145/279227.279229.

[91] Kenneth P. Birman. Reliable Distributed Systems: Technologies, Web Ser-

vices, and Applications. Springer Verlag, Berlin, Germany, July 2005.

ISBN 978-0-387-21509-9. URL http://www.springerlink.com/content/xk081t/?p=

8cc942450c1c45dfa261abdf5295c9ec&pi=0.

[92] Gregory V. Chockler, Idid Keidar, and Roman Vitenberg. Group communication

specifications: A comprehensive study. ACM Computing Surveys (CSUR), 33(4):

136

http://icl.cs.utk.edu/news_pub/submissions/checkpoint_free.pdf
http://icl.cs.utk.edu/news_pub/submissions/checkpoint_free.pdf
http://www.csm.ornl.gov/~engelman/publications/nagarajan07proactive.pdf
http://www.csm.ornl.gov/~engelman/publications/nagarajan07proactive.pdf
http://www.csm.ornl.gov/~engelman/publications/tikotekar07evaluation.pdf
http://doi.acm.org/10.1145/2993.2994
http://doi.acm.org/10.1145/2993.2994
http://doi.acm.org/10.1145/98163.98167
http://doi.acm.org/10.1145/98163.98167
http://doi.acm.org/10.1145/279227.279229
http://www.springerlink.com/content/xk081t/?p=8cc942450c1c45dfa261abdf5295c9ec&pi=0
http://www.springerlink.com/content/xk081t/?p=8cc942450c1c45dfa261abdf5295c9ec&pi=0

References

427–469, 2001. ACM Press, New York, NY, USA. ISSN 0163-5980. URL http:

//doi.acm.org/10.1145/503112.503113.

[93] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and mul-

ticast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36

(4):372–421, 2004. ACM Press, New York, NY, USA. ISSN 0360-0300. URL

http://doi.acm.org/10.1145/1041680.1041682.

[94] Roberto Baldoni, Stefano Cimmino, and Carlo Marchetti. Total order commu-

nications: A practical analysis. In Lecture Notes in Computer Science: Pro-

ceedings of the 5th European Dependable Computing Conference (EDCC) 2005,

volume 3463, pages 38–54, Budapest, Hungary, April 20-22, 2005. Springer Ver-

lag, Berlin, Germany. ISBN 978-3-540-25723-3, ISSN 0302-9743. URL http:

//www.springerlink.com/content/rlcqfrdjuj33vnlq.

[95] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluation of the Amoeba

group communication system. In Proceedings of the 16th IEEE International Con-

ference on Distributed Computing Systems (ICDCS) 1996, pages 436–447, Hong

Kong, June 27-30, 1996. IEEE Computer Society. ISBN 0-8186-7398-2. URL

http://doi.ieeecomputersociety.org/10.1109/ICDCS.1996.507992.

[96] M. Frans Kaashoek, Andrew S. Tanenbaum, and Kees Verstoep. Group commu-

nication in Amoeba and its applications. Distributed Systems Engineering, 1(1):

48–58, 1993. Institute of Physics Publishing, Bristol, UK. ISSN 0967-1846. URL

http://www.iop.org/EJ/article/0967-1846/1/1/006/ds930106.pdf.

[97] Andrew S. Tanenbaum, M. Frans Kaashoek, Robbert van Renesse, and Henri E.

Bal. The Amoeba distributed operating system – A status report. Computer Com-

munications, 14(6):324–335, 1991. Butterworth-Heinemann, Newton, MA, USA.

ISSN 0140-3664. URL http://www.bsslab.de/download/documents/amoeba docs/

comcom91.pdf.

[98] Department of Computer Science, VU University, Amsterdam, The Netherlands.

Amoeba distributed operating system documentation, 2007. URL http://www.cs.

vu.nl/pub/amoeba.

[99] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978. ACM Press, New York, NY,

USA. ISSN 0001-0782. URL http://doi.acm.org/10.1145/359545.359563.

137

http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/503112.503113
http://doi.acm.org/10.1145/1041680.1041682
http://www.springerlink.com/content/rlcqfrdjuj33vnlq
http://www.springerlink.com/content/rlcqfrdjuj33vnlq
http://doi.ieeecomputersociety.org/10.1109/ICDCS.1996.507992
http://www.iop.org/EJ/article/0967-1846/1/1/006/ds930106.pdf
http://www.bsslab.de/download/documents/amoeba_docs/comcom91.pdf
http://www.bsslab.de/download/documents/amoeba_docs/comcom91.pdf
http://www.cs.vu.nl/pub/amoeba
http://www.cs.vu.nl/pub/amoeba
http://doi.acm.org/10.1145/359545.359563

References

[100] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts

and related problems. Technical Report 94-1425, Department of Computer Science,

Cornell University, Ithaca, NY, USA, 1994. URL http://cs-tr.cs.cornell.edu/TR/

CORNELLCS:TR94-1425.

[101] Ziv Bar-Joseph, Idit Keidar, and Nancy Lynch. Early-delivery dynamic atomic

broadcast. In Lecture Notes in Computer Science: Proceedings of the 16th Inter-

national Conference on Distributed Computing (DISC) 2002, volume 2508, pages

1–16, Toulouse, France, October 28-30, 2002. Springer Verlag, Berlin, Germany.

URL http://www.springerlink.com/content/pxby6vht7669wpxv.

[102] Danny Dolev, Shlomo Kramer, and Dalia Malki. Early delivery totally ordered

multicast in asynchronous environments. In Proceedings of the 23rd Annual Inter-

national Symposium on Fault-Tolerant Computing (FTCS) 1993, pages 544–553,

Toulouse, France, June 22-24 1993. IEEE Computer Society. ISBN 0-8186-3680-7.

URL http://ieeexplore.ieee.org/iel3/4964/13650/00627357.pdf?arnumber=627357.

[103] Bettina Kemme, Fernando Pedone, Gustavo Alonso, Schiper Schiper, and Matthias

Wiesmann. Using optimistic atomic broadcast in transaction processing sys-

tems. IEEE Transactions on Knowledge and Data Engineering (TKDE), 15(4):

1018–1032, 2003. IEEE Computer Society. ISSN 1041-4347. URL http://doi.

ieeecomputersociety.org/10.1109/TKDE.2003.1209016.

[104] Pedro Vicente and Luis Rodrigues. An indulgent uniform total order algorithm

with optimistic delivery. In Proceedings of the 21th IEEE Symposium on Reliable

Distributed Systems (SRDS) 2002, pages 92–101, Suita, Japan, October 13-16, 2002.

IEEE Computer Society. ISBN 0-7695-1659-9, ISSN 1060-9857. URL http://doi.

ieeecomputersociety.org/10.1109/RELDIS.2002.1180177.

[105] Kenneth P. Birman and Robbert van Renesse. Reliable Distributed Computing with

the Isis Toolkit. IEEE Computer Society, April 1994. ISBN 978-0-8186-5342-1. URL

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0818653426.html.

[106] Kenneth P. Birman and Timothy Clark. Performance of the ISIS distributed

computing toolkit. Technical Report 94-1432, Department of Computer Science,

Cornell University, Ithaca, NY, USA, 1994. URL http://cs-tr.cs.cornell.edu/TR/

CORNELLCS:TR94-1432.

[107] Cornell University, Ithaca, NY, USA. Isis documentation, 2007. URL http://www.

cs.cornell.edu/Info/Projects/ISIS.

138

http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1425
http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1425
http://www.springerlink.com/content/pxby6vht7669wpxv
http://ieeexplore.ieee.org/iel3/4964/13650/00627357.pdf?arnumber=627357
http://doi.ieeecomputersociety.org/10.1109/TKDE.2003.1209016
http://doi.ieeecomputersociety.org/10.1109/TKDE.2003.1209016
http://doi.ieeecomputersociety.org/10.1109/RELDIS.2002.1180177
http://doi.ieeecomputersociety.org/10.1109/RELDIS.2002.1180177
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0818653426.html
http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1432
http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1432
http://www.cs.cornell.edu/Info/Projects/ISIS
http://www.cs.cornell.edu/Info/Projects/ISIS

References

[108] Louise E. Moser, Yair Amir, Peter M. Melliar-Smith, and Deborah A. Agarwal. Ex-

tended virtual synchrony. In Proceedings of the 14th IEEE International Conference

on Distributed Computing Systems (ICDCS) 1994, pages 56–65, Poznan, Poland,

June 21-24, 1994. IEEE Computer Society. URL http://ieeexplore.ieee.org/iel2/

980/7460/00302392.pdf?arnumber=302392.

[109] Danny Dolev and Dalia Malki. The Transis approach to high availability cluster

communication. Communications of the ACM, 39(4):64–70, 1996. ACM Press, New

York, NY, USA. ISSN 0001-0782. URL http://doi.acm.org/10.1145/227210.227227.

[110] Hebrew University of Jerusalem, Israel. Transis documentation, 2007. URL http:

//www.cs.huji.ac.il/labs/transis.

[111] Kenneth P. Birman, Bob Constable, Mark Hayden, Jason Hickey, Christoph Kre-

itz, Robbert van Renesse, Ohul Rodeh, and Werner Vogels. The Horus and En-

semble projects: Accomplishments and limitations. In Proceedings of the DARPA

Information Survivability Conference and Exposition (DISCEX) 2000, volume 1,

pages 149–161, Hilton Head, SC, USA, January 25-27 2000. IEEE Computer So-

ciety. ISBN 0-7695-0490-6. URL http://www.cs.cornell.edu/projects/quicksilver/

public pdfs/Horus%20and%20Ensemble.pdf.

[112] Robbert van Renesse, Takako M. Hickey, and Kenneth P. Birman. Design and

performance of Horus: A lightweight group communications system. Technical

Report 94-1442, Department of Computer Science, Cornell University, Ithaca, NY,

USA, 1994. URL http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1442.

[113] Cornell University, Ithaca, NY, USA. Horus documentation, 2007. URL http:

//www.cs.cornell.edu/Info/Projects/Horus.

[114] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hay-

den, Kenneth P. Birman, and Robert Constable. Building reliable, high-performance

communication systems from components. In Proceedings of the 17th ACM SIGOPS

Symposium on Operating System Principles (SOSP) 1999, pages 80–92, Kiawah Is-

land Resort, SC, USA, December 12-15, 1999. ACM Press, New York, NY, USA.

ISBN 1-5811-3140-2. URL http://www.cs.cornell.edu/Info/Projects/Spinglass/

public pdfs/Building%20Reliable%20High.pdf.

[115] Ohad Rodeh, Kenneth P. Birman, and Danny Dolev. The architecture and perfor-

mance of security protocols in the Ensemble group communication system: Using

139

http://ieeexplore.ieee.org/iel2/980/7460/00302392.pdf?arnumber=302392
http://ieeexplore.ieee.org/iel2/980/7460/00302392.pdf?arnumber=302392
http://doi.acm.org/10.1145/227210.227227
http://www.cs.huji.ac.il/labs/transis
http://www.cs.huji.ac.il/labs/transis
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/Horus%20and%20Ensemble.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/Horus%20and%20Ensemble.pdf
http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR94-1442
http://www.cs.cornell.edu/Info/Projects/Horus
http://www.cs.cornell.edu/Info/Projects/Horus
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Building%20Reliable%20High.pdf
http://www.cs.cornell.edu/Info/Projects/Spinglass/public_pdfs/Building%20Reliable%20High.pdf

References

diamonds to guard the castle. ACM Transactions on Information and System Se-

curity (TISSEC), 4(3):289–319, 2001. ACM Press, New York, NY, USA. ISSN

1094-9224. URL http://doi.acm.org/10.1145/501978.501982.

[116] Cornell University, Ithaca, NY, USA. Ensemble documentation, 2007. URL http:

//dsl.cs.technion.ac.il/projects/Ensemble.

[117] Danny Dolev and Dalia Malki. The design of the Transis system. In Lecture Notes

in Computer Science: Proceedings of the Dagstuhl Workshop on Unifying Theory

and Practice in Distributed Computing 1994, volume 938, pages 83–98, Dagstuhl

Castle, Germany, September 5-9, 1994. Springer Verlag, Berlin, Germany. ISBN

978-3-540-60042-8, ISSN 0302-9743. URL http://www.springerlink.com/content/

f4864h647516803m/.

[118] Deborah A. Agarwal. Totem: A Reliable Ordered Delivery Protocol for Intercon-

nected Local-Area Networks. PhD thesis, University of California, Santa Barbara,

CA, USA, August 1994. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann01distributed.pdf.

[119] Yair Amir, Louise E. Moser, Peter M. Melliar-Smith, Deborah A. Agarwal, and

Paul W. Ciarfella. The Totem single-ring ordering and membership protocol. ACM

Transactions on Computer Systems (TOCS), 13(4):311–342, 1995. ACM Press, New

York, NY, USA. ISSN 0734-2071. URL http://doi.acm.org/10.1145/210223.210224.

[120] Deborah A. Agarwal, Louise E. Moser, Peter M. Melliar-Smith, and Ravi K. Bud-

hia. A reliable ordered delivery protocol for interconnected local area networks. In

Proceedings of the 3rd International Conference on Network Protocols (ICNP) 1995,

Tokyo, Japan, November 7-10, 1995. IEEE Computer Society. ISBN 0-8186-7216-1.

URL http://doi.ieeecomputersociety.org/10.1109/ICNP.1995.524853.

[121] Yair Amir, Claudiu Danilov, Michal Miskin-Amir, John Schultz, and Jonathan

Stanton. The Spread toolkit: Architecture and performance. Technical Report

CNDS-2004-1, Johns Hopkins University, Center for Networking and Distributed

Systems, Baltimore, MD, USA, 2004. URL http://www.cnds.jhu.edu/pub/papers/

cnds-2004-1.pdf.

[122] Spread Concepts LLC, Savage, MD, USA. Spread documentation, 2007. URL

http://www.spread.org.

[123] Silvano Maffeis. The object group design pattern. In Proceedings of the 2nd USENIX

Conference on Object-Oriented Technologies (COOTS) 1996, page 12, Toronto, ON,

140

http://doi.acm.org/10.1145/501978.501982
http://dsl.cs.technion.ac.il/projects/Ensemble
http://dsl.cs.technion.ac.il/projects/Ensemble
http://www.springerlink.com/content/f4864h647516803m/
http://www.springerlink.com/content/f4864h647516803m/
http://www.csm.ornl.gov/~engelman/publications/engelmann01distributed.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann01distributed.pdf
http://doi.acm.org/10.1145/210223.210224
http://doi.ieeecomputersociety.org/10.1109/ICNP.1995.524853
http://www.cnds.jhu.edu/pub/papers/cnds-2004-1.pdf
http://www.cnds.jhu.edu/pub/papers/cnds-2004-1.pdf
http://www.spread.org

References

Canada, June 17-21, 1996. USENIX Association, Berkeley, CA, USA. URL http:

//www.usenix.org/publications/library/proceedings/coots96/maffeis.html.

[124] Sean Landis and Silvano Maffeis. Building reliable distributed systems with

CORBA. Theory and Practice of Object Systems, 3(1):31–43, 1997. Wiley Inter-

Science, John Wiley & Sons, Inc., Hoboken, NJ, USA. URL http://dx.doi.org/10.

1002/(SICI)1096-9942(1997)3:1〈31::AID-TAPO4〉3.0.CO;2-A.

[125] George A. Geist, James A. Kohl, Stephen L. Scott, and Philip M. Papadopou-

los. HARNESS: Adaptable virtual machine environment for heterogeneous clusters.

Parallel Processing Letters (PPL), 9(2):253–273, 1999. World Scientific Publishing

Company, Singapore. URL http://dx.doi.org/10.1142/S0129626499000244.

[126] Micah Beck, Jack J. Dongarra, Graham E. Fagg, G. Al Geist, Paul Gray,

James Kohl, Mauro Migliardi, Keith Moore, Terry Moore, Philip Papadopoulous,

Stephen L. Scott, and Vaidy Sunderam. Harness: A next generation distributed

virtual machine. Future Generation Computing Systems (FGCS), 15(5-6):571–

582, 1999. Elsevier, Amsterdam, The Netherlands. ISSN 0167-739X. URL http:

//www.csm.ornl.gov/harness/publications/beck98harness.pdf.

[127] Oak Ridge National Laboratory, Oak Ridge, TN, USA. Harness project documen-

tation, 2007. URL http://www.csm.ornl.gov/harness.

[128] Christian Engelmann. Distributed peer-to-peer control for Harness. Master’s the-

sis, Department of Computer Science, University of Reading, UK, July 7, 2001.

URL http://www.csm.ornl.gov/∼engelman/publications/engelmann01distributed2.

pdf. Double diploma in conjunction with the Department of Engineering I, Tech-

nical College for Engineering and Economics (FHTW) Berlin, Berlin, Germany.

Advisors: Prof. V. N. Alexandrov (University of Reading, Reading, UK); George A.

Geist (Oak Ridge National Laboratory, Oak Ridge, TN, USA).

[129] Christian Engelmann, Stephen L. Scott, and George A. Geist. Distributed peer-

to-peer control in Harness. In Lecture Notes in Computer Science: Proceedings of

the 2nd International Conference on Computational Science (ICCS) 2002, Part II:

Workshop on Global and Collaborative Computing, volume 2330, pages 720–727,

Amsterdam, The Netherlands, April 21-24, 2002. Springer Verlag, Berlin, Germany.

ISBN 3-540-43593-X, ISSN 0302-9743. URL http://www.csm.ornl.gov/∼engelman/

publications/engelmann02distributed.pdf.

[130] Christian Engelmann, Stephen L. Scott, and George A. Geist. High availability

through distributed control. In Proceedings of the High Availability and Performance

141

http://www.usenix.org/publications/library/proceedings/coots96/maffeis.html
http://www.usenix.org/publications/library/proceedings/coots96/maffeis.html
http://dx.doi.org/10.1002/(SICI)1096-9942(1997)3:1<31::AID-TAPO4>3.0.CO;2-A
http://dx.doi.org/10.1002/(SICI)1096-9942(1997)3:1<31::AID-TAPO4>3.0.CO;2-A
http://dx.doi.org/10.1142/S0129626499000244
http://www.csm.ornl.gov/harness/publications/beck98harness.pdf
http://www.csm.ornl.gov/harness/publications/beck98harness.pdf
http://www.csm. ornl.gov/harness
http://www.csm.ornl.gov/~engelman/publications/engelmann01distributed2.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann01distributed2.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann02distributed.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann02distributed.pdf

References

Workshop (HAPCW) 2004, in conjunction with the Los Alamos Computer Science

Institute (LACSI) Symposium 2004, Santa Fe, NM, USA, October 12, 2004. URL

http://www.csm.ornl.gov/∼engelman/publications/engelmann04high.pdf.

[131] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS),

4(3):382–401, 1982. ACM Press, New York, NY, USA. ISSN 0164-0925. URL

http://doi.acm.org/10.1145/357172.357176.

[132] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using abstraction

to improve fault tolerance. ACM SIGOPS Operating Systems Review (OSR), 35

(5):15–28, 2001. ACM Press, New York, NY, USA. ISSN 0163-5980. URL http:

//doi.acm.org/10.1145/502059.502037.

[133] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proac-

tive recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,

2002. ACM Press, New York, NY, USA. ISSN 0734-2071. URL http://doi.acm.

org/10.1145/571637.571640.

[134] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating

Byzantine faults in transaction processing systems using commit barrier scheduling.

In Proceedings of the 21st ACM SIGOPS Symposium on Operating System Principles

(SOSP) 2007, pages 59–72, Stevenson, WA, USA, October 14-17, 2007. ACM Press,

New York, NY, USA. ISBN 978-1-59593-591-5. URL http://doi.acm.org/10.1145/

1294261.1294268.

[135] Michael G. Merideth, Arun Iyengar, Thomas Mikalsen, Stefan Tai, Isabelle Rou-

vellou, and Priya Narasimhan. Thema: Byzantine-fault-tolerant middleware for

Web-service applications. In Proceedings of the 24th IEEE Symposium on Reli-

able Distributed Systems (SRDS) 2005, pages 131–142, Orlando, FL, USA, Oc-

tober 26-28, 2005. IEEE Computer Society. ISBN 0-7695-2463-X. URL http:

//dx.doi.org/10.1109/RELDIS.2005.28.

[136] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. Zyzzyva: Speculative Byzantine fault tolerance. In Proceedings of the 21st

ACM SIGOPS Symposium on Operating System Principles (SOSP) 2007, pages 45–

58, Stevenson, WA, USA, October 14-17, 2007. ACM Press, New York, NY, USA.

ISBN 978-1-59593-591-5. URL http://doi.acm.org/10.1145/1294261.1294267.

[137] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead Byzan-

tine fault-tolerant storage. In Proceedings of the 21st ACM SIGOPS Symposium on

142

http://www.csm.ornl.gov/~engelman/publications/engelmann04high.pdf
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/502059.502037
http://doi.acm.org/10.1145/502059.502037
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/1294261.1294268
http://doi.acm.org/10.1145/1294261.1294268
http://dx.doi.org/10.1109/RELDIS.2005.28
http://dx.doi.org/10.1109/RELDIS.2005.28
http://doi.acm.org/10.1145/1294261.1294267

References

Operating System Principles (SOSP) 2007, pages 73–86, Stevenson, WA, USA, Oc-

tober 14-17, 2007. ACM Press, New York, NY, USA. ISBN 978-1-59593-591-5. URL

http://doi.acm.org/10.1145/1294261.1294269.

[138] Hewlett-Packard Development Company, L.P., Palo Alto, CA, USA. Managing

Serviceguard – Fifteenth edition, 2007. URL http://docs.hp.com/en/B3936-90122/

B3936-90122.pdf.

[139] Hewlett-Packard Development Company, L.P., Palo Alto, CA, USA. HP Service-

guard quorum server version – A.02.00 release notes, fifth edition, 2007. URL

http://docs.hp.com/en/B8467-90036/B8467-90036.pdf.

[140] Hewlett-Packard Development Company, L.P., Palo Alto, CA, USA. HP Integrity

NonStop Computing, 2007. URL http://h20223.www2.hp.com/nonstopcomputing/

cache/76385-0-0-0-121.aspx.

[141] High-Availability.com, Knutsford, Cheshire, UK. RSF-1 documentation, 2007. URL

http://www.high-availability.com/links/2-8-rsf1.php.

[142] High-Availability.com, Knutsford, Cheshire, UK. RSF-1 success story: University

of Salford, 2007. URL http://www.high-availability.com/downloads/WestLB.pdf.

[143] High-Availability.com, Knutsford, Cheshire, UK. RSF-1 success story: WestLB

Bank, 2007. URL http://www.high-availability.com/downloads/WestLB.pdf.

[144] High-Availability.com, Knutsford, Cheshire, UK. RSF-1 success story: China Post,

2007. URL http://www.high-availability.com/downloads/ChinaPost.pdf.

[145] IBM Corporation, Armonk, NY, USA. Reliable business continuity with HACMP,

2007. URL http://www-03.ibm.com/systems/p/advantages/ha.

[146] IBM Corporation, Armonk, NY, USA. High availability cluster multi-processing for

AIX – Concepts and facilities guide, 2007. URL http://publib.boulder.ibm.com/

epubs/pdf/c2348649.pdf.

[147] Symantec Corporation, Cupertino, CA, USA. Veritas Cluster Server documenta-

tion, 2007. URL http://www.symantec.com/business/products/overview.jsp?pcid=

2258&pvid=20 1.

[148] Symantec Corporation, Cupertino, CA, USA. Veritas Cluster Server users guide

for Solaris 5.0, 2006. URL http://ftp.support.veritas.com/pub/support/products/

ClusterServer UNIX/283869.pdf.

143

http://doi.acm.org/10.1145/1294261.1294269
http://docs.hp.com/en/B3936-90122/B3936-90122.pdf
http://docs.hp.com/en/B3936-90122/B3936-90122.pdf
http://docs.hp.com/en/B8467-90036/B8467-90036.pdf
http://h20223.www2.hp.com/nonstopcomputing/cache/76385-0-0-0-121.aspx
http://h20223.www2.hp.com/nonstopcomputing/cache/76385-0-0-0-121.aspx
http://www.high-availability.com/links/2-8-rsf1.php
http://www.high-availability.com/downloads/WestLB.pdf
http://www.high-availability.com/downloads/WestLB.pdf
http://www.high-availability.com/downloads/ChinaPost.pdf
http://www-03.ibm.com/systems/p/advantages/ha
http://publib.boulder.ibm.com/epubs/pdf/c2348649.pdf
http://publib.boulder.ibm.com/epubs/pdf/c2348649.pdf
http://www.symantec.com/business/products/overview.jsp?pcid=2258&pvid=20_1
http://www.symantec.com/business/products/overview.jsp?pcid=2258&pvid=20_1
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/283869.pdf
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/283869.pdf

References

[149] Sun Microsystems, Inc., Santa Clara, CA, USA. Solaris Cluster documentation,

2007. URL http://www.sun.com/cluster.

[150] Sun Microsystems, Inc., Santa Clara, CA, USA. Solaris Operating System: Two-

node cluster how-to guide, 2007. URL http://www.sun.com/software/solaris/

howtoguides/twonodecluster.jsp.

[151] Sun Microsystems, Inc., Santa Clara, CA, USA. Sun Java availability suite: Sup-

ported cluster configurations for disaster recovery, 2007. URL http://www.sun.

com/software/javaenterprisesystem/suites/avail suite config ds.pdf.

[152] Sun Microsystems, Inc, Santa Clara, CA, USA. Open High Availability Clus-

ter (OHAC) documentation, 2007. URL http://opensolaris.org/os/community/

ha-clusters/ohac.

[153] Microsoft Corporation, Redmond, WA, USA. Technical overview of Win-

dows Server 2003 clustering services, 2007. URL http://www.microsoft.com/

windowsserver2003/techinfo/overview/clustering.mspx.

[154] Microsoft Corporation, Redmond, WA, USA. Microsoft Cluster Server admin-

istrator’s guide, 2007. URL http://www.microsoft.com/technet/archive/winntas/

proddocs/mscsadm0.mspx.

[155] Red Hat, Inc., Raleigh, NC, USA. Red Hat Cluster Suite documentation, 2007.

URL http://www.redhat.com/cluster suite.

[156] Matthew O‘Keefe and John Ha. Open source high-availability clustering. Red Hat

Magazine, July 9, 2005. Red Hat, Inc., Raleigh, NC, USA. URL https://www.

redhat.com/magazine/009jul05/features/cluster.

[157] Red Hat, Inc., Raleigh, NC, USA. Red Hat Enterprise Linux documentation, 2007.

URL http://www.redhat.com/rhel.

[158] SteelEye Technology, Inc., Palo Alto, CA, USA. Lifekeeper documentation, 2007.

URL http://www.steeleye.com/products.

[159] Silicon Graphics, Inc., Sunnyvale, CA, USA. Linux FailSafe documentation, 2007.

URL http://oss.sgi.com/projects/failsafe.

[160] Linuxha.net. High availability application clustering for Linux, 2007. URL http:

//www.linuxha.net.

144

http://www.sun.com/cluster
http://www.sun.com/software/solaris/howtoguides/twonodecluster.jsp
http://www.sun.com/software/solaris/howtoguides/twonodecluster.jsp
http://www.sun.com/software/javaenterprisesystem/suites/avail_suite_config_ds.pdf
http://www.sun.com/software/javaenterprisesystem/suites/avail_suite_config_ds.pdf
http://opensolaris.org/os/community/ha-clusters/ohac
http://opensolaris.org/os/community/ha-clusters/ohac
http://www.microsoft.com/windowsserver2003/techinfo/overview/clustering.mspx
http://www.microsoft.com/windowsserver2003/techinfo/overview/clustering.mspx
http://www.microsoft.com/technet/archive/winntas/proddocs/mscsadm0.mspx
http://www.microsoft.com/technet/archive/winntas/proddocs/mscsadm0.mspx
http://www.redhat.com/cluster_suite
https://www.redhat.com/magazine/009jul05/features/cluster
https://www.redhat.com/magazine/009jul05/features/cluster
http://www.redhat.com/rhel
http://www.steeleye.com/products
http://oss.sgi.com/projects/failsafe
http://www.linuxha.net
http://www.linuxha.net

References

[161] Mission Critical Linux. Kimberlite Cluster documentation, 2007. URL http://www.

missioncriticallinux.com/projects/kimberlite.

[162] Karla M. Sorenson. Installation and administration – Kimberlite Cluster ver-

sion 1.1.0, December 2000. URL http://www.missioncriticallinux.com/projects/

kimberlite/kimberlite.pdf.

[163] Narjess Ayari, Denis Barbaron, Laurent Lefèvre, and Pascale Vicat-Blanc Primet.

T2CP-AR: A system for transparent tcp active replication. In Proceedings of

the 21st IEEE International Conference on Advanced Information Networking and

Applications (AINA) 2007, pages 648–655, Niagara Falls, ON, Canada, May 21-

23, 2007. IEEE Computer Society. ISBN 0-7695-2846-5, ISSN 1550-445X. URL

http://doi.ieeecomputersociety.org/10.1109/AINA.2007.134.

[164] Narjess Ayari, Pablo Neira Ayuso, Laurent Lefèvre, and Denis Barbaron. Towards

a dependable architecture for highly available internet services. In Proceedings of

the 3rd International Conference on Availability, Reliability and Security (ARES)

2008, pages 422–427, Barcelona, Spain, March 4-7, 2008. IEEE Computer Society.

ISBN 978-0-7695-3102-1. URL http://doi.ieeecomputersociety.org/10.1109/ARES.

2008.166.

[165] Stratus Technologies, Maynard, MA, USA. Benefit from Stratus continuous pro-

cessing technology: Automatic 99.999% uptime for Microsoft Windows Server envi-

ronments, 2007. URL http://www.stratus.com/download/?file=/pdf/whitepapers/

cp.pdf.

[166] Stratus Technologies, Maynard, MA, USA. Enterprise servers for Windows,

Linux, and VMware: Stratus ftServer family, 2007. URL http://www.stratus.com/

products/ftserver/index.htm.

[167] The Linux Foundation, San Francisco, CA, USA. Open Application Interface Spec-

ification (OpenAIS) standards based cluster framework documentation, 2007. URL

http://www.openais.org.

[168] Service Availability Forum, Portland, OR, USA. Application Interface Specifi-

cation (AIS) documentation, 2007. URL http://www.saforum.org/specification/

AIS Information.

[169] Robert P. Goldberg. Architecture of virtual machines. In Proceedings of the Work-

shop on Virtual Computer Systems, pages 74–112, Cambridge, MA, USA, March 26-

27, 1973. ACM Press, New York, NY, USA.

145

http://www.missioncriticallinux.com/projects/kimberlite
http://www.missioncriticallinux.com/projects/kimberlite
http://www.missioncriticallinux.com/projects/kimberlite/kimberlite.pdf
http://www.missioncriticallinux.com/projects/kimberlite/kimberlite.pdf
http://doi.ieeecomputersociety.org/10.1109/AINA.2007.134
http://doi.ieeecomputersociety.org/10.1109/ARES.2008.166
http://doi.ieeecomputersociety.org/10.1109/ARES.2008.166
http://www.stratus.com/download/?file=/pdf/whitepapers/cp.pdf
http://www.stratus.com/download/?file=/pdf/whitepapers/cp.pdf
http://www.stratus.com/products/ftserver/index.htm
http://www.stratus.com/products/ftserver/index.htm
http://www.openais.org
http://www.saforum.org/specification/AIS_Information
http://www.saforum.org/specification/AIS_Information

References

[170] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of vir-

tualization. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP) 2003, pages 164–177, Bolton Landing, NY, USA, October 19-

22, 2003. ACM Press, New York, NY, USA. ISBN 1-58113-757-5. URL http:

//doi.acm.org/10.1145/945445.945462.

[171] XenSource, Inc., Palo Alto, CA, USA. Open Source Xen Hypervisor Technology,

2007. URL http://www.xensource.com.

[172] VMware, Inc., Palo Alto, CA, USA. VMware virtualization products, 2007. URL

http://www.vmware.com.

[173] Erin M. Farr, Richard E. Harper, Lisa F. Spainhower, and Jimi Xenidis. A case

for high availability in a virtualized environment (haven). In Proceedings of the

3rd International Conference on Availability, Reliability and Security (ARES) 2008,

pages 675–682, Barcelona, Spain, March 4-7, 2008. IEEE Computer Society. ISBN

978-0-7695-3102-1. URL http://doi.ieeecomputersociety.org/10.1109/ARES.2008.

166.

[174] Ron I. Resnick. A modern taxonomy of high availability, 1996. URL

http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%

20High%20Availability.htm.

[175] Enrique Vargas. High availability fundamentals. Sun Blueprints, November

2000. Sun Microsystems, Inc., Palo Alto, CA, USA. URL http://www.sun.com/

blueprints/1100/HAFund.pdf.

[176] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann

Publishers, Burlington, MA, USA, July 2007. ISBN 978-0-12-088525-1. URL http:

//www.ecs.umass.edu/ece/koren/FaultTolerantSystems.

[177] Thomas L. Sterling. Beowulf cluster computing with Linux. MIT Press, Cambridge,

MA, USA, October 2001. ISBN 978-0-262-69274-8. URL http://mitpress.mit.edu/

catalog/item/default.asp?ttype=2&tid=8681.

[178] Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese. How

to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters.

MIT Press, Cambridge, MA, USA, May 1999. ISBN 978-0-262-69218-2. URL http:

//mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3898.

146

http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://www.xensource.com
http://www.vmware.com
http://doi.ieeecomputersociety.org/10.1109/ARES.2008.166
http://doi.ieeecomputersociety.org/10.1109/ARES.2008.166
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.verber.com/mark/cs/systems/A%20Modern%20Taxonomy%20of%20High%20Availability.htm
http://www.sun.com/blueprints/1100/HAFund.pdf
http://www.sun.com/blueprints/1100/HAFund.pdf
http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems
http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8681
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8681
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3898
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3898

References

[179] Robert G. Brown. Engineering a Beowulf-Style Compute Cluster. May 2004. URL

http://www.phy.duke.edu/∼rgb/Beowulf/beowulf book/beowulf book.

[180] Scyld Software, Penguin Computing Inc., San Francisco, CA, USA. Beowulf.org:

The Beowulf cluster site, 2007. URL http://www.beowulf.org.

[181] Cray Inc., Seattle, WA, USA. Cray XT4 computing platform documentation, 2007.

URL http://www.cray.com/products/xt4.

[182] Suzanne M. Kelly and Ron Brightwell. Software architecture of the light weight

kernel, Catamount. In Proceedings of the 47th Cray User Group (CUG) Conference

2005, Albuquerque, NM, USA, May 16-19, 2005. URL http://www.cs.sandia.gov/

∼smkelly/SAND2005-2780C-CUG2005-CatamountArchitecture.pdf.

[183] Ron Brightwell, Suzanne M. Kelly, and John van Dyke. Catamount software archi-

tecture with dual core extensions. In Proceedings of the 48th Cray User Group

(CUG) Conference 2006, Lugano, Ticino, Switzerland, May 8-11, 2006. URL

http://www.sandia.gov/∼rbbrigh/papers/catamount-cug06.pdf.

[184] John van Dyke, Courtenay Vaughan, and Suzanne M. Kelly. Extending Catamount

for multi-core processors. In Proceedings of the 49th Cray User Group (CUG) Con-

ference 2007, Seattle, WA, USA, May 7-10, 2007. URL http://www.cs.sandia.gov/

∼smkelly/SAND2007-2744C-CUG2007-VanDyke.pdf.

[185] Novell Inc. SUSE Linux Enterprise Distribution documentation, 2007. URL http:

//www.novell.com/linux.

[186] IEEE POSIX Certification Authority. Portable Operating System Interface

(POSIX) documentation, 2007. URL http://standards.ieee.org/regauth/posix.

[187] Terry Jones, Andrew Tauferner, and Todd Inglett. HPC system call usage trends. In

Proceedings of the 8th LCI International Conference on High Performance Comput-

ing (LCI) 2007, South Lake Tahoe, CA, USA, May 14-17, 2007. URL http://www.

linuxclustersinstitute.org/conferences/archive/2007/PDF/jones 21421.pdf. Linux

Clusters Institute.

[188] IBM Corporation, Armonk, NY, USA. MareNostrum eServer computing platform

documentation, 2007. URL http://www.ibm.com/servers/eserver/linux/power/

marenostrum.

[189] Cray Inc., Seattle, WA, USA. Cray X1 computing platform documentation, 2007.

URL http://www.cray.com/products/x1.

147

http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book
http://www.beowulf.org
http://www.cray.com/products/xt4
http://www.cs.sandia.gov/~smkelly/SAND2005-2780C-CUG2005-CatamountArchitecture.pdf
http://www.cs.sandia.gov/~smkelly/SAND2005-2780C-CUG2005-CatamountArchitecture.pdf
http://www.sandia.gov/~rbbrigh/papers/catamount-cug06.pdf
http://www.cs.sandia.gov/~smkelly/SAND2007-2744C-CUG2007-VanDyke.pdf
http://www.cs.sandia.gov/~smkelly/SAND2007-2744C-CUG2007-VanDyke.pdf
http://www.novell.com/linux
http://www.novell.com/linux
http://standards.ieee.org/regauth/posix
http://www.linuxclustersinstitute.org/conferences/archive/2007/PDF/jones_21421.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2007/PDF/jones_21421.pdf
http://www.ibm.com/servers/eserver/linux/power/marenostrum
http://www.ibm.com/servers/eserver/linux/power/marenostrum
http://www.cray.com/products/x1

References

[190] SGI, Mountain View, CA, USA. Altix computing platform documentation, 2007.

URL http://www.sgi.com/products/servers/altix.

[191] Advanced Supercomputing Division, National Aeronautics and Space Adminis-

tration (NASA), Ames, CA, USA. Columbia SGI Altix Supercluster computing

platform documentation, 2007. URL http://www.nas.nasa.gov/About/Projects/

Columbia/columbia.html.

[192] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

Symmetric active/active high availability for high-performance computing system

services. Journal of Computers (JCP), 1(8):43–54, 2006. Academy Publisher,

Oulu, Finland. ISSN 1796-203X. URL http://www.csm.ornl.gov/∼engelman/

publications/engelmann06symmetric.pdf.

[193] Kai Uhlemann, Christian Engelmann, and Stephen L. Scott. JOSHUA: Symmetric

active/active replication for highly available HPC job and resource management.

In Proceedings of the 8th IEEE International Conference on Cluster Computing

(Cluster) 2006, Barcelona, Spain, September 25-28, 2006. IEEE Computer Soci-

ety. ISBN 1-4244-0328-6. URL http://www.csm.ornl.gov/∼engelman/publications/

uhlemann06joshua.pdf.

[194] Kai Uhlemann. High availability for high-end scientific computing. Master’s the-

sis, Department of Computer Science, University of Reading, UK, March 6, 2006.

URL http://www.csm.ornl.gov/∼engelman/students/uhlemann06high.pdf. Double

diploma in conjunction with the Department of Engineering I, Technical College

for Engineering and Economics (FHTW) Berlin, Berlin, Germany. Advisors: Prof.

Vassil N. Alexandrov (University of Reading, Reading, UK); George A. Geist and

Christian Engelmann (Oak Ridge National Laboratory, Oak Ridge, TN, USA).

[195] Cluster Resources, Inc, Salt Lake City, UT, USA. TORQUE Resource Manager

documentation, 2007. URL http://www.clusterresources.com/torque.

[196] Cluster Resources, Inc, Salt Lake City, UT, USA. TORQUE v2.0 administrator

manual, 2007. URL http://www.clusterresources.com/wiki/doku.php?id=torque:

torque wiki.

[197] Christian Engelmann, Stephen L. Scott, David E. Bernholdt, Narasimha R. Got-

tumukkala, Chokchai Leangsuksun, Jyothish Varma, Chao Wang, Frank Mueller,

Aniruddha G. Shet, and Ponnuswamy Sadayappan. MOLAR: Adaptive runtime

support for high-end computing operating and runtime systems. ACM SIGOPS

148

http://www.sgi.com/products/servers/altix
http://www.nas.nasa.gov/About/Projects/Columbia/columbia.html
http://www.nas.nasa.gov/About/Projects/Columbia/columbia.html
http://www.csm.ornl.gov/~engelman/publications/engelmann06symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf
http://www.csm.ornl.gov/~engelman/students/uhlemann06high.pdf
http://www.clusterresources.com/torque
http://www.clusterresources.com/wiki/doku.php?id=torque:torque_wiki
http://www.clusterresources.com/wiki/doku.php?id=torque:torque_wiki

References

Operating Systems Review (OSR), 40(2):63–72, 2006. ACM Press, New York, NY,

USA. ISSN 0163-5980. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann06molar.pdf.

[198] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

Active/active replication for highly available HPC system services. In Proceedings

of the 1st International Conference on Availability, Reliability and Security (ARES)

2006: 1st International Workshop on Frontiers in Availability, Reliability and Secu-

rity (FARES) 2006, pages 639–645, Vienna, Austria, April 20-22, 2006. IEEE Com-

puter Society. ISBN 0-7695-2567-9. URL http://www.csm.ornl.gov/∼engelman/

publications/engelmann06active.pdf.

[199] Christian Engelmann and Stephen L. Scott. Concepts for high availability in scien-

tific high-end computing. In Proceedings of the High Availability and Performance

Workshop (HAPCW) 2005, in conjunction with the Los Alamos Computer Science

Institute (LACSI) Symposium 2005, Santa Fe, NM, USA, October 11, 2005. URL

http://www.csm.ornl.gov/∼engelman/publications/engelmann05concepts.pdf.

[200] Cluster Resources, Inc, Salt Lake City, UT, USA. Maui Cluster Scheduler docu-

mentation, 2007. URL http://www.clusterresources.com/products/maui.

[201] Li Ou, Christian Engelmann, Xubin He, Xin Chen, and Stephen L. Scott. Sym-

metric active/active metadata service for highly available cluster storage systems.

In Proceedings of the 19th IASTED International Conference on Parallel and Dis-

tributed Computing and Systems (PDCS) 2007, Cambridge, MA, USA, Novem-

ber 19-21, 2007. ACTA Press, Calgary, AB, Canada. ISBN 978-0-88986-703-1. URL

http://www.csm.ornl.gov/∼engelman/publications/ou07symmetric.pdf.

[202] Xubin He, Li Ou, Christian Engelmann, Xin Chen, and Stephen L. Scott. Symmetric

active/active metadata service for high availability parallel file systems. Journal

of Parallel and Distributed Computing (JPDC), 2008. Elsevier, Amsterdam, The

Netherlands. ISSN 0743-7315. Submitted, under review.

[203] Li Ou, Xubin He, Christian Engelmann, and Stephen L. Scott. A fast delivery

protocol for total order broadcasting. In Proceedings of the 16th IEEE International

Conference on Computer Communications and Networks (ICCCN) 2007, Honolulu,

HI, USA, August 13-16, 2007. IEEE Computer Society. ISBN 978-1-4244-1251-8,

ISSN 1095-2055. URL http://www.csm.ornl.gov/∼engelman/publications/ou07fast.

pdf.

149

http://www.csm.ornl.gov/~engelman/publications/engelmann06molar.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06molar.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06active.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann06active.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann05concepts.pdf
http://www.clusterresources.com/products/maui
http://www.csm.ornl.gov/~engelman/publications/ou07symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/ou07fast.pdf
http://www.csm.ornl.gov/~engelman/publications/ou07fast.pdf

References

[204] Li Ou. Design of a High-Performance and High-Availability Distributed Storage

System. PhD thesis, Department of Electrical and Computer Engineering, Tennessee

Technological University, Cookeville, TN, USA, December 2006. URL http://www.

csm.ornl.gov/∼engelman/students/ou06design.pdf. Graduate advisory committee:

Prof. Xubin He, Periasamy K. Rajan, Prof. Roger L. Haggard, Prof. Martha J.

Kosa, Prof. Kwun Lon Ting (Tennessee Technological University, Cookeville, TN,

USA); Prof. Jeffrey Norden (State University of New York, Binghamton, NY, USA),

and Stephen L. Scott (Oak Ridge National Laboratory, Oak Ridge, TN, USA).

Internship supervisors: Christian Engelmann and Stephen L. Scott (Oak Ridge

National Laboratory, Oak Ridge, TN, USA).

[205] Manoj Pillai and Mario Lauria. CSAR: Cluster storage with adaptive redundancy.

In Proceedings of the IEEE International Conference on Parallel Processing (ICPP)

2003, pages 223–230, Kaohsiung, Taiwan, October 6-9, 2003. IEEE Computer So-

ciety. ISBN 0-7695-2017-0, ISSN 0190-3918. URL http://ieeexplore.ieee.org/iel5/

8782/27813/01240584.pdf.

[206] Sheng-Kai Hung and Yarsun Hsu. Modularized redundant parallel virtual file sys-

tem. In Lecture Notes in Computer Science: Proceedings of the 10th Asia-Pacific

Conference, (ACSAC) 2005, volume 3740, pages 186–199, Singapore, October 24-26,

2005. Springer Verlag, Berlin, Germany. ISBN 978-3-540-29643-0, ISSN 0302-9743.

URL http://www.springerlink.com/content/b285223lv1177404.

[207] Sheng-Kai Hung and Yarsun Hsu. DPCT: Distributed parity cache table for redun-

dant parallel file system. In Lecture Notes in Computer Science: Proceedings of the

7th International Conference on High Performance Computing and Communications

(HPCC) 2006, volume 4208, pages 320–329, Munich, Germany, September 13-15,

2006. Springer Verlag, Berlin, Germany. ISBN 978-3-540-39368-9, ISSN 0302-9743.

URL http://www.springerlink.com/content/j30g04715784303x/.

[208] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

Transparent symmetric active/active replication for service-level high availability.

In Proceedings of the 7th IEEE International Symposium on Cluster Computing

and the Grid (CCGrid) 2007: 7th International Workshop on Global and Peer-to-

Peer Computing (GP2PC) 2007, pages 755–760, Rio de Janeiro, Brazil, May 14-17,

2007. IEEE Computer Society. ISBN 0-7695-2833-3. URL http://www.csm.ornl.

gov/∼engelman/publications/engelmann07transparent.pdf.

[209] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He.

Symmetric active/active replication for dependent services. In Proceedings of

150

http://www.csm.ornl.gov/~engelman/students/ou06design.pdf
http://www.csm.ornl.gov/~engelman/students/ou06design.pdf
http://ieeexplore.ieee.org/iel5/8782/27813/01240584.pdf
http://ieeexplore.ieee.org/iel5/8782/27813/01240584.pdf
http://www.springerlink.com/content/b285223lv1177404
http://www.springerlink.com/content/j30g04715784303x/
http://www.csm.ornl.gov/~engelman/publications/engelmann07transparent.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann07transparent.pdf

References

the 3rd International Conference on Availability, Reliability and Security (ARES)

2008, pages 260–267, Barcelona, Spain, March 4-7, 2008. IEEE Computer Society.

ISBN 978-0-7695-3102-1. URL http://www.csm.ornl.gov/∼engelman/publications/

engelmann08symmetric.pdf.

[210] Matthias Weber. High availability for the Lustre file system. Master’s thesis, De-

partment of Computer Science, University of Reading, UK, March 14, 2007. URL

http://www.csm.ornl.gov/∼engelman/students/weber07high.pdf. Double diploma

in conjunction with the Department of Engineering I, Technical College for Engi-

neering and Economics (FHTW) Berlin, Berlin, Germany. Advisors: Prof. Vassil

N. Alexandrov (University of Reading, Reading, UK); Christian Engelmann (Oak

Ridge National Laboratory, Oak Ridge, TN, USA).

151

http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric.pdf
http://www.csm.ornl.gov/~engelman/publications/engelmann08symmetric.pdf
http://www.csm.ornl.gov/~engelman/students/weber07high.pdf

A Appendix

A.1 Detailed Prototype Test Results

A.1.1 External Symmetric Active/Active Replication for the HPC

Job and Resource Management Service

Software Configuration Active Head Nodes Latency
TORQUE 1 98ms (100%)
TORQUE+JOSHUA 1 134ms (137%)
TORQUE+JOSHUA 2 265ms (270%)
TORQUE+JOSHUA 3 304ms (310%)
TORQUE+JOSHUA 4 349ms (356%)

Table A.1: Job submission latency performance of the symmetric active/active HPC job
and resource management service prototype (averages over 100 tests)

0

50

100

150

200

250

300

350

400

1 2 3 4

Number of Active Head Nodes

La
te

nc
y

in
 M

illi
se

co
nd

s_

TORQUE TORQUE+JOSHUA

Figure A.1: Job submission latency performance of the symmetric active/active HPC job
and resource management service prototype (averages over 100 tests)

152

A Appendix

Software Configuration Active Head Nodes 10 Jobs 50 Jobs 100 Jobs
TORQUE 1 0.93s (100%) 4.95s (100%) 10.18s (100%)
TORQUE+JOSHUA 1 1.32s (70%) 6.48s (76%) 14.08s (72%)
TORQUE+JOSHUA 2 2.68s (35%) 13.09s (38%) 26.37s (39%)
TORQUE+JOSHUA 3 2.93s (32%) 15.91s (31%) 30.03s (34%)
TORQUE+JOSHUA 4 3.62s (26%) 17.65s (28%) 33.32s (31%)

Table A.2: Job submission throughput performance of the symmetric active/active HPC
job and resource management service prototype (averages over 100 tests)

0

2

4

6

8

10

12

10 50 100

Number of Submitted Jobs

Th
ro

ug
hp

ut
 in

 J
ob

s/
S

ec
on

d_

TORQUE 1 TORQUE+JOSHUA 2 TORQUE+JOSHUA
3 TORQUE+JOSHUA 4 TORQUE+JOSHUA

Figure A.2: Job submission throughput performance of the symmetric active/active HPC
job and resource management service prototype (averages over 100 tests)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 50 100

Number of Submitted Jobs

Th
ro

ug
hp

ut
 in

 J
ob

s/
S

ec
on

d_

TORQUE 1 TORQUE+JOSHUA 2 TORQUE+JOSHUA
3 TORQUE+JOSHUA 4 TORQUE+JOSHUA

Figure A.3: Normalized job submission throughput performance of the symmetric ac-
tive/active HPC job and resource management service prototype (averages over 100 tests)

153

A Appendix

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

Number of Active Head Nodes

Th
ro

ug
hp

ut
 in

 J
ob

s/
S

ec
on

d_

TORQUE TORQUE+JOSHUA

Figure A.4: Job submission throughput performance of the symmetric active/active HPC
job and resource management service prototype (100 submissions, averages over 100 tests)

Active Head Nodes MTTF 500 hours MTTF 1,000 hours MTTF 5,000 hours
1 93.284% 96.5251% 99.28514%
2 99.549% 99.8792% 99.99488%
3 99.970% 99.9958% 99.99996%
3 99.998% 99.9998% 99.99999%
Active Head Nodes MTTF 10,000 hours MTTF 50,000 hours
1 99.641290% 99.928052%
2 99.998711% 99.999948%
3 99.999991% 99.999999%
4 99.999994% 99.999999%

Table A.3: Availability of the symmetric active/active HPC job and resource management
service prototype

154

A Appendix

A.1.2 Internal Symmetric Active/Active Replication for the HPC

Parallel File System Metadata Service

Processes (P) Transis Improved Transis Transis Improved Transis
1 Sender (Minimum) 1 Sender P Senders P Senders

1 230µs 235µs 227µs
2 940µs 952µs 966µs 971µs
3 1,020µs 1,031µs 1,458µs 1,461µs
4 1,070µs 1,089µs 1,842µs 1,845µs
5 1,150µs 1,158µs 2,231µs 2,236µs
6 1,200µs 1,213µs 2,639µs 2,646µs
7 1,280µs 1,290µs 3,068µs 3,073µs
8 1,340µs 1,348µs 3,509µs 3,514µs

Maximum of Transis 1 sender = heartbeat interval, e.g., ≈500,000 µs)

Table A.4: Latency performance of the fast-delivery protocol (averages over 100 tests)

155

A Appendix

PVFS MDS Clients 1 2 4
1 PVFS MDS 11ms (100%) 23ms (100%) 52ms (100%)
1 Symmetric Active/Active PVFS MDS 13ms (118%) 27ms (117%) 54ms (104%)
2 Symmetric Active/Active PVFS MDS 14ms (127%) 29ms (126%) 56ms (108%)
4 Symmetric Active/Active PVFS MDS 17ms (155%) 33ms (143%) 67ms (129%)
PVFS MDS Clients 8 16 32
1 PVFS MDS 105ms (100%) 229ms (100%) 470ms (100%)
1 Symmetric Active/Active PVFS MDS 109ms (104%) 234ms (102%) 475ms (101%)
2 Symmetric Active/Active PVFS MDS 110ms (105%) 237ms (103%) 480ms (102%)
4 Symmetric Active/Active PVFS MDS 131ms (125%) 256ms (112%) 490ms (104%)

Table A.5: Request latency performance of the symmetric active/active HPC parallel file
system metadata service (averages over 100 tests)

10

100

1000

1 2 4 8 16 32

Number of Metadata Clients

La
te

nc
y

in
 M

illi
se

co
nd

s_

1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure A.5: Request latency performance of the symmetric active/active HPC parallel
file system metadata service (averages over 100 tests)

156

A Appendix

PVFS MDS Clients 1 2 4
1 PVFS MDS 122/s (100%) 115/s (100%) 111/s (100%)
1 Symmetric Active/Active PVFS MDS 122/s (100%) 115/s (100%) 111/s (100%)
2 Symmetric Active/Active PVFS MDS 206/s (169%) 215/s (187%) 206/s (186%)
4 Symmetric Active/Active PVFS MDS 366/s (300%) 357/s (310%) 351/s (316%)
PVFS MDS Clients 8 16 32
1 PVFS MDS 107/s (100%) 103/s (100%) 88/s (100%)
1 Symmetric Active/Active PVFS MDS 107/s (100%) 103/s (100%) 88/s (100%)
2 Symmetric Active/Active PVFS MDS 205/s (192%) 194/s (188%) 155/s (176%)
4 Symmetric Active/Active PVFS MDS 347/s (324%) 340/s (330%) 334/s (380%)

Table A.6: Query throughput performance of the symmetric active/active HPC parallel
file system metadata service (averages over 100 tests)

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32

Number of Metadata Clients

Th
ro

ug
hp

ut
 in

 Q
ue

rie
s/

S
ec

on
d_

1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure A.6: Query throughput performance of the symmetric active/active HPC parallel
file system metadata service (averages over 100 tests)

157

A Appendix

PVFS MDS Clients 1 2 4
1 PVFS MDS 98/s (100%) 90/s (100%) 84/s (100%)
1 Symmetric Active/Active PVFS MDS 94/s (96%) 86/s (96%) 80/s (95%)
2 Symmetric Active/Active PVFS MDS 79/s (81%) 71/s (79%) 71/s (85%)
4 Symmetric Active/Active PVFS MDS 72/s (73%) 67/s (74%) 66/s (79%)
PVFS MDS Clients 8 16 32
1 PVFS MDS 81/s (100%) 78/s (100%) 69/s (100%)
1 Symmetric Active/Active PVFS MDS 77/s (95%) 76/s (97%) 69/s (100%)
2 Symmetric Active/Active PVFS MDS 67/s (83%) 66/s (85%) 66/s (96%)
4 Symmetric Active/Active PVFS MDS 65/s (80%) 63/s (81%) 62/s (90%)

Table A.7: Request throughput performance of the symmetric active/active HPC parallel
file system metadata service (averages over 100 tests)

60

65

70

75

80

85

90

95

100

1 2 4 8 16 32

Number of Metadata Clients

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s/
S

ec
on

d_

1 PVFS MDS 1 Symmetric Active/Active PVFS MDS
2 Symmetric Active/Active PVFS MDS 4 Symmetric Active/Active PVFS MDS

Figure A.7: Request throughput performance of the symmetric active/active HPC parallel
file system metadata service (averages over 100 tests)

158

A Appendix

A.1.3 Transparent Symmetric Active/Active Replication Framework

for Services

Payload Without With Service With Both
Interceptors Interceptor Interceptors

0.1kB 150µs (100%) 151µs (101%) 178µs (119%)
1.0kB 284µs (100%) 315µs (111%) 347µs (122%)

10.0kB 1,900µs (100%) 1,900µs (100%) 2,000µs (105%)
100.0kB 22,300µs (100%) 22,500µs (101%) 22,700µs (102%)

Table A.8: Message ping-pong (emulated emulated remote procedure call) latency perfor-
mance of the transparent symmetric active/active replication framework using external
replication (averages over 100 tests)

0.1

1

10

100

0.1 1 10 100

Payload in Kilobytes

La
te

nc
y

in
 M

ill
is

ec
on

ds
_

Without Interceptors With Service Interceptor With Both Interceptors

Figure A.8: Message ping-pong (emulated emulated remote procedure call) latency per-
formance of the transparent symmetric active/active replication framework using external
replication (averages over 100 tests)

159

A Appendix

Payload Without With Service With Both
Interceptors Interceptor Interceptors

0.1kB 0.7MBps (100%) 0.7MBps (100%) 0.6MBps (86%)
1.0kB 3.5MBps (100%) 3.2MBps (91%) 2.9MBps (83%)

10.0kB 5.3MBps (100%) 5.2MBps (98%) 5.0MBps (94%)
100.0kB 4.5MBps (100%) 4.4MBps (98%) 4.4MBps (98%)

Table A.9: Message ping-pong (emulated emulated remote procedure call) bandwidth per-
formance of the transparent symmetric active/active replication framework using external
replication (averages over 100 tests)

0.1

1

10

0.1 1 10 100

Payload in Kilobytes

B
an

dw
id

th
 in

 M
eg

ab
yt

es
/S

ec
on

d_

Without Interceptors With Service Interceptor With Both Interceptors

Figure A.9: Message ping-pong (emulated emulated remote procedure call) bandwidth
performance of the transparent symmetric active/active replication framework using ex-
ternal replication (averages over 100 tests)

160

A Appendix

A.1.4 Transparent Symmetric Active/Active Replication Framework

for Dependent Services

Payload 1 Service 0 Interceptors 1 Service/2 Interceptors
0.1kB 0.10ms (100%) 0.19ms (190%)
1.0kB 0.16ms (100%) 0.24ms (150%)

10.0kB 0.35ms (100%) 0.45ms (129%)
100.0kB 2.21ms (100%) 2.40ms (109%)

1000.0kB 17.20ms (100%) 24.00ms (140%)
Payload 2 Services/0 Interceptors 2 Services/2 Interceptors 2 Services/4 Interceptors

0.1kB 0.20ms (100%) 0.27ms (135%) 0.37ms (185%)
1.0kB 0.32ms (100%) 0.38ms (119%) 0.47ms (147%)

10.0kB 0.70ms (100%) 0.78ms (111%) 0.88ms (126%)
100.0kB 3.86ms (100%) 4.25ms (110%) 4.72ms (122%)

1000.0kB 34.40ms (100%) 40.80ms (119%) 47.70ms (139%)

Table A.10: Message ping-pong (emulated emulated remote procedure call) latency per-
formance of the transparent symmetric active/active replication framework in a serial
virtual communication layer configuration (averages over 100 tests)

0.1

1

10

100

0.1 1 10 100 1000

Payload in Kilobytes

La
te

nc
y

in
 M

illi
se

co
nd

s_

1 Service, 0 Interceptors 1 Service, 2 Interceptors 2 Services, 0 Interceptors
2 Services, 2 Interceptors 2 Services, 4 Interceptors

Figure A.10: Message ping-pong (emulated emulated remote procedure call) latency per-
formance of the transparent symmetric active/active replication framework in a serial
virtual communication layer configuration (averages over 100 tests)

161

A Appendix

Payload 1 Service 0 Interceptors 1 Service/2 Interceptors
0.1kB 0.99MB/s (100%) 0.52MB/s (53%)
1.0kB 6.28MB/s (100%) 4.15MB/s (66%)

10.0kB 28.30MB/s (100%) 22.00MB/s (78%)
100.0kB 45.20MB/s (100%) 41.70MB/s (92%)

1000.0kB 58.00MB/s (100%) 41.70MB/s (72%)
Payload 2 Services/0 Interceptors 2 Services/2 Interceptors 2 Services/4 Interceptors

0.1kB 0.49MB/s (100%) 0.37MB/s (76%) 0.27MB/s (55%)
1.0kB 3.17MB/s (100%) 2.62MB/s (83%) 2.15MB/s (68%)

10.0kB 14.20MB/s (100%) 12.80MB/s (90%) 11.40MB/s (80%)
100.0kB 25.90MB/s (100%) 23.60MB/s (91%) 21.20MB/s (82%)

1000.0kB 29.00MB/s (100%) 24.50MB/s (84%) 21.00MB/s (72%)

Table A.11: Message ping-pong (emulated remote procedure call) bandwidth performance
of the transparent symmetric active/active replication framework in a serial virtual com-
munication layer configuration (averages over 100 tests)

0.1

1

10

100

0.1 1 10 100 1000

Payload in Kilobytes

B
an

dw
ith

 in
 M

eg
ab

yt
es

/S
ec

on
d_

1 Service, 0 Interceptors 1 Service, 2 Interceptors 2 Services, 0 Interceptors
2 Services, 2 Interceptors 2 Services, 4 Interceptors

Figure A.11: Message ping-pong (emulated emulated remote procedure call) bandwidth
performance of the transparent symmetric active/active replication framework in a serial
virtual communication layer configuration (averages over 100 tests)

162

	Title
	Preface
	Abstract
	Acknowledgements
	Declaration
	Publications
	Journal Publications
	Pending Journal Publications
	Conference Publications
	Workshop Publications
	Co-Advised MSc Theses
	Co-Supervised PhD Thesis Internships

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Background
	Motivation
	Objectives
	Methodology
	Contribution
	Structure
	Summary

	Previous Work
	Head and Service Node Solutions
	Active/Standby using Shared Storage
	Simple Linux Utility for Resource Management
	Sun Grid Engine
	Parallel Virtual File System Metadata Service
	Lustre Metadata Service

	Active/Standby Replication
	High Availability Open Source Cluster Application Resources
	Portable Batch System Professional for Cray Platforms
	Moab Workload Manager

	High Availability Clustering
	High Availability Open Source Cluster Application Resources

	Node Fencing

	Compute Node Solutions
	Checkpoint/Restart
	Berkeley Lab Checkpoint Restart
	Transparent Incremental Checkpointing at Kernel-level
	DejaVu
	Diskless Checkpointing

	Message Logging
	MPICH-V

	Algorithm-Based Fault Tolerance
	Fault-Tolerant Message Passing Interface
	Open Message Passing Interface
	Data Redundancy
	Computational Redundancy

	Proactive Fault Avoidance

	Distributed Systems Solutions
	State-Machine Replication
	Process Group Communication
	Total Order Broadcast Algorithms

	Virtual Synchrony
	Isis
	Horus
	Ensemble
	Transis
	Totem
	Spread
	Object Group Pattern, Orbix+Isis, and Electra

	Distributed Control
	Practical Byzantine Fault Tolerance
	Byzantine Fault Tolerance with Abstract Specification Encapsulation
	Thema
	Zyzzyva
	Low-Overhead Byzantine Fault-Tolerant Storage

	Information Technology and Telecommunication Industry Solutions
	Hewlett-Packard Serviceguard
	RSF-1
	IBM High Availability Cluster Multiprocessing
	Veritas Cluster Server
	Solaris Cluster
	Microsoft Cluster Server
	Red Hat Cluster Suite
	LifeKeeper
	Linux FailSafe
	Linuxha.net
	Kimberlite
	Transparent Transmission Control Protocol Active Replication
	Stratus Continuous Processing
	Open Application Interface Specification Standards Based Cluster Framework
	System-level Virtualization
	Xen
	VMware
	High Availability in a Virtualised Environment

	Summary

	Taxonomy, Architecture, and Methods
	High Availability Taxonomy
	Faults, Failures, and Outages
	Reliability Metrics
	Availability Domains and Configurations
	Basic Availability
	High Availability
	Continuous Availability

	Availability Metrics
	Fail-Stop

	System Architecture
	HPC System Architectures
	Availability Deficiencies
	Critical System Services
	Head Node
	Service Nodes
	Partition Service Nodes
	Compute Nodes
	Partition Compute Nodes
	System Scale

	High Availability Methods
	Service Model
	Active/Standby Replication
	Asymmetric Active/Active Replication
	Symmetric Active/Active Replication
	Comparison

	Summary

	Prototypes
	Symmetric Active/Active High Availability Framework Concept
	Communication Drivers
	Group Communication System
	Virtual Synchrony Runtime Environment
	Applications/Services
	Approach

	External Symmetric Active/Active Replication for the HPC Job and Resource Management Service
	Objectives
	Technical Approach
	Architecture and Design
	Group Communication System
	Software Design
	Failure-Free Operation
	Failure Handling

	Test Results
	Conclusions

	Internal Symmetric Active/Active Replication for the HPC Parallel File System Metadata Service
	Objectives
	Technical Approach
	Architecture and Design
	Group Communication System
	Total Order Broadcast in Transis
	Notation and Definition
	Fast Delivery Protocol

	Software Design
	Failure-Free Operation
	Failure Handling

	Test Results
	Fast Delivery Protocol
	Symmetric Active/Active Metadata Service

	Conclusions

	Transparent Symmetric Active/Active Replication Framework for Services
	Objectives
	Technical Approach
	Architecture and Design
	Failure Handling

	Test Results
	Conclusions

	Transparent Symmetric Active/Active Replication Framework for Dependent Services
	Objectives
	Technical Approach
	Architecture and Design
	Test Results
	Conclusions

	Summary

	Summary, Conclusions, and Future Work
	Summary
	Conclusions
	Future Work

	References
	Appendix
	Detailed Prototype Test Results
	External Symmetric Active/Active Replication for the HPC Job and Resource Management Service
	Internal Symmetric Active/Active Replication for the HPC Parallel File System Metadata Service
	Transparent Symmetric Active/Active Replication Framework for Services
	Transparent Symmetric Active/Active Replication Framework for Dependent Services

