
THE CASE FOR MODULAR REDUNDANCY IN LARGE-SCALE HIGH
PERFORMANCE COMPUTING SYSTEMS

Christian Engelmann
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

email: engelmannc@ornl.gov

Hong Ong and Stephen L. Scott
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

email: hongong@ornl.gov and scottsl@ornl.gov

ABSTRACT
Recent investigations into resilience of large-scale high-
performance computing (HPC) systems showed a con-
tinuous trend of decreasing reliability and availability.
Newly installed systems have a lower mean-time to fail-
ure (MTTF) and a higher mean-time to recover (MTTR)
than their predecessors. Modular redundancy is being used
in many mission critical systems today to provide for re-
silience, such as for aerospace and command & control sys-
tems. The primary argument against modular redundancy
for resilience in HPC has always been that the capability of
a HPC system, and respective return on investment, would
be significantly reduced. We argue that modular redun-
dancy can significantly increase compute node availability
as it removes the impact of scale from single compute node
MTTR. We further argue that single compute nodes can be
much less reliable, and therefore less expensive, and still be
highly available, if their MTTR/MTTF ratio is maintained.

KEY WORDS
high-performance computing, modular redundancy, fault
tolerance, high availability, reliability

1 Introduction

Recent investigations [15, 13, 5] into resilience of large-
scale high-performance computing (HPC) systems showed
that there is a continuous trend of decreasing system reli-
ability and availability. Newly installed large-scale HPC
systems have a lower mean-time to failure (MTTF) and a
higher mean-time to recover (MTTR) than their predeces-
sors. Overall system efficiency is decreased by more fre-
quent and longer failure-recovery cycles.

The current state of practice is to build systems with
highly reliable components and to utilize a state sav-
ing/recovery mechanism, i.e., checkpoint/restart. However,
the ever increasing quantity of components in large-scale
HPC systems causes more interruptions due to individual
component failures. Moreover, the ever increasing volume
of state, i.e., the total amount of memory, results in longer
checkpoint and restart times.

There are numerous efforts by HPC vendors in im-
proving reliability and by research institutions in enhancing

recovery techniques. They range from using highly reliable
embedded systems components [10] to incremental check-
point/restart [8] and message logging [1]. Recent work [7]
also focused on anticipatory reconfiguration before a fail-
ure occurs, such that it can be tolerated without requiring
recovery. However, all these techniques have certain scala-
bility and failure coverage limits.

Modular redundancy is being used in many mission
critical systems today to provide for resilience, such as for
aerospace and command & control systems [17, 2, 14, 9].
The primary argument against modular redundancy in
large-scale HPC systems has always been that the capabil-
ity of a HPC system, and respective return on investment,
would be significantly reduced. Since large-scale HPC sys-
tems are multimillion Dollar investments, the 2× or 3×
cost of modular redundancy seems unacceptable.

This paper makes the case for modular redundancy in
large-scale HPC systems by investigating its applicability
and by proposing a tunable cost vs. availability trade-off.
We demonstrate that modular redundancy allows for a sig-
nificant reduction of individual component reliability by a
factor of 100-100,000, which in turn permits recovering the
costs for using 2× or 3× the number of components. This
tunable trade-off is the counter argument to the traditional
view that modular redundancy comes at 2× or 3× costs.

We first discuss factors that influence HPC system
availability at scale and then continue with an introduction
of modular redundancy concepts. We further demonstrate
the impact of modular redundancy on compute node and on
overall HPC system availability. We conclude with a brief
summary and a short overview of future work.

2 HPC System Availability at Scale

There is a plethora of literature, such as [16, 11], on com-
puter system reliability and availability. The following two
paragraphs summarize the relevant terms, concepts, mod-
els and metrics needed to discuss the influencing factors of
HPC system availability at scale.

In general, a systems availability can be between 0
and 1 (or 0% and 100% respectively), where 0 stands for
no availability, i.e., the system is inoperable, and 1 means
continuous availability, i.e., the system does not have any
outages. Availability can be calculated (Equation 1) based

on a systems MTTF , the average interval of time that a
system will operate before a failure occurs, and MTTR,
the average amount of time needed to repair, recover, or
otherwise restore its service. A system is often rated by the
number of 9s in its availability metric (Table 1).

A =
MTTF

MTTF + MTTR
=

1
1 + MTTR

MTTF

(1)

9s Availability Annual Downtime
1 90% 36 days, 12 hours
2 99% 87 hours, 36 minutes
3 99.9% 8 hours, 45.6 minutes
4 99.99% 52 minutes, 33.6 seconds
5 99.999% 5 minutes, 15.4 seconds
6 99.9999% 31.5 seconds

Table 1. Availability measured by the “nines”

The availability of a system depends on the availabil-
ity of its components. System components can be coupled
serial, e.g., one component depends on another, or parallel,
e.g., one component is redundant to another. The avail-
ability of n-series or n-parallel components can be calcu-
lated based on component availability (Equations 2 and 3).
The calculation of the availability of n-series or n-parallel
components with equal component availability can be sim-
plified (Equations 4 and 5).

Aseries =
n∏

i=1

Ai (2)

Aparallel = 1−
n∏

i=1

(1−Ai) (3)

Aequal−series = An
component (4)

Aequal−parallel = 1− (1−Acomponent)n (5)

HPC systems consist of many interdependent compo-
nents, such as network interconnect and head, service and
compute nodes. HPC system availability is predominantly
influenced by component availability and scale. Since the
number of compute nodes is much larger than the number
of head and service nodes, a system‘s availability closely
follows the series composition of its compute nodes.

The MTTF of a single compute node is typically
quite large, e.g., hundreds-of-thousands to millions of
hours, due to a highly reliable design. The MTTR of a
single compute node is defined by the system‘s state recov-
ery mechanism as a failed compute node is either rebooted
in case of a recoverable soft error or replaced with a spare
node in case of a non-recoverable hard error. In both cases,
previously saved state is restored and computation time be-
tween the last checkpoint and the time of failure is lost.
The MTTR of a single compute is the time it takes to re-
cover from a failure and to catch up to the previous state
right before the failure. The MTTR of a single compute
node is typically much smaller than its MTTF , e.g., tens
to hundreds of minutes. While the MTTF of a single com-
pute node is constant, its MTTR depends on the number

of compute nodes involved in a parallel job due to the sys-
tem‘s state recovery mechanism. This means that single
compute node availability is not constant (Equation 1).

Overall HPC system availability depends on single
compute node availability and on the number of compute
nodes (Equation 4). Figure 1 shows how rapidly overall
HPC system availability degrades with increasing number
of compute nodes (4k-8m) and with decreasing component
(compute node) availability (5-7 nines). Even when consid-
ering a constant compute node availability, overall system
availability drops quickly with increasing scale.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

Component Count
Sy

st
em

 A
va

ila
bi

liy__
_

0.9999900 0.9999990 0.9999999

Figure 1. HPC system availability at scale with component
(compute node) availability of 5, 6 and 7 nines

This drastic impact of system scale on system avail-
ability has put significant pressure on HPC vendors to in-
crease compute node reliability by using more reliable, and
more expensive, components. For example, the IBM Blue
Gene [10] system utilizes highly reliable embedded sys-
tems components, while the Cray XT [4] system is based
on highly reliable server systems components.

However, overall HPC system availability is bound
by individual component reliability and by the recovery
mechanism. For example, a single memory module may
have a MTTF of 1,500,000 hours for a ECC double-bit
error, but a system with about 75,000 memory modules,
such as the 1 PFlop/s (1015 Floating Point Operations Per
Second) Cray XT5 system at Oak Ridge National Labo-
ratory (ORNL) [12], has a resulting MTTF of 20 hours
just due to the combined propability of ECC double-bit er-
rors. Other common failure sources, such as voltage spikes,
further reduce compute node and system MTTF . Mean-
while, checkpoints and restarts are taking longer as the
I/O and storage system does not scale with overall sys-
tem memory, i.e., the state to save is growing faster than
the bandwidth for state saving. For example, the 1 PFlop/s
Cray XT5 system at ORNL has 300TB memory and a peak
bandwith to checkpoint storage of only 55MB/s.

From this discussion, it is clear that there are certain
limits for the current state of practice for HPC resilience.
This paper proposes a bold change in HPC resilience. We
argue that modular redundancy can significantly increase
compute node availability as it removes the impact of scale
from single compute node MTTR. We further argue that

single compute nodes can be much less reliable, and there-
fore much less expensive, and still be highly available, if
their MTTR is improved respectively and the MTTR

MTTF ra-
tio is maintained (Equation 1).

3 Modular Redundancy

Modular redundancy concepts for computer systems have
been around for a while [16, 11]. Dual-modular redun-
dancy (DMR) and triple-modular redundancy (TMR) are
common concepts for providing high reliability and avail-
ability in mission critical systems [17, 2, 14, 9].

A DMR system employs two fully redundant compo-
nents. If one experiences an outage (hard error) or behaves
incorrectly (soft error), the surviving/correct one continues
to operate. Upon repair/recovery, DMR is fully restored.
A hard error is detected by the remote monitoring mecha-
nism of the other component. A soft error is detected by
either a self-monitoring mechanism or an output compar-
ison mechanism, where components monitor each other’s
output. DMR offers resilience against hard errors and self-
detected soft errors. However, DMR does not provide re-
silience against soft errors detected through output compar-
ison as it is unable to identify the incorrect component.

A TMR system employs three fully redundant com-
ponents. If one experiences a hard/soft error, the surviv-
ing/correct ones continue to operate with DMR. Upon re-
pair/recovery, TMR is fully restored. A hard error is de-
tected and agreed on by the remote monitoring mechanism
of the other components. A soft error is detected by ei-
ther a component’s self-monitoring mechanism or an out-
put comparison mechanism, where all three compare each
other’s output using majority voting. TMR output compar-
ison is able to detect soft errors and to identify the incor-
rect component if two are correct. TMR offers resilience
against hard errors, self-detected soft errors, and soft errors
detected through output comparison.

DMR and TMR are simple variants of the generic
m-of-n redundancy concept, where m out of n redundant
components are needed to function correctly. DMR rep-
resents a 1-of-2 redundancy system, while TMR is 2-of-3.
Redundancy systems may degrade to different m-of-n vari-
ants. For example, a TMR system may degrade to DMR, if
one component experiences a hard error.

The overall availability of a system with n-modular
redundancy can be calculated based on individual compo-
nent availability and a n-parallel component composition
(Equation 5). The overall availability of systems with DMR
or TMR can be calculated as follows:

ADMR = 1− (1−A)2 (6)

ATMR = 1− (1−A)3 (7)

Figure 2 shows the improvement in system availabil-
ity with DMR (duplex) or TMR (triplex) over systems with-
out redundancy (simplex). It is easy to see that modular
redundancy significantly increases system availability.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Component Availability

S
ys

te
m

 A
va

ila
bi

lit
y

Simplex Duplex Triplex

Figure 2. System availability with/without modular redun-
dancy (Equations 6, 7)

The concept of dynamic modular redundancy as-
sumes that component failures can be recovered by using
a spare component in case of a hard error or by rebooting
the incorrect one in case of a soft error. In both cases, the
state of a correct component is cloned. This technique sig-
nificantly lowers the MTTR of n − 1 components, e.g.,
from hours to minutes. The overall availability of systems
with dynamic dual-modular redundancy (DDMR) or dy-
namic triple-modular redundancy (DTMR) can be calcu-
lated based on individual component availability:

ADDMR = 1− (1−A1)(1−A2) (8)

ADTMR = 1− (1−A1)(1−A2)2 (9)

A2 represents the availability of a component that is
being rebooted or replaced using a spare within a time pe-
riod of MTTR2. A1 is the availability of the last surviv-
ing component that is being physically replaced/repaired
and its state is recovered within a time period of MTTR1.
MTTF1 = MTTF2, since the same type of components
are being used and it is assumed that spare components are
“cold”, i.e., their MTTF starts at the time of replacement.
Figure 3 shows the improvement in system availability with
DDMR (duplex) or DTMR (triplex) over systems without
redundancy (simplex). The ratio of MTTR1

MTTR2
is 60 in this ex-

ample, which corresponds to realistic values for HPC com-
pute nodes, i.e., MTTR1 = 1h and MTTR2 = 1min.
It is easy to see that dynamic modular redundancy drasti-
cally increases system availability over static modular re-
dundancy (compare with Figure 2).

In summary, modular redundancy is able to signifi-
cantly increase system availability, while dynamic modular
redundancy offers further significant improvement. Note
that the difference in availability between DMR and TMR
is larger than between DDMR and DTMR.

4 The Case for Compute Node Availability
with Modular Redundancy

Today‘s large-scale HPC systems have tens-to-hundreds of
thousands of diskless compute nodes consisting of proces-

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Component Availability

S
ys

te
m

 A
va

ila
bi

lit
y

Simplex Duplex Triplex

Figure 3. System availability with/without dynamic modu-
lar redundancy (Equations 8, 9 with MTTR1

MTTR2
= 60)

sor(s), memory module(s) and a network interface. Ap-
plying modular redundancy concepts to such HPC systems
requires to double or triple the number of compute nodes.
Since the network infrastructure is able to recover soft er-
rors by retransmitting messages, a less expensive alterna-
tive is to double or triple only the number of processors
and memory modules within each compute node.

Deploying DMR or TMR for compute nodes in HPC
systems can significantly increase compute node availabil-
ity not only due to the fact that modular redundancy pro-
vides high availability in general, but also because the tradi-
tional checkpoint/restart approach is only used if all redun-
dant components belonging to a compute node fail within
the same recovery time interval MTTR. This typically
happens in case of co-related failure causes.

Figure 4 shows the improvement in compute node
availability with DMR (duplex) or TMR (triplex) over sys-
tems without redundancy (simplex) with a single compo-
nent (simplex compute node) availability of 2 nines or bet-
ter (Equations 6 and 7). It is easy to see that modular re-
dundancy significantly increases compute node availabil-
ity. Specifically, the contrast between the linearly increas-
ing simplex availability and the almost constant duplex and
triplex availability near 1.000 is distinctive.

0.990

0.992

0.994

0.996

0.998

1.000

0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

Component Availability

S
ys

te
m

 A
va

ila
bi

lit
y

Simplex Duplex Triplex

Figure 4. Compute node availability with/without modular
redundancy (Equations 6, 7)

Deploying DDMR or DTMR for compute nodes in

HPC systems can further increase compute node avail-
ability due to the fact that the recovery of a single fail-
ure (DDMR and DTMR) or of two simultaneous failures
(DTMR only) is much faster. Figure 5 shows the improve-
ment in compute node availability with DDMR (duplex)
or DTMR (triplex) over systems without redundancy (sim-
plex) with a single component (simplex compute node)
availability of 2-3 nines and a MTTR1

MTTR2
ratio of 60 (Equa-

tions 8 and 9). Similar to Figure 4, the almost constant
duplex and triplex availability near 1.000 is striking.

0.990

0.992

0.994

0.996

0.998

1.000

0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1.000

Component Availability

S
ys

te
m

 A
va

ila
bi

lit
y

Simplex Duplex Triplex

Figure 5. Compute node availability with/without dynamic
modular redundancy (Equations 8, 9 with MTTR1

MTTR2
= 60)

Note that single component (simplex compute node)
availability is typically at 5-7 nines in today’s HPC sys-
tems. This example with 2-3 nines was chosen to demon-
strate the slight difference between static and dynamic
modular redundancy.

In summary, modular redundancy is able to signifi-
cantly increase compute node availability, while dynamic
modular redundancy offers further significant improve-
ment. There is a vulnerability to co-related failures.

5 The Case for Overall HPC System Avail-
ability with Modular Redundancy

As explained in Section 2, HPC system availability de-
pends on single compute node availability (Equation 1) and
on the number of compute nodes (Equation 4). Deploying
DMR or TMR for compute nodes significantly increases
compute node availability (Equations 6 and 7), which in
turn dramatically increases HPC system availability. The
overall availability of HPC systems with DMR or TMR can
be calculated as follows:

ADMR = [1− (1−A)2]n (10)

ATMR = [1− (1−A)3]n (11)

In comparison to Figure 1 in Section 2, Figure 6 in
this section shows the improvement in HPC system avail-
ability with DMR (duplex) or TMR (triplex) over systems
without redundancy (simplex). While Figure 1 displays
HPC system availability for systems without redundancy

(simplex) based on a typical single component (simplex
compute node) availability of 5-7 nines, Figure 6 demon-
strates that equal and even better HPC system availability
can be achieved with DMR or TMR despite a lower com-
ponent availability of 2-4 nines.

0.99 Simplex
0.999 Simplex

0.9999 Simplex

0.99 Duplex

0.999 Duplex

0.9999 Duplex 0.99 Triplex

0.999 Triplex
0.9999 Triplex

0.00

0.10

0.20
0.30

0.40

0.50

0.60

0.70
0.80

0.90

1.00

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

Component Count

Sy
st

em
 A

va
ila

bi
liy

__
_

0.99 Simplex 0.999 Simplex 0.9999 Simplex
0.99 Duplex 0.999 Duplex 0.9999 Duplex
0.99 Triplex 0.999 Triplex 0.9999 Triplex

Figure 6. HPC system availability with/without modular
redundancy and with component (simplex compute node)
availability of 2, 3 and 4 nines (Equations 10, 11)

Figure 6 also shows specific features of deploying
DMR or TMR in HPC systems. The availability of a sys-
tem without redundancy and with 4-nine compute node
availability is exactly the same as a system with DMR and
2-nine single component rating. Similarly, the availabil-
ity of a system with DMR and 3-nine single component
availability is the same as a system with TMR and 2-nine
single component rating. Since 7-nine single component
availability corresponds to a MTTF

MTTR ratio of 9,999,999, 6-
nine single component availability to 999,999, and so on
(Equation 1), using DMR technology allows lowering sin-
gle component MTTF by a factor of 100-1,000 and us-
ing TMR allows lowering it by a factor of 1,000-10,000 in
comparison to today’s HPC systems without modular re-
dundancy and a 6-7 nine compute node rating.

In a realistic scenario, DMR with 4-nine or TMR with
3-nine single component rating provides enough overall
system availability for HPC systems planned for the next
10 years with 1,000,000 compute nodes and beyond.

Deploying DDMR or DTMR for compute nodes
further significantly increases compute node availability
(Equations 8 and 9), which in turn further drastically in-
creases HPC system availability. The overall availability of
HPC systems with DDMR or DTMR is:

ADDMR = [1− (1−A1)(1−A2)]n (12)

ADTMR = [1− (1−A1)(1−A2)2]n (13)

Similar to DMR and TMR for compute nodes in HPC
systems, the comparison between Figure 1 in Section 2 and
Figure 7 in this section shows the improvement in HPC sys-
tem availability with DDMR (duplex) and DTMR (triplex)
over systems without redundancy (simplex). While Fig-
ure 1 displays HPC system availability for systems without
redundancy (simplex) based on a typical single component

(simplex compute node) availability of 5-7 nines, Figure 7
demonstrates that equal and even better HPC system avail-
ability can be achieved with DDMR or DTMR despite a
lower component availability of 2-4 nines. Furthermore,
Figure 7 also shows further improvement in HPC system
availability in comparison to DMR and TMR for compute
nodes in HPC systems displayed in Figure 6.

0.99 Simplex
0.999 Simplex

0.9999 Simplex

0.99 Duplex 0.999 Duplex

0.9999 Duplex

0.99 Triplex

0.999 Triplex
0.9999 Triplex

0.00

0.10

0.20
0.30

0.40

0.50

0.60

0.70
0.80

0.90

1.00

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

Component Count

Sy
st

em
 A

va
ila

bi
liy

__
_

0.99 Simplex 0.999 Simplex 0.9999 Simplex
0.99 Duplex 0.999 Duplex 0.9999 Duplex
0.99 Triplex 0.999 Triplex 0.9999 Triplex

Figure 7. HPC system availability with/without dynamic
modular redundancy and with component (simplex com-
pute node) availability of 2, 3 and 4 nines (Equations 12, 13
with MTTR1

MTTR2
= 60)

The main feature of Figure 7 is the high and equal
overall system availability provided by DDMR with 3-nine
single component availability and DTMR with 2-nine sin-
gle component availability. Using DDMR technology al-
lows lowering single component MTTF by a factor of
1,000-10,000 and using DTMR allows lowering it by a fac-
tor of 10,000-100,000 in comparison to today’s HPC sys-
tems without modular redundancy.

In a realistic scenario, DDMR with 3-nine or DTMR
with 2-nine single component rating provides enough over-
all system availability for future HPC systems.

In summary, modular redundancy in large-scale HPC
systems is able to significantly increase overall system
availability, while dynamic modular redundancy offers fur-
ther improvement. While there still is a vulnerability to
co-related failures, all four described modular redundancy
variants allow for lowering single component MTTF by
a factor of 100-100,000. This tunable cost vs. reliabil-
ity/availability trade-off is the counter argument to the tra-
ditional view that modular redundancy comes at 2× or 3×
costs. The reduction of individual component reliability
within a modular redundant system permits recovering the
costs for using 2× or 3× the number of components.

6 Summary and Future Work

With this paper, we have made the case for modular redun-
dancy in large-scale HPC systems by explaining the lim-
its for the current state of practice for HPC resilience and
by describing the significant increase in system availability
modular redundancy offers in general, for compute nodes,

and for HPC systems. We have further demonstrated that
deploying modular redundancy in HPC systems allows for
a significant reduction of individual component reliability
by a factor of 100-100,000, which in turn permits recov-
ering the costs for using 2× or 3× the number of compo-
nents. For example, such costs may be offset by using less
reliable and cheaper desktop processors and memory mod-
ules, instead of the current highly reliable and more expen-
sive server or embedded systems components. This tunable
cost vs. reliability/availability trade-off is the counter ar-
gument to the traditional view that modular redundancy in
HPC comes at 2× or 3× costs.

Recent accomplishments in symmetric active/active
high availability [6] applying state-machine replication
concepts to HPC system head and service nodes already
show a path toward modular redundancy. Future work
needs to focus on concepts and implementation-specific
details for modular redundancy in large-scale parallel and
distributed environments, such as on low-latency/high-
bandwith fault-tolerant message passing within a modular
redundant HPC system, efficient replica placement strate-
gies to cover co-related failure causes and to avoid high
message latency penalties, and tunable redundancy solu-
tions to enable job-specific resilience requirements. Fur-
ther research and development efforts also need to target
self-monitoring mechanisms for soft error detection, since
recent experience [3] showed that silent data/code corrup-
tion is becoming an issue. Another significant problem fu-
ture work has to solve is the increased power consumption
modular redundancy may cause. Power consumption has
already become an issue with today’s HPC systems.

7 Acknowledgements

This research is sponsored by the Office of Advanced Sci-
entific Computing Research; U.S. Department of Energy.
The work was performed at Oak Ridge National Labora-
tory, which is managed by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725.

References

[1] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier,
and F. Cappello. MPICH-V: A multiprotocol fault
tolerant MPI. International Journal of High Perfor-
mance Computing and Applications, 20(3):319–333,
2006.

[2] D. Brière and P. Traverse. AIRBUS A320/A330/
A340 electrical flight controls – A family of fault-
tolerant systems. In Proceedings of the IEEE In-
ternational Symposium on Fault-Tolerant Computing,
pages 616–623, Toulouse, France, June 1993.

[3] G. Bronevetsky and B. R. de Supinski. Soft error
vulnerability of iterative linear algebra methods. In
Proceedings of the ACM International Conference on
Supercomputing, Island of Kos, Greece, June 2007.

[4] Cray Inc., Seattle, WA, USA. Cray XT4 documenta-
tion. URL http://www.cray.com/products/xt5.

[5] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Micha-
lak. Application MTTFE vs. platform MTTF: A
fresh perspective on system reliability and applica-
tion throughput for computations at scale. In Proceed-
ings of the IEEE International Symposium on Cluster
Computing and the Grid, Lyon, France, May 2008.

[6] C. Engelmann. Symmetric Active/Active High Avail-
ability for High-Performance Computing System Ser-
vices. PhD thesis, Department of Computer Science,
University of Reading, UK, 2008.

[7] C. Engelmann, G. R. Vallée, T. Naughton, and S. L.
Scott. Proactive fault tolerance using preemptive
migration. In Proceedings of the Euromicro Inter-
national Conference on Parallel, Distributed, and
network-based Processing, Weimar, Germany, Feb.
2009.

[8] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini.
Transparent, incremental checkpointing at kernel
level: A foundation for fault tolerance for parallel
computers. In Proceedings of the IEEE/ACM Inter-
national Conference on High Performance Comput-
ing and Networking, Seattle, WA, USA, Nov. 2005.

[9] Hewlett-Packard Development Company, L.P.,
Palo Alto, CA, USA. HP Integrity NonStop
Computing. URL http://h20223.www2.hp.com/
nonstopcomputing/cache/76385-0-0-0-121.aspx.

[10] IBM Blue Gene team. Overview of the IBM Blue
Gene/P project. IBM Journal of Research and Devel-
opment, 52(1/2):199–220, 2008.

[11] I. Koren and C. M. Krishna. Fault-Tolerant Sys-
tems. Morgan Kaufmann Publishers, Burlington,
MA, USA, July 2007.

[12] National Center for Computational Sciences, Oak
Ridge, TN, USA. Leadership science. URL http:
//www.nccs.gov/leadership-science.

[13] I. R. Philp. Software failures and the road to a petaflop
machine. In Proceedings of the Workshop on High
Performance Computing Reliability Issues, San Fran-
cisco, CA, USA, Feb. 2005.

[14] M. Pignol. How to cope with SEU/SET at sys-
tem level. In Proceedings of the IEEE International
On-Line Testing Symposium, pages 315–318, Saint
Raphael, France, July 2005.

[15] B. Schroeder and G. A. Gibson. Understanding fail-
ures in petascale computers. In Journal of Physics:
Proceedings of the Scientific Discovery through Ad-
vanced Computing Program Conference, volume 78,
pages 2022–2032, Boston, MA, USA, June 2007.

[16] D. P. Siewiorek and R. S. Swarz. Reliable Computer
Systems: Design and Evaluation. A K Peters, Ltd.,
Wellesley, MA, USA, Oct. 1998.

[17] Y. C. Yeh. Triple-triple redundant 777 primary flight
computer. In Proceedings of the IEEE Aerospace
Applications Conference, volume 1, pages 293–307,
Feb. 1996.

http://www.cray.com/products/xt5
http://h20223.www2.hp.com/nonstopcomputing/cache/76385-0-0-0-121.aspx
http://h20223.www2.hp.com/nonstopcomputing/cache/76385-0-0-0-121.aspx
http://www.nccs.gov/leadership-science
http://www.nccs.gov/leadership-science

	Introduction
	HPC System Availability at Scale
	Modular Redundancy
	The Case for Compute Node Availability with Modular Redundancy
	The Case for Overall HPC System Availability with Modular Redundancy
	Summary and Future Work
	Acknowledgements

