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Motivation

• Manageability, Scalability and Availability are 
key issues in large-scale HPC systems.

• Recent trend indicates HPC system 
architectures opt for diskless compute 
nodes.
– Examples are Blue Gene/L, Cray XT, LANL Pink.
– Utilise high-performance storage and high-speed 

network.
– Removing disk drives significantly increases 

compute node reliability.

• However, typical diskless compute nodes 
require for a common root file system, e.g., 
Linux.

LCI, March 10-12, 2009, Boulder, CO
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Motivation (2)

• Possible solutions to provide a common root file 
system for compute nodes are:
– Remove the requirement and provide accesses to a 

networked, shared hierarchal storage for application.
– Provide a common shared root file system via remote 

boot method.

• A cotemporary HPC architecture.

LCI, March 10-12, 2009, Boulder, CO
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Architecture of a Shared-Root File 
System
• Three approaches:

– Partition-wide sharing across compute nodes.
– System-wide sharing across I/O service nodes.
– Hybrid approach – combination of above two 

approaches.

• All approaches:
– Root file system is mounted over the network by 

each compute node.
• Mount root file system via NFS export points. 

– Configuration specific directories, such as /etc, 
are mounted over the network separately by each 
compute node. 
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Aims of the Study

• Diskless HPC distributions offer NFS-based root 
file system.
– Parallel file systems are solely for application data and 

check-pointing due to high scalability and 
performance. 

– Parallel file systems are perceived to rely on complex 
stack of kernel modules and system utilities. 

• This study uses parallel file systems for the 
implementation of a shared root environment.
– Aim to improve scalability and high availability.

• Methodology:
– Tests on the various parallel file systems are to be 

made on the same hardware for reliable comparison.
– Evaluate performance of parallel root file system. 
– Understand root I/O access pattern.
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Testing Environment

• Hardware
– A cluster of 30 nodes, interconnected via a HP Fast 

Ethernet switch.
– Each node is equipped with:

• A 2.66 GHz Intel Xeon, 512 Kbyte L2 Cache, 1 Gbyte RAM.
• A 80 Gbytes Western Digital IDE at 7200 RPM, 2MB Cache.

• Software
– OS: Debian GNU/Linux, kernel 2.6.15.6.

• Kernel is configured with NFSv4, Lustre, PVFS2 FS.

– IOR benchmark – a parallel program that performs 
concurrent writes and reads to/from a file using the 
POSIX and MPI-IO interfaces.

LCI, March 10-12, 2009, Boulder, CO
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Software Infrastructure

• I/O servers:
– PXE or ether boot.
– Store kernel and initial ram disk images.

• Initial ram disk contains an image of the whole root file 
system.

• The root file system on compute nodes is memory resident.
– Disks partitioned in 3 slices (NFS/PVFS/Lustre), 

managed by LVM2.
– PVFS and Lustre see one multiple device partition.

• 40 GB x 3 disks = 120 GB for PVFS/Lustre.

• Compute nodes:
– PXE or ether boot.
– Kernel 2.6.15 and Lustre 1.4.6.4 patches.

• PVFS2 does not require patches to the kernel.
– /home are NFS-mounted from the login server.

• This is not to waste the local disks of the file servers.
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Parallel Root Filesystems Testbed 
Configuration
• NFS RootFS.

– Default configuration with 30 NFS servers pool. 

• PVFS-2.
– 1 metadata server and 3 data servers. 
– Data and metadata stored on an ext3 partition. 
– Default stripe size 64k (but can be changed from file to 

file if using native calls).

• Lustre.
– 1 metadata server and 3 data servers. 
– Lustre relies on ext3 as underlying file system.

• It can make a low level format of a physical device or 
access an already formatted device by pre-allocating a 
continuous slice of disk in a single file, using it as storage.

– Default stripe size of 64k.
LCI, March 10-12, 2009, Boulder, CO
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Performance – NFSv4 Read/Write
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Performance – PVFS2 Read/Write
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Performance – Lustre Read/Write

IOR - Lustre Write 128MB Block

0

10

20

30

40

50

60

8 16 32 64 128 256

xfer (KiB)

B
/W

 (M
iB

/s
)

Write 1PE Write 4PE Write 9PE

Write 16PE Write 25PE

IOR - Lustre Read 128MB Block

0

100

200

300

400

500

600

700

800

900

8 16 32 64 128 256

xfer (KiB)
B

/W
 (M

iB
/s

)

Read 1PE Read 4PE Read 9PE

Read 16PE Read 25PE

LCI, March 10-12, 2009, Boulder, CO



13 Managed by UT-Battelle
for the Department of Energy

Scalability
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Lustre and PVFS2 scale reasonably well as the number of clients increase.
Lustre and PVFS2 does not perform well for small reads/writes.
NFSv4 read/write performance and scalability are limited by its single server 

architecture.



14 Managed by UT-Battelle
for the Department of Energy

Shared Root FS Availability 

• Possible drawback to address w.r.t diskless.
– The absence of a disk swap area essentially 

means that the job memory demand must strictly 
fit into the RAM, otherwise the job could be 
abruptly terminated.

• Possible drawback to address w.r.t high 
availability.
– In general this is still a gray area.
– NFSv4 has a single point of failure for the entire 

system.
– MDS is a single point of failure for PVFS2 and 

Lustre.
• Storage servers can utilise data replication to provide 

high availability. 
LCI, March 10-12, 2009, Boulder, CO
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High Availability for Share-root 
Environment
• NFSv4, PVFS2, and Lustre do not have built-in 

high-availability support.
• Typical solution uses active/standby or 

active/active configuration.
– For example, SLURM and DRDB.
– Both methods require heartbeat monitor mechanism.

• MTTR depend on the heartbeat interval, may vary between a 
few seconds to several minutes.

• Our previous work on symmetric active/active 
replication could be a solution (see citations in 
paper).
– Basically, it uses multiple redundant service nodes 

running in virtual synchrony via a state-machine 
replication mechanism.
• It does not depend on fail-over to backup.

– Attained 26ms latency for PVFS MDS writes.
LCI, March 10-12, 2009, Boulder, CO
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Concluding Remarks

• Multiple options are available for attaching 
storage to diskless HPC.

• Our study showed that parallel file systems are 
viable option for serving a common root.

• NFS-based FS is sufficient for lightly I/O loads.
– May not be able to scale to the volume of data/clients 

on large HPC systems.
– NFS has a single point of failure and control.

• Parallel FS is efficient for heavier I/O loads.
– Offer highest performance and lowest overall cost for 

accesses to data storage.
• Illustrated that Lustre is a viable solution.

• Parallel FSs lack of efficient out-of-the-box 
solution for supporting high-availability.

LCI, March 10-12, 2009, Boulder, CO
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Future Works

• Detailed study of each parallel filesystem
w.r.t how the filesystems work internally and 
identify the best tunings on a larger scale 
system.
– Study the time dependence of the throughputs
– Study the filesystems scheduling and caching 

mechanisms.

• Perform measurements with an high-end 
storage system.

• Perform measurements with an high-speed 
network, e.g., InfiniBand.

LCI, March 10-12, 2009, Boulder, CO
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Questions?

LCI, March 10-12, 2009, Boulder, CO

Thank you
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