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* Privately managed for US DOE\

3

* $1.4 billion budget

* 4600+ employees total
* 3,000 research guests annually
* 30,000 visitors each year
 Total land area 58mi? (150km?)

* Nation’s largest energy laboratory
* Nation’s largest science facility:
* The $1.4 billion Spallation Neutron Source
* Nation’s largest concentration of open source
materials research
* Nation’s largest scientific computing facility



ORNL East Campus: Site of World Leading
nd:Computational Sciences..
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National Center for Computational Sciences

¢ 40,000 ft2 (3700 m2) computer center:
W 36-in (~1 m) raised floor, 18 ft (5.5 m) deck-to-deck
W36 MW of power with 6,600 t of redundant cooling
® High-ceiling area for visualization lab: 35 MPixel PowerWall
¢ 5 systems in the Top 500 List of Supercomputer Sites:
1. Jaguar XT5: Cray XT5, with 224,162 processor cores at 2,331 TFlop/s peak
3. Kraken: Cray XT5, with 98,928 processor cores at 1,028 TFlop/s peak
16. Jaguar XT4: Cray XT4, with 30,976 processor cores at 260 TFlop/s peak
30. Athena: Cray XT4, with 17,956 processor cores at 165 TFlop/s peak
370. Eugene: IBM BGP, with 8,192 processor cores at 28 TFlop/s peak




At Forefront in Scientific Computing
and Simulation

Leading partnership in developing the National

Leadership Computing Facility
_ILeadership-class scientific computing capability
ICurrently planning for 10-20 PFlop/s in 2012
1On the path toward:

1 100 PFlop/s in 2015 ( 10- 100 million cores)
11,000 PFlop/s in 2018 (100-1,000 million cores)

Attacking key computational challenges
_IClimate change
_INuclear astrophysics
_IFusion energy
IMaterials sciences
IBiology

Providing access to computational resources
through high-speed networking




Computer Science Research Groups

 Computer Science and Mathematics (CSM) Division.

— Applied research focused on computational sciences,
intelligent systems, and information technologies.

e CSM Research Groups:
— Climate Dynamics
- Complex Systems
— Computational Chemical Sciences
— Computational Materials Science
— Future Technologies
— Statistics and Data Science
- Computational Mathematics
— Computer Science Research (23 researchers & postdocs)
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Computer Science Research Group Projects

A
* Parallel Virtual Machine (PVM) M"
* MPI Specification, FT-MPI and Open MPI

* Common Component Architecture (CCA)

* Open Source Cluster Application Resources (OSCAR)
e Scalable cluster tools (C3)

* Scalable Systems Software (SSS)

* Fault-tolerant metacomputing (HARNESS)
* High availability and resilience (RAS, FAST-0S 1 & 2)

* Super-scalable algorithms research N

* Distributed file and storage systems (Freeloader)
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MSc Internship Basics

* 1-2 students (max. 4) for max. 6 months at Oak Ridge
National Laboratory in Oak Ridge, Tennessee, USA

* Full-time (40 hours/5 days per week) internship supervised
by a research staff member

* Individual leading-edge projects that include background
investigation, design, and development

* Includes MSc thesis and draft research paper write-up as
part of the final MSc project

* $1500 per month stipend plus travel costs depending on
student qualifications

* Subcontracts through the University of Tennessee,
Knoxville, USA
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MSc Internship Timeline (Spring)

Early Dec.: Application process
Specify area of interest/project
Submit resume/CV to Vassil

Dec./Jan.: Acceptance notification
Background Check/Subcontracts
J-1 (Student) Visa application

February: Visa issued through U.S. Embassy

1. March: Start of internship

31. August: End of internship

September: Presentation at the University of Reading
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MSc Internship Timeline (Fall)

Early June: Application process
Specify area of interest/project
Submit resume/CV to Vassil

Mid June: Acceptance notification
Background check/subcontracts
J-1 (Student) visa application

* August: Visa issued through U.S. Embassy

1. September: Start of internship
* 28. February: End of internship

* March: Presentation at the University of Reading
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Further Practical Information

* Driver license is a must: No public transport to work.

* $3500 (2500€) in initial min. funds needed for:
- First rent and various deposits

— One-week car rental (reimbursed afterwards)
* Under 257 Car rental & insurance is more expensive

- Used car, car sales tax, registration, and insurance

* Break-even point:
- 1 student after 4-5 months, 2 students after 2-3 months

— Most students leave with a net plus despite extra expenses
for: high-speed Internet, cable TV, and weekend trips
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Possible Projects (see next slides for details)

Proactive fault-tolerance
— Extending the scalable monitoring data aggregation system
- Integration with the existing fault tolerance framework

ADDAPT (successor of Harness Workbench)
— Development of an scientific application execution assistant

— Development of plug-ins for: job & resource management,
data staging tools and/or workflow engines

IAA simulator

- Adding enhancements to simulate time-accurate application
runs on millions of processors with fault tolerance tests

Soft Error Resilience

— Developing diskless checkpoint caching, diskless
checkpointng or modular redundancy prototypes

12/19



UT-BATTELLE

Proactive Fault Tolerance Using
Preemptive Migration

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY



Motivation

* Large-scale PFlop/s systems have arrived:
- #1: ORNL Jaguar with 224,162 processor cores
— #2: LANL Roadrunner with 129,600 processor cores

Other large-scale systems exist
- LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

The trend is toward larger-scale systems
- Up to 1,000,000,000 cores in the next 10 years

* Significant increase in component count and complexity

 Expected matching increase in failure frequency

Checkpoint/restart is becoming less and less efficient
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Reactive vs. Proactive Fault Tolerance

 Reactive fault tolerance

— Keeps parallel applications alive through recovery from
experienced failures

— Employed mechanisms react to failures
— Examples: Checkpoint/restart, message logging/replay

* Proactive fault tolerance

- Keeps parallel applications alive by avoiding failures through
preventative measures

- Employed mechanisms anticipate failures
— Example: Preemptive migration
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Proactive Fault Tolerance using Preemptive

Migration

* Relies on a feedback-loop control mechanism

— Application health is constantly monitored and analyzed

— Application is reallocated to improve its health and avoid failures
— Closed-loop control similar to dynamic load balancing

* Real-time control problem
- Need to act in time to avoid imminent failures

* No 100% coverage

— Not all failures can be anticipated, such as random bit flips

Application

Reallocation

Resource Manager/ | Application

Runtime Environment ] Allocation

Monitor/Filter/Analysis |~<g—~2Rrcation

Health
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Type 1 Feedback-Loop Control Architecture

* Alert-driven coverage
— Basic failures

* No evaluation of application

health history or context X Administrator
- Prone to false positives 55 3fg
- Prone to false negatives H5Ra il
- Prone to miss real-time Il L s o
window TR s
- Prone to decreas_e appllcatlon v = < 22cotion ProceesiS
heath through mlgratlon < Evict <Application Process 5
. 7o Monitor = £
- No correlation of health o e Sl
vic = pplication Process|<
context or history i Node Monitor | <" Health
: \/
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Type 2 Feedback-Loop Control Architecture

* Trend-driven coverage
— Basic failures
- Less false positives/negatives

-,.t Administrator

* No evaluation of application

reliability HE 3l
— Prone to miss real-time S v 5=
. = Application
W|ndow Evict Resource | Migrate Runtime Allocation >
Node(s) Manager |Process Environment

— Prone to decrease application E

heath through migration - o $

™ Nce)act:o rtreI:’: gn of ?leaatltc;\ oo L)~ s Lo <App"ciz;’zmssg

context or history T L L o e

- - - Q

<—5$: Filter 4_332:? Monitor ] <222 "c"’::';t':mcess A

Y
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* Reliability-driven coverage
— Basic and correlated failures
- Less false positives/negatives

— Able to maintain real-time
window

— Does not decrease application

heath through migration
— Correlation of short-term

health context and history

* No correlation of long-term

health context or history

— Unable to match system and
application reliability patterns

% Administrator

Notify of

Eviction ’

Add
Node(s)

Type 3 Feedback-Loop Control Architecture

Application
Reliability | Evict Resource | Migrate Runtime Allocation —
Analysis | Node(s) Manager |Process Environment
A s

g 3

o Trend Sensor Application Process| T

Q - .

T “ata _IIF'"e’ - T Health i3

g Trend Sensor Application Process ]

= <_| ; 0T ; K3

3|~ Data M Datz I Health 5

® Trend pm Sensor ; Application Process|<

O | ———— ————

¢ [~Data _IIF'"e' Data ] Health

3 \/

<
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Type 4 Feedback-Loop Control Architecture

* Reliability-driven coverage of
failures and anomalies

— Basic and correlated failures,
anomaly detection

- Less prone to false positives Datahase L Administrator

— Less prone to false negatives

— Able to maintain real-time Application
Reliability | Evict

. Resource | Migrate Runtime Allocation
Wl I"IdOW Analysis | Node(s) > Manager » Environment >

Read
Write

| Notify of
27

Eviction
Add
l Node(s)

Process
— Does not decrease application E‘ 5
heath through migration e e U R L e
- Correlation of short and long- (< ] 5o e+ 8
term health context & history ?;%Ejo—t Monitor <APP”°1j’e';';t’,j'°cessv“
g
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VM-level Preemptive Migration using Xen

* Type 1 system setup
— Xen VMM on entire system
- Host OS for management
- Guest OS for computation

— Spare nodes without Guest
OS

- System monitoring in Host OS

— Decentralized scheduler/load
balancer using Ganglia

* Deteriorating node health
— Ganglia threshold trigger
— Migrate guest OS to spare
— Utilize Xen’s migration facility

1 PFT
daemon
-

18

-
Ganglia )

Privileged VM|
1

Xen VMM

“ BMC

/  PFT
daemon [Se=0= ey

' (mP1 !

anglla) !:tas“i :
|

|

|

Privileged VM| Guest VM .
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VM-level Migration Performance Impact

e Single node migration
- 0.5-5% longer run time

* Double node migration
- 2-8% longer run time

* Migration duration
- Stop & copy : 13-14s
- Live : 14-24s
* Application downtime
- Stop & copy > Live

300
B Without Migration
250 ! One Migration
O Two Migration

i}

BT CG EP LU SP

Seconds
—
(4]
o

-
o
o

[4)]
o

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

2219



Process-Level Preemptive Migration w/ BLCR

* Type 1 system setup

- LAM/MPI with Berkeley Lab
Checkpoint/Restart (BLCR)

— Per-node health monitoring

 Baseboard management
controller (BMC)

* Intelligent platform
management interface (IPMl)

— New decentralized scheduler/
load balancer in LAM

- New process migration facility
in BLCR (stop&copy and live)

* Deteriorating node health
- Simple threshold trigger
— Migrate process to spare

(failure BMC/IPMI)
predicted
@stop & copy
connect
MPI
@restore in-flight data, @
resume normal operation *
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Process-Level Migration Performance Impact

e Single node migration overhead o~
- Stop & copy : 0.09-6 % 400 v e
- Live : 0.08-2.98% 350 S !
* Single node migration duration Uz:: | | M|
- Stop & copy : 1.0-1.9s A !
— Live : 2.6-6.5s 150 |
* Application downtime BT | ILEE e HLU | o
- Stop & copy > Live 16-node Linux cluster at NCSU with dual core,

dual-processor AMD Opteron and Gigabit Ethernet

Node eviction time
— Stop & copy < Live
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Evaluation of fault tolerance
policies

- Reactive only

- Proactive only

— Reactive/proactive combination

Evaluation of fault tolerance
parameters

— Checkpoint interval
- Prediction accuracy

Event-based simulation framework
using actual HPC system logs

Customizable simulated
environment

- Number of active and spare
nodes

— Checkpoint and migration
overheads

Simulation of Fault Tolerance Policies

@ e Select FT

- y |.

Global Schema

App Schema

/\/\

S|mulator

Application
Overhead
Results

Node Schema

FT Policies

Fallure Logs
Evew\Events

Completlon Repair Failure

Event

Appllcatlo Node
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Combining Proactive & Reactive Approaches

* Best: Prediction accuracy >60%
and checkpoint interval 16-32h

* Better than only proactive or only

Execution overhead for various checkpoint

reaCtive intervals and different prediction accuracy
* Results for higher accuracies
and very low intervals are worse 090100
than only proactive or only i
. £ 0 70-
reactive > | me0-70
§ | m50-60
3 m 40-50
Number of processes | 125 5 | o3040
Active/Spare nodes 125/12 o :f:::
Checkpoint overhead | 50min wo-10

Mlg ration overhead 1 min % Prediction accuracy Checkpoint interval (h)

Simulation based on ASCI White system logs
(nodes 1-125 and 500-512)
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Research in Reliability Modeling

-~ -

Extract RAS Information |’ J/ MonitorIReportJ
J

* Type 3 system setup

— Monitoring of application and
system health

System J Application |

- Recording of application and — Thiwls 1L _
system health monitoring data e J
— Reliability analysis on |
recorded data 2 v
- Application mean-time to AT J

interrupt (AMTTI) estimation

200 1 1 1 T I\ T

139 100,000 hrs 1

> Type 4 system setup 160 - \‘\ AMTTI of Single Node |
- - _140} N -

- Additional recording of By N\ l
application interrupts E1gg:\0,000hrs \ ]

- Reliability analysis on recent < er N \ .
and historical data o T~ \ ]

20F 1,000 hrs  R—e—a N T

0 00—t 0L L L L L P LAl oL,

QS O O OO O OO Nt o A N o
R PR SO N PN O PR
System Scale (Number of Nodes)
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Proactive Fault Tolerance Framework

* Unified interfaces between
components

 Extendable RAS engine
core interfacing with
— Monitoring data

aggregation/filtering
component

Data
Analysis

Read
Write

Application
LAM/MPI | Allocation
P

RAS

- Job and resource Database with BLCR
= Job/Resour :

management service e Torque FEpplic <

S

- Process/VM migration Sensor/Log . Application Process |2

8 ¢ AT Ganglia/Syslog-NG |- e s

mechanism 5 : N g T

. ~ o

Onllne_IOffIIne rellablllty \é < Sensor/Log Ganelia/Svsloa-NG <Application Process |
mOdel | ng g Data SERENS Health

- \J

* Previous Reading MSc
student (A. Litvinova)
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Ongoing and Future Work

* Research in scalable monitoring data aggregation/filtering
— Scalable, fault tolerant overlay reduction networks
- In-flight monitoring data aggregation
— Current MSc student (Swen Boehm)

* Research in scalable monitoring data filtering
— Extend the current prototype with in-flight data filtering
— Enhance filters with statistical analysis techniques

* Research in scalable syslog data aggregation/filtering
— Extend the current prototype with log message aggregation

Integrate scalable monitoring prototype with proactive
fault tolerance framework
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Challenges Ahead

Health monitoring
- ldentifying deteriorating applications and OS conditions
— Coverage of application failures: Bugs, resource exhaustion

Reliability analysis
- Performability analysis to provide extended coverage

Scalable data aggregation and processing
- Key to timeliness in the feedback control loop

Need for standardized metrics and interfaces

- System MTTF/MTTR != Application MTTF/MTTR

— System availability I= Application efficiency

— Monitoring and logging is system/vendor dependent
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Research and Development Goals

* Increasing the overall
productivity of developing < 6 Store resuts

and exeCUti ng l I 1. Download | 3. Stage data | - l I

computational codes o
storage

wch L
ﬂ
application scientists, using

=jl=ql=5l=o]
1113
uniform and adaptive .. ]

solutions oo

Shared repository

* Optimizing the development
and deployment processes
of scientific applications

<. 2. Compile

* Simplifying the activities of -

4. Schedule |/

* “Automagically” supporting
the diversity of existing and
emerging high—performance
computing architectures

Typical scientific application development,
deployment, and execution activities

r Office of OAK EMORY

4 Science RIDGE UNIVERSITY

U.S. DEPARTMENT OF ENERGY nal Laboratory
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ADDAPT Architecture

Source code
repository

Application Development Deployment And Post-processing Toolkit
Developer

(]
S Development i Run-time
ig’ adaptation
S
S
X<
Admi §-
min
® °
/ \ Jaguar XT Kraken XT5 BlueGene
Vendor <> A set of relevant modules j Knowledge profile
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ADDAPT Components

* Porting assistant
— to help port new libraries and kernels into legacy codes,
- to identify incompatibilities with the system software stack,
- do automatic source-to-source translation, and
— identify areas to improve performance or fault tolerance.

e Build assistant

— to adapt the application’s build script to the site-specific
versions of compilers, libraries, and flags, and

— to help resolve problems at the link stage.

e Execution assistant

— to assist in data staging, fast application launch, runtime
support, and post-execution data off loading.
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Ongoing and Future Work:
ADDAPT Execution Assistant Component

e Combine knowledge from
application and site profiles

— Match application NI
properties with system

needs using ontologies and O cemny = |
reasoning

* Assist the scientist in i
running his/her application
- Adapt system configuration 533;'.2 ' ;:3;'.2 ) g .
to application needs —

 Automate data staging and [

~

ADDAPT Execution Modules

ata Transfer
File Sytm

pre-/post-processing
activities

— Interface with respective
tools through plug-ins 3619
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Objectives

* Simulation of system architectures at scale

* To investigate scalability, performance, and fault
tolerance of algorithms at extreme scale

* ORNL’s earlier work was already able to run up to
1,000,000 simulated processes (JCAS)
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Java Cellular Architecture Simulator (JCAS)

* Developed at ORNL in Java
* Native C and Fortran application support using JNI
* Runs as standalone or distributed application

* Lightweight framework simulates up to 1,000,000
lightweight virtual processes on 9 real processors

* Standard and experimental network interconnects:

— Multi-dimensional mesh/torus
- Nearest/Random neighbors

* Message driven simulation without notion of time
— Not in real-time, no time-accurate discrete event simulation
* Primitive fault-tolerant MPI support
— No collectives, no MPI 2 30/19



Technical Approach

 Distributed set of discrete
event simulators with node-
local message queues

e Simulation of virtual MPI
processes for parallel app.

VA RVARVARVERVE RVARVARY
PIP|P|P|P|P|P|P

* Virtual processes run on
real hardware with virtual

MPI
D
* No virtual process time
* Fault injection capability
* Interactive graphical user
interface as front-end ﬂ ﬂ ﬂ ﬂ
e TCP servers as back-ends
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Implementation

* Every cell has own code, memory and neighbors list
* Server hosts cells and initiates the context switch

* Cells communicate asynchronously using messages

R R R R R R R R R R R Ry

Receiver Thread Queue Server Thread

Receive ‘ Send Deliver
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executing an algorithm
that communicates only
to neighbor tasks in an
asynchronous fashion

Each dot is a task

Laplace's Equation

ORNL JCAS




. System

Laplace (Java) Help

E [0] = 6.825452711681345

[1] = 75.41187958604311

Delete Cell

Graphical User Interface allows to:
* Configure:
* Network topology
* Number of tasks
*Retrieve:
» Task-specific information
*Delete:
* Individual tasks
« All tasks within an entire region
* A percentage of tasks within a region
« Add:
* Individual tasks
* A percentage of tasks within a region
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IAA Simulation Efforts at ORNL

* Investigate scalability, performance and fault tolerance of
algorithms at extreme scale through simulation

* Extending the JCAS simulation capabilities
— Simulating more processes (~10,000,000)
— Running more complex and resource-hungry algorithms
— Support for unmodified MPI applications

* Evaluation of algorithms at extreme scale
- Notion of global virtual time and virtual process clocks

— Accounting for resource usage, such as processor and
network

— Gathering of scalability, performance & fault tolerance
metrics

— Parameter studies at scale
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Technical Approach

e Parallel discrete event
simulation (PDES) atop MPI

e Simulation of virtual MPI
processes for parallel app.

* Virtual processes run on
real hardware with virtual
MPI

e Consistent virtual process
clock from PDES

* Virtual process clock can
be scaled by PDES via
model

* Virtual interconnect latency
is set by PDES via model

Virtual MPI

VA RVARVARVERVE RV RVARY
PIP|P|P|P|P|[P|P
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Ongoing and Future Work

Ported JCAS to C/C++ to improve scalability/performance

Replaced TCP/IP with (native) MPl communication

Replaced distributed set of DESs with PDES

— Conservative synchronization only, need optimistic and time-
warp synchronization

Extend virtual MPI capabilities
— Asynchronous, collectives, process control (spawn), ...

Extend fault injection and notification mechanisms
- Injection based on failure distributions and application state

Add simulated machine model (for network)

Gather scalability, performance & fault tolerance metrics
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Motivation

* Next-generation HPC systems will have
— More frequent failures in general
— More frequent soft errors in particular
— Less efficient parallel file system checkpoint/restart

* Existing fault tolerance approaches an ongoing research
efforts do not cover soft error resilience

— ECC double-bit errors require node/process restart
— Silent data corruption remains undetected

* Lack of soft error resilience strategy is preventing
deployment of GPUs and FPGAs at scale
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Technical approach

« Compute-node in-memory checkpoint caching
— Short-term solution

- Improving parallel file system checkpoint/restart

 Compute-node in-memory checkpoint/restart
— Near-term solution

- Replacing parallel file system checkpoint/restart

* Dual-modular redundancy (DMR)
- Long-term solution

- Replacing rollback recovery schemes in HPC
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Comparison of traditional and proposed

technologies (1/2)

Traditional
Checkpoint/
Restart

Frequent
Checkpointing

In-Memory
Checkpoint
Caching
++

PAN
4 A

( Application )

Frequent
Checkpointing

C Cache )

Frequent
Checkpointing

In-Memory
Checkpoint/
Restart
+++

+

A
A N

( Application )

Frequent
Checkpointing

( Storage )
Storage

Infrequent
Checkpointing

Dual-
Modular
Redundancy
PR < Resilience
g < Efficiency
s A 3
Application Y
%Alpf’glication% } Application
In-Memory
} Storage
Infrequent
Checkpointing
Parallel
} File System

Storage
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Comparison of traditional and proposed
technologies (2/2)

Solution Processor Memory Price| Power
Current: Lustre 1XxAMD Opteron 2356 $500|  T5W
checkpoint/restart 2x4GB Micron DDR2-800 | +$750| +2W

=$1250| =7TW
Short-term: Compute- | 1XAMD Opteron 2356 $500|  75W
node in-memory 4x4GB Micron DDR2-800 | +$1500| +4W
checkpoint caching = $2000| =79W
Near-term: Compute- | IXAMD Opteron 2356 $500|  T5W
node in-memory 2x4GB Micron DDR2-800 +$750| +2W
checkpoint/restart with 4x4GB Kingston DDR2-800| +$600| +4W
possibly new boards > $1700| > 81W
Long-term: DMR with | 2xAMD Opteron 2356 $1000| 150W
possibly new boards 4x4GB Kingston DDR2-800| +$600| +4W
and/or more racks > $1600| > 154W
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Ongoing and Future Work

Develop compute-node in-memory checkpoint caching

— User-space (FUSE) front-end for storage virtualization

- User-space (FUSE) backend for seamless integration

— Asynchronous draining of cache to parallel file system
Develop compute-node in-memory checkpoint/restart

— Checkpoint data replication for fault tolerance

- Integration with application- and system-level C/R solutions
* Develop dual-modular redundancy

— Desigh modular redundancy models and algorithms

- Implement static modular computation redundancy prototype
— Experiment with 1/0 & file system access under redundancy

- Implement dynamicmodular computation redundancy
prototype

e Create trade-off models
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Questions?




