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• Nation’s largest energy laboratory 
• Nation’s largest science facility: 

•  The $1.4 billion Spallation Neutron Source 
• Nation’s largest concentration of open source 

materials research 
• Nation’s largest scientific computing facility 

•  Privately managed for US DOE 
•  $1.4 billion budget 
•  4600+ employees total 
•  3,000 research guests annually 
•  30,000 visitors each year 
•  Total land area 58mi2 (150km2) 
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  40,000 ft2 (3700 m2) computer center: 
 36-in (~1 m) raised floor, 18 ft (5.5 m) deck-to-deck 
 36 MW of power with 6,600 t of redundant cooling 
 High-ceiling area for visualization lab: 35 MPixel PowerWall 

  5 systems in the Top 500 List of Supercomputer Sites: 
     1. Jaguar XT5:  Cray XT5, with 224,162 processor cores at 2,331 TFlop/s peak 
     3. Kraken:  Cray XT5, with   98,928 processor cores at 1,028 TFlop/s peak 
   16. Jaguar XT4:  Cray XT4, with   30,976 processor cores at    260 TFlop/s peak 
   30. Athena:  Cray XT4, with   17,956 processor cores at    165 TFlop/s peak 
 370. Eugene:  IBM BGP, with     8,192 processor cores at      28 TFlop/s peak 



Advanced Fault Tolerance Solutions for High Performance Computing 

 Leading partnership in developing the National 
Leadership Computing Facility 
 Leadership-class scientific computing capability 
 Currently planning for 10-20 PFlop/s in 2012 
 On the path toward: 

    100 PFlop/s in 2015 (  10-   100 million cores) 
 1,000 PFlop/s in 2018 (100-1,000 million cores) 

 Attacking key computational challenges 
 Climate change 
 Nuclear astrophysics 
 Fusion energy 
 Materials sciences 
 Biology 

 Providing access to computational resources 
through high-speed networking 



Computer Science Research Groups 

•  Computer Science and Mathematics (CSM) Division. 
- Applied research focused on computational sciences, 

intelligent systems, and information technologies. 

•  CSM Research Groups: 
- Climate Dynamics 
- Complex Systems 
- Computational Chemical Sciences 
- Computational Materials Science 
- Future Technologies 
- Statistics and Data Science 
- Computational Mathematics 
- Computer Science Research (23 researchers & postdocs) 
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Computer Science Research Group Projects 

•  Parallel Virtual Machine (PVM) 

•  MPI Specification, FT-MPI and Open MPI 

•  Common Component Architecture (CCA) 

•  Open Source Cluster Application Resources (OSCAR) 

•  Scalable cluster tools (C3) 

•  Scalable Systems Software (SSS) 

•  Fault-tolerant metacomputing (HARNESS) 

•  High availability and resilience (RAS, FAST-OS 1 & 2) 

•  Super-scalable algorithms research 

•  Distributed file and storage systems (Freeloader) 7/19 



MSc Internship Basics 

•  1-2 students (max. 4) for max. 6 months at Oak Ridge 
National Laboratory in Oak Ridge, Tennessee, USA 

•  Full-time (40 hours/5 days per week) internship supervised 
by a research staff member 

•  Individual leading-edge projects that include background 
investigation, design, and development 

•  Includes MSc thesis and draft research paper write-up as 
part of the final MSc project 

•  $1500 per month stipend plus travel costs depending on 
student qualifications 

•  Subcontracts through the University of Tennessee, 
Knoxville, USA 
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MSc Internship Timeline (Spring) 

•  Early Dec.:  Application process 
 Specify area of interest/project 
 Submit resume/CV to Vassil 

•  Dec./Jan.:  Acceptance notification 
 Background Check/Subcontracts 
 J-1 (Student) Visa application 

•  February:  Visa issued through U.S. Embassy 

•  1. March:  Start of internship 

•  31. August: End of internship 

•  September: Presentation at the University of Reading 
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MSc Internship Timeline (Fall) 

•  Early June:  Application process 
 Specify area of interest/project 
 Submit resume/CV to Vassil 

•  Mid June:  Acceptance notification 
 Background check/subcontracts 
 J-1 (Student) visa application 

•  August:  Visa issued through U.S. Embassy 

•  1. September: Start of internship 

•  28. February:  End of internship 

•  March:  Presentation at the University of Reading 
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Further Practical Information 

•  Driver license is a must: No public transport to work. 

•  $3500 (2500€) in initial min. funds needed for: 
- First rent and various deposits 
- One-week car rental (reimbursed afterwards) 

•  Under 25? Car rental & insurance is more expensive 
- Used car, car sales tax, registration, and insurance 

•  Break-even point: 
- 1 student after 4-5 months, 2 students after 2-3 months 
- Most students leave with a net plus despite extra expenses 

for: high-speed Internet, cable TV, and weekend trips 
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Possible Projects (see next slides for details) 

•  Proactive fault-tolerance 
- Extending the scalable monitoring data aggregation system 
-  Integration with the existing fault tolerance framework 

•  ADDAPT (successor of Harness Workbench) 
- Development of an scientific application execution assistant 
- Development of plug-ins for: job & resource management, 

data staging tools and/or workflow engines 

•  IAA simulator 
- Adding enhancements to simulate time-accurate application 

runs on millions of processors with fault tolerance tests 

•  Soft Error Resilience 
- Developing diskless checkpoint caching, diskless 

checkpointng or modular redundancy prototypes 
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Motivation 

•  Large-scale PFlop/s systems have arrived: 
- #1: ORNL Jaguar with 224,162 processor cores 
- #2: LANL Roadrunner with 129,600 processor cores 

•  Other large-scale systems exist 
- LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976 

•  The trend is toward larger-scale systems 
- Up to 1,000,000,000 cores in the next 10 years 

•  Significant increase in component count and complexity 

•  Expected matching increase in failure frequency 

•  Checkpoint/restart is becoming less and less efficient 
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Reactive vs. Proactive Fault Tolerance 

•  Reactive fault tolerance 
- Keeps parallel applications alive through recovery from 

experienced failures 
- Employed mechanisms react to failures 
- Examples: Checkpoint/restart, message logging/replay 

•  Proactive fault tolerance 
- Keeps parallel applications alive by avoiding failures through 

preventative measures 
- Employed mechanisms anticipate failures 
- Example: Preemptive migration 
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Proactive Fault Tolerance using Preemptive 
Migration 

•  Relies on a feedback-loop control mechanism 
-  Application health is constantly monitored and analyzed 
-  Application is reallocated to improve its health and avoid failures 
-  Closed-loop control similar to dynamic load balancing 

•  Real-time control problem 
-  Need to act in time to avoid imminent failures 

•  No 100% coverage 
-  Not all failures can be anticipated, such as random bit flips 
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Type 1 Feedback-Loop Control Architecture 

•  Alert-driven coverage 
-  Basic failures 

•  No evaluation of application 
health history or context 
-  Prone to false positives 
-  Prone to false negatives 
-  Prone to miss real-time 

window 
-  Prone to decrease application 

heath through migration 
-  No correlation of health 

context or history 
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Type 2 Feedback-Loop Control Architecture 

•  Trend-driven coverage 
-  Basic failures 
-  Less false positives/negatives 

•  No evaluation of application 
reliability 
-  Prone to miss real-time 

window 
-  Prone to decrease application 

heath through migration 
-  No correlation of health 

context or history 
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Type 3 Feedback-Loop Control Architecture 

•  Reliability-driven coverage 
-  Basic and correlated failures 
-  Less false positives/negatives 
-  Able to maintain real-time 

window 
-  Does not decrease application 

heath through migration 
-  Correlation of short-term 

health context and history 

•  No correlation of long-term 
health context or history 
-  Unable to match system and 

application reliability patterns 
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Type 4 Feedback-Loop Control Architecture 

•  Reliability-driven coverage of 
failures and anomalies 
-  Basic and correlated failures, 

anomaly detection 
-  Less prone to false positives 
-  Less prone to false negatives 
-  Able to maintain real-time 

window 
-  Does not decrease application 

heath through migration 
-  Correlation of short and long-

term health context & history 
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VM-level Preemptive Migration using Xen 

•  Type 1 system setup 
-  Xen VMM on entire system 
-  Host OS for management 
- Guest OS for computation 
-  Spare nodes without Guest 

OS 
-  System monitoring in Host OS 
-  Decentralized scheduler/load 

balancer using Ganglia 

•  Deteriorating node health 
- Ganglia threshold trigger 
- Migrate guest OS to spare 
-  Utilize Xen’s migration facility 
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VM-level Migration Performance Impact 

•  Single node migration 
-  0.5-5% longer run time 

•  Double node migration 
-  2-8%  longer run time 

•  Migration duration 
-  Stop & copy : 13-14s 
-  Live  : 14-24s 

•  Application downtime 
-  Stop & copy > Live 

16-node Linux cluster at NCSU with dual core, 
dual-processor AMD Opteron and Gigabit Ethernet 
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Process-Level Preemptive Migration w/ BLCR 

•  Type 1 system setup 
-  LAM/MPI with Berkeley Lab 

Checkpoint/Restart (BLCR) 
-  Per-node health monitoring 

•  Baseboard management 
controller (BMC) 

•  Intelligent platform 
management interface (IPMI) 

-  New decentralized scheduler/ 
load balancer in LAM 
-  New process migration facility 

in BLCR (stop&copy and live) 

•  Deteriorating node health 
-  Simple threshold trigger 
- Migrate process to spare 
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Process-Level Migration Performance Impact 

•  Single node migration overhead 
-  Stop & copy : 0.09-6 % 
-  Live  : 0.08-2.98% 

•  Single node migration duration 
-  Stop & copy : 1.0-1.9s 
-  Live  : 2.6-6.5s 

•  Application downtime 
-  Stop & copy > Live 

•  Node eviction time 
-  Stop & copy < Live 

16-node Linux cluster at NCSU with dual core, 
dual-processor AMD Opteron and Gigabit Ethernet 



Simulation of Fault Tolerance Policies 

•  Evaluation of fault tolerance 
policies 
-  Reactive only 
-  Proactive only 
-  Reactive/proactive combination 

•  Evaluation of fault tolerance 
parameters 
-  Checkpoint interval 
-  Prediction accuracy 

•  Event-based simulation framework 
using actual HPC system logs 

•  Customizable simulated 
environment 
-  Number of active and spare 

nodes 
-  Checkpoint and migration 

overheads 
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Combining Proactive & Reactive Approaches 

•  Best: Prediction accuracy >60% 
and checkpoint interval 16-32h 

•  Better than only proactive or only 
reactive 

•  Results for higher accuracies 
and very low intervals are worse 
than only proactive or only 
reactive 

Number of processes 125 

Active/Spare nodes 125/12 

Checkpoint overhead  50min 

Migration overhead 1 min 

Simulation based on ASCI White system logs 
(nodes 1-125 and 500-512) 
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Research in Reliability Modeling 

•  Type 3 system setup 
- Monitoring of application and 

system health 
-  Recording of application and 

system health monitoring data 
-  Reliability analysis on 

recorded data 
-  Application mean-time to 

interrupt (AMTTI) estimation 

•  Type 4 system setup 
-  Additional recording of 

application interrupts 
-  Reliability analysis on recent 

and historical data 



Proactive Fault Tolerance Framework 

•  Unified interfaces between 
components 

•  Extendable RAS engine 
core interfacing with 
- Monitoring data 

aggregation/filtering 
component 
- Job and resource 

management service 
- Process/VM migration 

mechanism 
- Online/offline reliability 

modeling 
•  Previous Reading MSc 

student (A. Litvinova) 
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Ongoing and Future Work 

•  Research in scalable monitoring data aggregation/filtering 
- Scalable, fault tolerant overlay reduction networks 
-  In-flight monitoring data aggregation 
- Current MSc student (Swen Boehm) 

•  Research in scalable monitoring data filtering 
- Extend the current prototype with in-flight data filtering 
- Enhance filters with statistical analysis techniques  

•  Research in scalable syslog data aggregation/filtering 
- Extend the current prototype with log message aggregation 

•  Integrate scalable monitoring prototype with proactive 
fault tolerance framework 

29/19 



Challenges Ahead 

•  Health monitoring 
-  Identifying deteriorating applications and OS conditions 
- Coverage of application failures: Bugs, resource exhaustion 

•  Reliability analysis 
- Performability analysis to provide extended coverage 

•  Scalable data aggregation and processing 
- Key to timeliness in the feedback control loop 

•  Need for standardized metrics and interfaces 
- System MTTF/MTTR  != Application MTTF/MTTR 
- System availability  != Application efficiency 
- Monitoring and logging is system/vendor dependent 
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Research and Development Goals 

Typical scientific application development, 
deployment, and execution activities 

•  Increasing the overall 
productivity of developing 
and executing 
computational codes 

•  Optimizing the development 
and deployment processes 
of scientific applications 

•  Simplifying the activities of 
application scientists, using 
uniform and adaptive 
solutions 

•  “Automagically” supporting 
the diversity of existing and 
emerging high–performance 
computing architectures 
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ADDAPT Architecture 



ADDAPT Components 

•  Porting assistant 
-  to help port new libraries and kernels into legacy codes, 
-  to identify incompatibilities with the system software stack, 
-  do automatic source-to-source translation, and 
-  identify areas to improve performance or fault tolerance.  

•  Build assistant 
-  to adapt the application’s build script to the site-specific 

versions of compilers, libraries, and flags, and 
-  to help resolve problems at the link stage. 

•  Execution assistant 
-  to assist in data staging, fast application launch, runtime 

support, and post-execution data off loading. 
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Ongoing and Future Work: 
ADDAPT Execution Assistant Component 

•  Combine knowledge from 
application and site profiles 
- Match application 

properties with system 
needs using ontologies and 
reasoning 

•  Assist the scientist in 
running his/her application 
- Adapt system configuration 

to application needs 
•  Automate data staging and 

pre-/post-processing 
activities 
-  Interface with respective 

tools through plug-ins 36/19 
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Objectives 

•  Simulation of system architectures at scale 

•  To investigate scalability, performance, and fault 
tolerance of algorithms at extreme scale 

•  ORNL’s earlier work was already able to run up to 
1,000,000 simulated processes (JCAS) 
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Java Cellular Architecture Simulator (JCAS) 

•  Developed at ORNL in Java 
•  Native C and Fortran application support using JNI 
•  Runs as standalone or distributed application 
•  Lightweight framework simulates up to 1,000,000 

lightweight virtual processes on 9 real processors 
•  Standard and experimental network interconnects: 
- Multi-dimensional mesh/torus 
- Nearest/Random neighbors 

•  Message driven simulation without notion of time 
- Not in real-time, no time-accurate discrete event simulation 

•  Primitive fault-tolerant MPI support 
- No collectives, no MPI 2 39/19 



Technical Approach 

•  Distributed set of discrete 
event simulators with node-
local message queues 

•  Simulation of virtual MPI 
processes for parallel app. 

•  Virtual processes run on 
real hardware with virtual 
MPI 

•  No virtual process time 
•  Fault injection capability 
•  Interactive graphical user 

interface as front-end 
•  TCP servers as back-ends 

Application 

Virtual MPI 
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Implementation 

•  Every cell has own code, memory and neighbors list 

•  Server hosts cells and initiates the context switch 

•  Cells communicate asynchronously using messages 

Cell Cell 

Queue Server Thread Receiver Thread 

Cell 

Sender 

Deliver 

Send 

Send 

TCI/IP Network 

Receive 
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Each dot is a task 
executing an algorithm 
that communicates only 
to neighbor tasks in an 
asynchronous fashion 



Graphical User Interface allows to: 
• Configure: 

• Network topology 
• Number of tasks 

• Retrieve: 
• Task-specific information 

• Delete: 
• Individual tasks 
• All tasks within an entire region 
• A percentage of tasks within a region 

• Add: 
• Individual tasks 
• A percentage of tasks within a region 



IAA Simulation Efforts at ORNL 

•  Investigate scalability, performance and fault tolerance of 
algorithms at extreme scale through simulation 

•  Extending the JCAS simulation capabilities 
- Simulating more processes (~10,000,000) 
- Running more complex and resource-hungry algorithms 
- Support for unmodified MPI applications 

•  Evaluation of algorithms at extreme scale 
- Notion of global virtual time and virtual process clocks 
- Accounting for resource usage, such as processor and 

network 
- Gathering of scalability, performance & fault tolerance 

metrics 
- Parameter studies at scale 
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Technical Approach 

•  Parallel discrete event 
simulation (PDES) atop MPI 

•  Simulation of virtual MPI 
processes for parallel app. 

•  Virtual processes run on 
real hardware with virtual 
MPI 

•  Consistent virtual process 
clock from PDES 

•  Virtual process clock can 
be scaled by PDES via 
model 

•  Virtual interconnect latency 
is set by PDES via model 

Application 
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Ongoing and Future Work 

•  Ported JCAS to C/C++ to improve scalability/performance 

•  Replaced TCP/IP with (native) MPI communication 

•  Replaced distributed set of DESs with PDES 
- Conservative synchronization only, need optimistic and time-

warp synchronization 

•  Extend virtual MPI capabilities 
- Asynchronous, collectives, process control (spawn), … 

•  Extend fault injection and notification mechanisms 
-  Injection based on failure distributions and application state  

•  Add simulated machine model (for network) 

•  Gather scalability, performance & fault tolerance metrics 

•  * easy (days/weeks), difficult (weeks), challenge (months) 
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Motivation 

•  Next-generation HPC systems will have 
- More frequent failures in general 
- More frequent soft errors in particular 
- Less efficient parallel file system checkpoint/restart 

•  Existing fault tolerance approaches an ongoing research 
efforts do not cover soft error resilience 
- ECC double-bit errors require node/process restart 
- Silent data corruption remains undetected 

•  Lack of soft error resilience strategy is preventing 
deployment of GPUs and FPGAs at scale 
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Technical approach 

•  Compute-node in-memory checkpoint caching 
- Short-term solution 
-  Improving parallel file system checkpoint/restart 

•  Compute-node in-memory checkpoint/restart 
- Near-term solution 
- Replacing parallel file system checkpoint/restart 

•  Dual-modular redundancy (DMR) 
- Long-term solution 
- Replacing rollback recovery schemes in HPC 
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Comparison of traditional and proposed 
technologies (1/2) 
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Comparison of traditional and proposed 
technologies (2/2) 
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Ongoing and Future Work 

•  Develop compute-node in-memory checkpoint caching 
- User-space (FUSE) front-end for storage virtualization 
- User-space (FUSE) backend for seamless integration 
- Asynchronous draining of cache to parallel file system 

•  Develop compute-node in-memory checkpoint/restart 
- Checkpoint data replication for fault tolerance 
-  Integration with application- and system-level C/R solutions 

•  Develop dual-modular redundancy 
- Design modular redundancy models and algorithms 
-  Implement static modular computation redundancy prototype 
- Experiment with I/O & file system access under redundancy 
-  Implement dynamicmodular computation redundancy 

prototype 
•  Create trade-off models 
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Questions? 


