
Dr. Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

High-Performance Computing
Research Internship and Appointment
Opportunities at Oak Ridge National
Laboratory

• Nation’s largest energy laboratory
• Nation’s largest science facility:

•  The $1.4 billion Spallation Neutron Source
• Nation’s largest concentration of open source

materials research
• Nation’s largest scientific computing facility

•  Privately managed for US DOE
•  $1.4 billion budget
•  4600+ employees total
•  3,000 research guests annually
•  30,000 visitors each year
•  Total land area 58mi2 (150km2)

4/47

  40,000 ft2 (3700 m2) computer center:
 36-in (~1 m) raised floor, 18 ft (5.5 m) deck-to-deck
 36 MW of power with 6,600 t of redundant cooling
 High-ceiling area for visualization lab: 35 MPixel PowerWall

  5 systems in the Top 500 List of Supercomputer Sites:
  1. Jaguar XT5: Cray XT5, with 224,162 processor cores at 2,331 TFlop/s peak
  3. Kraken: Cray XT5, with 98,928 processor cores at 1,028 TFlop/s peak
  16. Jaguar XT4: Cray XT4, with 30,976 processor cores at 260 TFlop/s peak
  30. Athena: Cray XT4, with 17,956 processor cores at 165 TFlop/s peak
 370. Eugene: IBM BGP, with 8,192 processor cores at 28 TFlop/s peak

Advanced Fault Tolerance Solutions for High Performance Computing

 Leading partnership in developing the National
Leadership Computing Facility
 Leadership-class scientific computing capability
 Currently planning for 10-20 PFlop/s in 2012
 On the path toward:

  100 PFlop/s in 2015 (10- 100 million cores)
 1,000 PFlop/s in 2018 (100-1,000 million cores)

 Attacking key computational challenges
 Climate change
 Nuclear astrophysics
 Fusion energy
 Materials sciences
 Biology

 Providing access to computational resources
through high-speed networking

Computer Science Research Groups

•  Computer Science and Mathematics (CSM) Division.
- Applied research focused on computational sciences,

intelligent systems, and information technologies.

•  CSM Research Groups:
- Climate Dynamics
- Complex Systems
- Computational Chemical Sciences
- Computational Materials Science
- Future Technologies
- Statistics and Data Science
- Computational Mathematics
- Computer Science Research (23 researchers & postdocs)

6/19

Computer Science Research Group Projects

•  Parallel Virtual Machine (PVM)

•  MPI Specification, FT-MPI and Open MPI

•  Common Component Architecture (CCA)

•  Open Source Cluster Application Resources (OSCAR)

•  Scalable cluster tools (C3)

•  Scalable Systems Software (SSS)

•  Fault-tolerant metacomputing (HARNESS)

•  High availability and resilience (RAS, FAST-OS 1 & 2)

•  Super-scalable algorithms research

•  Distributed file and storage systems (Freeloader) 7/19

MSc Internship Basics

•  1-2 students (max. 4) for max. 6 months at Oak Ridge
National Laboratory in Oak Ridge, Tennessee, USA

•  Full-time (40 hours/5 days per week) internship supervised
by a research staff member

•  Individual leading-edge projects that include background
investigation, design, and development

•  Includes MSc thesis and draft research paper write-up as
part of the final MSc project

•  $1500 per month stipend plus travel costs depending on
student qualifications

•  Subcontracts through the University of Tennessee,
Knoxville, USA

8/19

MSc Internship Timeline (Spring)

•  Early Dec.: Application process
 Specify area of interest/project
 Submit resume/CV to Vassil

•  Dec./Jan.: Acceptance notification
 Background Check/Subcontracts
 J-1 (Student) Visa application

•  February: Visa issued through U.S. Embassy

•  1. March: Start of internship

•  31. August: End of internship

•  September: Presentation at the University of Reading

9/19

MSc Internship Timeline (Fall)

•  Early June: Application process
 Specify area of interest/project
 Submit resume/CV to Vassil

•  Mid June: Acceptance notification
 Background check/subcontracts
 J-1 (Student) visa application

•  August: Visa issued through U.S. Embassy

•  1. September: Start of internship

•  28. February: End of internship

•  March: Presentation at the University of Reading

10/19

Further Practical Information

•  Driver license is a must: No public transport to work.

•  $3500 (2500€) in initial min. funds needed for:
- First rent and various deposits
- One-week car rental (reimbursed afterwards)

•  Under 25? Car rental & insurance is more expensive
- Used car, car sales tax, registration, and insurance

•  Break-even point:
- 1 student after 4-5 months, 2 students after 2-3 months
- Most students leave with a net plus despite extra expenses

for: high-speed Internet, cable TV, and weekend trips

11/19

Possible Projects (see next slides for details)

•  Proactive fault-tolerance
- Extending the scalable monitoring data aggregation system
-  Integration with the existing fault tolerance framework

•  ADDAPT (successor of Harness Workbench)
- Development of an scientific application execution assistant
- Development of plug-ins for: job & resource management,

data staging tools and/or workflow engines

•  IAA simulator
- Adding enhancements to simulate time-accurate application

runs on millions of processors with fault tolerance tests

•  Soft Error Resilience
- Developing diskless checkpoint caching, diskless

checkpointng or modular redundancy prototypes
12/19

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Proactive Fault Tolerance Using
Preemptive Migration

Motivation

•  Large-scale PFlop/s systems have arrived:
- #1: ORNL Jaguar with 224,162 processor cores
- #2: LANL Roadrunner with 129,600 processor cores

•  Other large-scale systems exist
- LLNL @ 212,992, ANL @ 163,840, TACC @ 62,976

•  The trend is toward larger-scale systems
- Up to 1,000,000,000 cores in the next 10 years

•  Significant increase in component count and complexity

•  Expected matching increase in failure frequency

•  Checkpoint/restart is becoming less and less efficient

14/19

Reactive vs. Proactive Fault Tolerance

•  Reactive fault tolerance
- Keeps parallel applications alive through recovery from

experienced failures
- Employed mechanisms react to failures
- Examples: Checkpoint/restart, message logging/replay

•  Proactive fault tolerance
- Keeps parallel applications alive by avoiding failures through

preventative measures
- Employed mechanisms anticipate failures
- Example: Preemptive migration

15/19

Proactive Fault Tolerance using Preemptive
Migration

•  Relies on a feedback-loop control mechanism
-  Application health is constantly monitored and analyzed
-  Application is reallocated to improve its health and avoid failures
-  Closed-loop control similar to dynamic load balancing

•  Real-time control problem
-  Need to act in time to avoid imminent failures

•  No 100% coverage
-  Not all failures can be anticipated, such as random bit flips

16/19

Type 1 Feedback-Loop Control Architecture

•  Alert-driven coverage
-  Basic failures

•  No evaluation of application
health history or context
-  Prone to false positives
-  Prone to false negatives
-  Prone to miss real-time

window
-  Prone to decrease application

heath through migration
-  No correlation of health

context or history

17/19

Type 2 Feedback-Loop Control Architecture

•  Trend-driven coverage
-  Basic failures
-  Less false positives/negatives

•  No evaluation of application
reliability
-  Prone to miss real-time

window
-  Prone to decrease application

heath through migration
-  No correlation of health

context or history

18/19

Type 3 Feedback-Loop Control Architecture

•  Reliability-driven coverage
-  Basic and correlated failures
-  Less false positives/negatives
-  Able to maintain real-time

window
-  Does not decrease application

heath through migration
-  Correlation of short-term

health context and history

•  No correlation of long-term
health context or history
-  Unable to match system and

application reliability patterns

19/19

Type 4 Feedback-Loop Control Architecture

•  Reliability-driven coverage of
failures and anomalies
-  Basic and correlated failures,

anomaly detection
-  Less prone to false positives
-  Less prone to false negatives
-  Able to maintain real-time

window
-  Does not decrease application

heath through migration
-  Correlation of short and long-

term health context & history

20/19

VM-level Preemptive Migration using Xen

•  Type 1 system setup
-  Xen VMM on entire system
-  Host OS for management
- Guest OS for computation
-  Spare nodes without Guest

OS
-  System monitoring in Host OS
-  Decentralized scheduler/load

balancer using Ganglia

•  Deteriorating node health
- Ganglia threshold trigger
- Migrate guest OS to spare
-  Utilize Xen’s migration facility

21/19

22/19

VM-level Migration Performance Impact

•  Single node migration
-  0.5-5% longer run time

•  Double node migration
-  2-8% longer run time

•  Migration duration
-  Stop & copy : 13-14s
-  Live : 14-24s

•  Application downtime
-  Stop & copy > Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

23/19

Process-Level Preemptive Migration w/ BLCR

•  Type 1 system setup
-  LAM/MPI with Berkeley Lab

Checkpoint/Restart (BLCR)
-  Per-node health monitoring

•  Baseboard management
controller (BMC)

•  Intelligent platform
management interface (IPMI)

-  New decentralized scheduler/
load balancer in LAM
-  New process migration facility

in BLCR (stop© and live)

•  Deteriorating node health
-  Simple threshold trigger
- Migrate process to spare

24/19

Process-Level Migration Performance Impact

•  Single node migration overhead
-  Stop & copy : 0.09-6 %
-  Live : 0.08-2.98%

•  Single node migration duration
-  Stop & copy : 1.0-1.9s
-  Live : 2.6-6.5s

•  Application downtime
-  Stop & copy > Live

•  Node eviction time
-  Stop & copy < Live

16-node Linux cluster at NCSU with dual core,
dual-processor AMD Opteron and Gigabit Ethernet

Simulation of Fault Tolerance Policies

•  Evaluation of fault tolerance
policies
-  Reactive only
-  Proactive only
-  Reactive/proactive combination

•  Evaluation of fault tolerance
parameters
-  Checkpoint interval
-  Prediction accuracy

•  Event-based simulation framework
using actual HPC system logs

•  Customizable simulated
environment
-  Number of active and spare

nodes
-  Checkpoint and migration

overheads
25/19

26/19

Combining Proactive & Reactive Approaches

•  Best: Prediction accuracy >60%
and checkpoint interval 16-32h

•  Better than only proactive or only
reactive

•  Results for higher accuracies
and very low intervals are worse
than only proactive or only
reactive

Number of processes 125

Active/Spare nodes 125/12

Checkpoint overhead 50min

Migration overhead 1 min

Simulation based on ASCI White system logs
(nodes 1-125 and 500-512)

27/19

Research in Reliability Modeling

•  Type 3 system setup
- Monitoring of application and

system health
-  Recording of application and

system health monitoring data
-  Reliability analysis on

recorded data
-  Application mean-time to

interrupt (AMTTI) estimation

•  Type 4 system setup
-  Additional recording of

application interrupts
-  Reliability analysis on recent

and historical data

Proactive Fault Tolerance Framework

•  Unified interfaces between
components

•  Extendable RAS engine
core interfacing with
- Monitoring data

aggregation/filtering
component
- Job and resource

management service
- Process/VM migration

mechanism
- Online/offline reliability

modeling
•  Previous Reading MSc

student (A. Litvinova)
28/19

Ongoing and Future Work

•  Research in scalable monitoring data aggregation/filtering
- Scalable, fault tolerant overlay reduction networks
-  In-flight monitoring data aggregation
- Current MSc student (Swen Boehm)

•  Research in scalable monitoring data filtering
- Extend the current prototype with in-flight data filtering
- Enhance filters with statistical analysis techniques

•  Research in scalable syslog data aggregation/filtering
- Extend the current prototype with log message aggregation

•  Integrate scalable monitoring prototype with proactive
fault tolerance framework

29/19

Challenges Ahead

•  Health monitoring
-  Identifying deteriorating applications and OS conditions
- Coverage of application failures: Bugs, resource exhaustion

•  Reliability analysis
- Performability analysis to provide extended coverage

•  Scalable data aggregation and processing
- Key to timeliness in the feedback control loop

•  Need for standardized metrics and interfaces
- System MTTF/MTTR != Application MTTF/MTTR
- System availability != Application efficiency
- Monitoring and logging is system/vendor dependent

30/19

31/19

Acknowledgements

•  Investigators at Oak Ridge National Laboratory:
- Stephen L. Scott [Lead PI], Christian Engelmann, Geoffroy Vallée,

Thomas Naughton, Anand Tikotekar, George Ostrouchov
•  Investigators at Louisiana Tech University:
- Chokchai (Box) Leangsuksun [Lead PI], Nichamon Naksinehaboon,

Raja Nassar, Mihaela Paun
•  Investigators at North Carolina State University:
- Frank Mueller [Lead PI], Chao Wang, Arun Nagarajan, Jyothish

Varma
•  Funding sources:
- U.S. Department of Energy, Office of Science, FASTOS Program

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

ADDAPT: Assisting Application
Development, Deployment, and
Execution

33/19

Research and Development Goals

Typical scientific application development,
deployment, and execution activities

•  Increasing the overall
productivity of developing
and executing
computational codes

•  Optimizing the development
and deployment processes
of scientific applications

•  Simplifying the activities of
application scientists, using
uniform and adaptive
solutions

•  “Automagically” supporting
the diversity of existing and
emerging high–performance
computing architectures

34/19

ADDAPT Architecture

ADDAPT Components

•  Porting assistant
-  to help port new libraries and kernels into legacy codes,
-  to identify incompatibilities with the system software stack,
-  do automatic source-to-source translation, and
-  identify areas to improve performance or fault tolerance.

•  Build assistant
-  to adapt the application’s build script to the site-specific

versions of compilers, libraries, and flags, and
-  to help resolve problems at the link stage.

•  Execution assistant
-  to assist in data staging, fast application launch, runtime

support, and post-execution data off loading.

35/19

Ongoing and Future Work:
ADDAPT Execution Assistant Component

•  Combine knowledge from
application and site profiles
- Match application

properties with system
needs using ontologies and
reasoning

•  Assist the scientist in
running his/her application
- Adapt system configuration

to application needs
•  Automate data staging and

pre-/post-processing
activities
-  Interface with respective

tools through plug-ins 36/19

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Institute for advanced Architectures
and Algorithms (IAA): Simulation
Efforts at ORNL

Objectives

•  Simulation of system architectures at scale

•  To investigate scalability, performance, and fault
tolerance of algorithms at extreme scale

•  ORNL’s earlier work was already able to run up to
1,000,000 simulated processes (JCAS)

38/19

Java Cellular Architecture Simulator (JCAS)

•  Developed at ORNL in Java
•  Native C and Fortran application support using JNI
•  Runs as standalone or distributed application
•  Lightweight framework simulates up to 1,000,000

lightweight virtual processes on 9 real processors
•  Standard and experimental network interconnects:
- Multi-dimensional mesh/torus
- Nearest/Random neighbors

•  Message driven simulation without notion of time
- Not in real-time, no time-accurate discrete event simulation

•  Primitive fault-tolerant MPI support
- No collectives, no MPI 2 39/19

Technical Approach

•  Distributed set of discrete
event simulators with node-
local message queues

•  Simulation of virtual MPI
processes for parallel app.

•  Virtual processes run on
real hardware with virtual
MPI

•  No virtual process time
•  Fault injection capability
•  Interactive graphical user

interface as front-end
•  TCP servers as back-ends

Application

Virtual MPI

V
P

V
P

V
P

V
P

V
P

V
P

V
P

V
P

DES

TCP

P

DES

TCP

P

DES

TCP

P

DES

TCP

P

40/19

Implementation

•  Every cell has own code, memory and neighbors list

•  Server hosts cells and initiates the context switch

•  Cells communicate asynchronously using messages

Cell Cell

Queue Server Thread Receiver Thread

Cell

Sender

Deliver

Send

Send

TCI/IP Network

Receive

41/19

Each dot is a task
executing an algorithm
that communicates only
to neighbor tasks in an
asynchronous fashion

Graphical User Interface allows to:
• Configure:

• Network topology
• Number of tasks

• Retrieve:
• Task-specific information

• Delete:
• Individual tasks
• All tasks within an entire region
• A percentage of tasks within a region

• Add:
• Individual tasks
• A percentage of tasks within a region

IAA Simulation Efforts at ORNL

•  Investigate scalability, performance and fault tolerance of
algorithms at extreme scale through simulation

•  Extending the JCAS simulation capabilities
- Simulating more processes (~10,000,000)
- Running more complex and resource-hungry algorithms
- Support for unmodified MPI applications

•  Evaluation of algorithms at extreme scale
- Notion of global virtual time and virtual process clocks
- Accounting for resource usage, such as processor and

network
- Gathering of scalability, performance & fault tolerance

metrics
- Parameter studies at scale

44/19

Technical Approach

•  Parallel discrete event
simulation (PDES) atop MPI

•  Simulation of virtual MPI
processes for parallel app.

•  Virtual processes run on
real hardware with virtual
MPI

•  Consistent virtual process
clock from PDES

•  Virtual process clock can
be scaled by PDES via
model

•  Virtual interconnect latency
is set by PDES via model

Application

Virtual MPI

V
P

V
P

V
P

V
P

V
P

V
P

V
P

V
P

PDES

MPI

P P P P

45/19

Ongoing and Future Work

•  Ported JCAS to C/C++ to improve scalability/performance

•  Replaced TCP/IP with (native) MPI communication

•  Replaced distributed set of DESs with PDES
- Conservative synchronization only, need optimistic and time-

warp synchronization

•  Extend virtual MPI capabilities
- Asynchronous, collectives, process control (spawn), …

•  Extend fault injection and notification mechanisms
-  Injection based on failure distributions and application state

•  Add simulated machine model (for network)

•  Gather scalability, performance & fault tolerance metrics

•  * easy (days/weeks), difficult (weeks), challenge (months)

46/19

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Soft-Error Resilience for Future-
Generation High-Performance
Computing Systems

Motivation

•  Next-generation HPC systems will have
- More frequent failures in general
- More frequent soft errors in particular
- Less efficient parallel file system checkpoint/restart

•  Existing fault tolerance approaches an ongoing research
efforts do not cover soft error resilience
- ECC double-bit errors require node/process restart
- Silent data corruption remains undetected

•  Lack of soft error resilience strategy is preventing
deployment of GPUs and FPGAs at scale

48/19

Technical approach

•  Compute-node in-memory checkpoint caching
- Short-term solution
-  Improving parallel file system checkpoint/restart

•  Compute-node in-memory checkpoint/restart
- Near-term solution
- Replacing parallel file system checkpoint/restart

•  Dual-modular redundancy (DMR)
- Long-term solution
- Replacing rollback recovery schemes in HPC

49/19

Comparison of traditional and proposed
technologies (1/2)

50/19

Comparison of traditional and proposed
technologies (2/2)

51/19

Ongoing and Future Work

•  Develop compute-node in-memory checkpoint caching
- User-space (FUSE) front-end for storage virtualization
- User-space (FUSE) backend for seamless integration
- Asynchronous draining of cache to parallel file system

•  Develop compute-node in-memory checkpoint/restart
- Checkpoint data replication for fault tolerance
-  Integration with application- and system-level C/R solutions

•  Develop dual-modular redundancy
- Design modular redundancy models and algorithms
-  Implement static modular computation redundancy prototype
- Experiment with I/O & file system access under redundancy
-  Implement dynamicmodular computation redundancy

prototype
•  Create trade-off models

52/19

Questions?

