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Abstract

Proactive fault tolerance (FT) in high-performance
computing is a concept that prevents compute node
failures from impacting running parallel applications
by preemptively migrating application parts away from
nodes that are about to fail. This paper provides a
foundation for proactive FT by defining its architecture
and classifying implementation options. This paper fur-
ther relates prior work to the presented architecture and
classification, and discusses the challenges ahead for
needed supporting technologies.

1. Introduction

In order to address anticipated high failure rates,
resiliency characteristics have become an urgent pri-
ority for next-generation high-performance computing
(HPC) systems [8]. Recent trends in HPC system archi-
tecture have clearly indicated future increases in per-
formance will be achieved through corresponding in-
creases in system scale. As HPC systems scale beyond
100,000 processor cores, they need to be able to deal
with frequent failures in such a manner that their capa-
bility is not severely degraded.

The notion of proactive fault tolerance (FT)
emerged in recent years. It is a concept that prevents
compute node failures from impacting running parallel
applications by preemptively migrating parts of an ap-
plication (task, process, or virtual machine) away from
nodes that are about to fail. Pre-fault indicators, such
as a significant increase in heat, can be used to avoid
an imminent failure through anticipation and reconfig-
uration. As computation is migrated away, application
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failures are avoided and application mean-time to fail-
ure (AMTTF) is extended beyond system mean-time to
failure (SMTTF). Since avoiding a failure through pre-
emptive migration is significantly more efficient than
recovery from failure via traditional reactive FT mech-
anisms, such as checkpoint/restart, HPC system utiliza-
tion becomes more efficient.

Recent efforts in proactive FT primarily targeted
two aspects, failure prediction [4, 9] and process- or
virtual-machine-level migration [13, 6]. Other initial
work focused on a proactive FT framework [12], which
combines both to perform prediction triggered migra-
tion. However, evaluation and comparison of individual
solutions is very difficult at this early research stage due
to missing realistic architectural models for the deploy-
ment of proactive FT technology in extreme-scale HPC
systems. Looking at published concepts and developed
prototypes, it has become clear that there is a need for a
unified definition of a proactive FT architecture, a clas-
sification of implementation options, and a discussion
of the technology challenges ahead.

This paper offers a foundation for proactive FT in
HPC by defining its architecture and classifying imple-
mentation options. It further relates prior work to the
presented architecture and classification, and discusses
the challenges ahead. This paper concludes with a short
summary and a brief description of future work.

2. Architecture

Proactive FT keeps an application alive by avoid-
ing experiencing failures through preventative mea-
sures. In contrast, reactive FT keeps an application run-
ning through recovery from experienced failures. More
precisely, proactive techniques anticipate, while reac-
tive mechanisms respond. Although reactive solutions
perform preventative measures, they do not avoid fail-
ures, instead, applications experience failures and re-
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cover. In contrast, proactive techniques perform antic-
ipatory reconfiguration and possibly graceful degrada-
tion before a failure occurs, such that it can be tolerated
without requiring recovery.

Proactive FT using preemptive migration relies on
a feedback-loop control mechanism (Figure 1), where
the health of each application running on a HPC sys-
tem is monitored and preventative action is taken to
avoid imminent application failure by reallocating run-
ning application parts from unhealthy to healthy com-
pute nodes. The feedback loop is formed by continuous
application health monitoring, reallocation of applica-
tion parts in the presence of threads, and reflection of
application allocation in application health.

Application health monitoring encompasses hard-
ware and software monitoring, such as observing fan
speeds, processor temperature, and processor utiliza-
tion. Software health monitoring may even include
watching application progress, such as I/O patterns,
similar to performance monitoring. Monitoring data
may be processed by filters and an online reliability
analysis to identify trends, correlations, patterns, im-
minent failure indications, and possible future threads.
In addition to the aspect of reliability, the feedback-
loop control mechanism may also consider performance
parameters, such that application and system health is
evaluated in terms of performability.

Reallocation evicts application parts from one or
more nodes and excludes them from further use. As the
pool of nodes is reduced, migration is either performed
to currently unused nodes, reserved spares, or already
allocated ones (oversubscription). Excluded nodes are
added to the pool after manual inspection by the system
administrator, e.g., in case of a fan fault, and/or an auto-
mated testing procedure, e.g., in case of unusually low
processor utilization. Reallocating parts of an applica-
tion typically involves the system resource manager and
the compute node runtime environment.

Proactive FT using preemptive migration via a
feedback-loop control mechanism is a real-time prob-
lem. Application reallocation must be finished before
the expected failure occurs, otherwise the expected fail-
ure is experienced by applications. The quality of ser-
vice provided by a feedback-loop control mechanism is
measured by the types of failures it covers and the ac-
curacy (timeliness) migration is executed.

Since not all failures can be anticipated, e.g., dou-
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Figure 2. Feedback-loop control of Type 1

ble bit-flips in ECC memory are random soft errors,
proactive FT using preemptive migration is not capa-
ble of covering all types of failures. A combination of
proactive and reactive FT technology provides efficient
coverage for predictable and unpredictable failures.

3. Classification

Depending on the monitoring capabilities on the
compute nodes and the processing of monitoring data
within the loop feedback, different control loop prop-
erties are displayed. Based on the design of the loop
feedback, four distinct types of proactive FT using pre-
emptive migration can be derived.

3.1. Type 1

Type 1 (Figure 2) is the most basic form. A Moni-
tor residing on each compute node is constantly observ-
ing system and application health parameters, such as
fan speeds, processor temperature, and processor uti-
lization. Upon detecting alerts or exceeding preset lim-
its, such as a fan fault, dangerous processor tempera-
ture, or low processor utilization, the Monitor notifies
the Resource Manager to evict all application parts from
its compute node. The Resource Manager reallocates
the application and notifies the Runtime Environment
to migrate application parts to other nodes.

This type of alert-driven proactive FT provides
coverage for the most basic failures, such as a fan fault
that would later lead to overheating or an unusual high
processor temperature that would later result in an au-
tomated shutdown. Since this type is unable to evaluate
the history and context in which an alert is triggered or a
limit is exceeded, it is very prone to false positives, i.e.,
triggering a migration when not needed, and false nega-
tives, i.e., not triggering a migration when needed. Fur-
thermore, due to the reliance on threshold-based trig-
gers for sensors, such as temperature, this variant is
also prone to miss the time window in which a migra-
tion needs to be performed to successfully avoid failure.
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Figure 3. Feedback-loop control of Type 2

Additionally, due to a missing application- and system-
wide health status view, migrations may interfere with
each other if triggered in rapid succession.

Any type of proactive FT has three core implemen-
tation requirements: (1) the Resource Manager must
support live removal of nodes, (2) the Resource Man-
ager must be able to notify the Runtime Environment,
and (3) the Runtime Environment must support migra-
tion. If these technologies exist, implementing Type 1
is simple as only node-local monitoring and Resource
Manager notification are additionally required.

The quality of service provided by any type of
proactive FT depends on failure type coverage, predic-
tion accuracy, and reaction time. Apart from the cov-
eage of only the most basic failure types, the quality of
service of Type 1 is dominated by the already discussed
threshold accuracy of the Monitor and the time it takes
to notify the Resource Manager, to notify the Runtime
Environment, and to migrate. While in Type 1 inaccu-
rate thresholds can quickly result in false positives and
false negatives, all proactive FT types suffer from the is-
sue that the reaction time required may be longer than a
triggered alert or predicted failure precedes an applica-
tion failure. For example, a fan fault may very quickly
result in overheating, giving the feedback-loop control
not enough time to react.

3.2. Type 2

Type 2 (Figure 3) is an enhanced form of basic
proactive FT. Similar to Type 1, a Monitor residing on
each node is constantly observing health parameters.
However, instead of just notifying the Resource Man-
ager upon detecting alerts or exceeding preset limits,
Type 2 utilizes a Filter on each node to process raw sen-
sor data and alerts from the Monitor to notify the Re-
source Manager based on a more thorough analysis of
current trends, imminent failures, and possible future
threads. As in Type 1, the Resource Manager reallo-
cates the application and notifies the Runtime Environ-
ment to migrate application parts.

This type extends the alert-driven Type 1 by offer-
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Figure 4. Feedback-loop control of Type 3

ing a better coverage for basic failures. Using the Filter,
sensor data is processed with short-term historical con-
text, such as the steepness of a temperature increase.
This results in a much clearer identification of immi-
nent failures and possible future threads through trend
analysis, such that much less false positives and false
negatives occur and the time window for migration is
not missed. However, there is no correlation of sensor
data from multiple nodes to identify related true posi-
tives, such as an overall increase in processor heat in a
particular section caused by a system or room cooling
issue. As in Type 1, migrations may interfere with each
other if triggered in rapid succession, due to a missing
global health status view.

The implementation requirements for Type 2 are
the same as for Type 1 with the exception of the ad-
ditional node-local Filter, which can be as simple as a
trend analyzer combined with a steepness trigger or as
complex as a machine learning system.

In comparison to Type 1, the quality of service pro-
vided by Type 2 is better as the Filter performs node-
local failure prediction. Its accuracy is key to the qual-
ity of service of the feedback-loop control. To avoid
the problem of triggering a migration not enough ahead
of time, the reaction time of the feedback-loop control
may be incorporated in the migration trigger decision of
the Filter. In this case, a migration is triggered when a
failure is predicted with a certain accuracy/probability
for the future safe reaction time interval.

3.3. Type 3

Type 3 (Figure 4) is an advanced form of proactive
FT. As in Types 1 and 2, a Monitor residing on each
node is observing system and application health. As in
Type 2, a Filter on each node processes raw sensor data
and alerts from the Monitor to extract trends, imminent
failure indications, and possible future threads. In con-
trast to Type 1 and 2, the aggregated data from all Filters
is processed by a Reliability Analysis, which performs
an application- and system-wide identification of corre-
lations, such as an overall increase in processor heat or



a number of nodes idling, and applies policies for pre-
emptive migration actions, such as to trigger migration
based on failure propability. The Reliability Analysis
notifies the Resource Manager to evict application parts
from nodes. The Resource Manager reallocates the ap-
plication and notifies the Runtime Environment to mi-
grate application parts.

Since the Reliability Analysis is able to obtain a
global health status view, this type enables the correla-
tion of sensor data from multiple nodes to identify re-
lated true positives and to avoid migration targets that
indicate possible future threads. In contrast to Type
1 and 2, system and application health information is
not only analyzed, proactive FT policy is also imple-
mented by either excluding nodes as targets or by di-
rectly selecting targets via a reliability-aware allocation
policy. However, since only short-term historical con-
text is used, failure and reliability patterns associated
to applications, like idling processes during a specific
application phase, are not detected.

Implementing Type 3 requires, in addition to Type
2, a Reliability Analysis, which models the reliability
of the system and of each running application. This can
be as simple as a trend analyzer combined with a steep-
ness and deviation trigger or as complex as a machine
learning system. Furthermore, coordination of sensor
data processing by the node-local Filter and of Filter
output processing by the Reliability Analysis is needed
to avoid disruption in the feedback-loop control by pro-
viding not enough, too much, or the wrong information
to the Reliability Analysis. Additionally, a data aggre-
gation mechanism is required as supporting technology
to collect Filter output from nodes.

Since Type 3 covers a wider range of true positives
and true negatives due to the combined accuracy of the
node-local Filter and the global Reliability Analysis, its
quality of service is significantly better than Type 1 or
2. Similar to Type 2, the reaction time of the feedback-
loop control may be incorporated in the migration trig-
ger decision of the Reliability Analysis.

3.4. Type 4

Type 4 (Figure 5) is an enhanced form of advanced
proactive FT. In addition to Type 3, the Reliability Anal-
ysis utilizes a History Database for recording prior sys-
tem and application reliability patterns and for match-
ing them against the currently experienced pattern in or-
der to optimize the feedback control loop using machine
learning techniques. The Reliability Analysis may also
utilize the History Database to conduct offline inves-
tigations of system and application reliability patterns,
when longer-term records and more extensive computa-
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Figure 5. Feedback-loop control of Type 4

tion is required. The implementation of Type 4 requires
a History Database in addition to Type 3, while the Re-
liability Analysis is a machine learning system. The
quality of service provided by this type is even higher
as failure prediction accuracy improves with long-term
memory about failure patterns.

4. Previous Work

Prior work targeted system monitoring, system log
and reliability analyses, transparent migration mecha-
nisms, proactive/reactive FT trade-off models, and pre-
liminary proactive FT frameworks.

4.1. System Monitoring

A recent standardization effort across server ven-
dors resulted in the Intelligent Platform Management
Interface (IPMI) for system management and health
monitoring. OpenIPMI (http://openipmi.sourceforge.
net) is a software effort to allow full access to IPMI in-
formation. OpenIPMI has already been used in Type 1
feedback-loop control solutions [6, 13]. It can be used
with any type of feedback-loop control.

Ganglia [5] is a scalable distributed monitoring sys-
tem, where each node monitors itself and disseminates
data to all other nodes. It has already been used in Type
1 feedback-loop control solutions [6, 13].

OVIS 2 [1] is a hierarchical monitoring and analy-
sis tool that collects system health information directly
from nodes or from other monitoring solutions, such
as Ganglia, for processing using statistical methods for
graphical presentation. OVIS 2 provides Type 3 and 4
online Reliability Analysis as well as Type 4 offline Re-
liability Analysis using a database. It has not yet been
used in proactive FT feedback control loops.

MRNet [7] is a software overlay network that pro-
vides efficient multicast and reduction communications.
It can efficiently compute averages, sums, and more
complex aggregations and analyses. MRNet has not yet
been used for proactive FT, but its scalable design offers
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data reduction and aggregation capabilities that may be
used to offload Type 3 and 4 Reliability Analysis to a
fan-in tree of compute nodes.

A few other solutions exist, such as the reliability,
availability and serviceability (RAS) systems deployed
by HPC vendors. They are similar in design and none
of them have been used for proactive FT.

4.2. System Log and Reliability Analysis

Analyzing failure patterns using statistical methods
has been a recent effort in HPC. Most work relies on log
data from the USENIX Computer Failure Data Reposi-
tory (CFDR) at http://cfdr.usenix.org.

Recent accomplishments include a failure predic-
tion framework [4], which explores correlations and
forecasts the time-between-failure of future instances.
Results show the system achieves more than 76% accu-
racy in offline prediction and more than 70% accuracy
in online prediction using failure logs from Los Alamos
National Laboratory. While the online prediction may
be used for Type 3 feedback-loop control, the offline
prediction requires the recording capability of Type 4.

Another effort [9] focused on syslogs that are found
on nearly all computing systems. The developed classi-
fication scheme for syslog messages was able to localize
50% of faults with 75% precision, corresponding to an
excellent false positive rate of 0.05%, using three weeks
of syslogs from the 512-node “Spirit” Linux cluster at
Sandia National Laboratory. This solution entirely fo-
cused on a centralized offline analysis (Type 4), i.e.,
fault localization using syslog data.

Many other efforts in system log and reliability
analysis as well as in failure prediction exist. They ei-
ther focus on node-local or system-wide identification
of root causes, failure modes, trends, correlations, pat-
terns, imminent failure indications, and possible future
threads. Most solutions can be used for proactive FT.

4.3. Transparent Migration Mechanisms

Recent work focused on proactive FT supported
by the virtual machine migration mechanism of the
Xen hypervisor [6] and by a newly developed migra-
tion mechanism for the BLCR checkpoint/restart solu-
tion [13]. Both prototypes utilize a hardware monitor-
ing mechanism to trigger migration (Type 1). While the
developed prototypes operate in a Type 1 setting, their
transparent migration mechanisms can be used in any
type of feedback-loop control.

Another past effort targeted transparent MPI task
migration using the Charm++ middleware and its Adap-
tive MPI (AMPI) [2]. This work primarily focused on

the migration aspect and did not provide the feedback-
loop control needed for proactive FT. This solution can
be used in any type of feedback-loop control.

MPI-Mitten [3] is a similar effort that provides a
library between MPI and applications for transparent
migration support. Ongoing work in a Fault aware-
ness Enabled Computing Environment (FENCE) [10]
uses MPI-Mitten for migration-based reliability-aware
scheduling and proactive FT in a Type 4 configuration
with SMTTF and AMTTF approximation within the
Reliability Analysis.

Many other transparent migration mechanisms
have been researched and developed, however, none of
them have been used until now for preemptive migra-
tion of parallel applications.

4.4. Proactive + Reactive Fault Tolerance

Recent work in this area utilized simulations to
evaluate different trade-off models when combining
preemptive migration with checkpoint/restart [11]. Us-
ing failure logs from Lawrence Livermore National
Laboratory, the impact of failure prediction accuracy
was evaluated and put in context with restart counts and
checkpointing frequency. The results suggest that this
holistic FT approach provides the best fault resilience
with the highest system utilization.

4.5. Proactive Fault Tolerance Frameworks

As previously mentioned, two prototypes for Type
1 feedback-loop control have been developed [6, 13] in
the past. Application reallocation was performed using
a load balancer. Another Type 1 prototype [12] inves-
tigated coordination, protocols, and interfaces between
individual system components.

5. Challenges Ahead

Specific needs for future work in proactive FT us-
ing preemptive migration can be identified based on the
individual components of the different feedback-loop
control types and on required supporting technology.

Future work in health monitoring needs to focus on
identifying deteriorating applications and operating sys-
tem conditions. Failure detection and pre-fault indica-
tion coverage needs to include application failures, such
as programming errors or resource exhaustion. The
HPC performance tools community has already made
significant advances in this area. Performability moni-
toring can provide extended coverage.

Similarly, reliability analysis needs to factor in per-
formance parameters as the goal is to improve time to
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solution. More extensive work in performability analy-
sis for HPC is needed.

Scalable data aggregation and processing is key
for timeliness in the feedback control loop. Work in
MRNet-style in-flight monitoring data aggregation, fil-
tering and analysis is needed to provide for scalable
real-time characteristics.

Lastly, there is a need for standardized metrics and
interfaces. Currently, each solution uses its own met-
rics for measuring and evaluating health and interfaces
between components. This makes comparison and inte-
gration unnecessary difficult.

6. Conclusion

We provided a foundation for proactive FT in HPC
by defining its architecture and classifying implemen-
tation options. The presented architecture relies on a
feedback-loop control mechanism, where system and
application health is monitored and preventative action
is taken to avoid imminent application failure by re-
allocating running application parts from unhealthy to
healthy compute nodes. The feedback loop is formed
by continuous application health monitoring, realloca-
tion of application parts in the presence of threads, and
reflection of application allocation in application health.
We identified four distinct types of proactive FT using
preemptive migration based on the monitoring capabil-
ities on the compute nodes and the processing of moni-
toring data within the loop feedback.

We further related prior work to the presented ar-
chitecture and classification. Specifically, we described
a selection of system monitoring solutions, system log
and reliability analyses, transparent migration mecha-
nisms, proactive/reactive FT trade-off models, and pre-
liminary proactive FT frameworks. We also briefly dis-
cussed the challenges ahead for proactive FT in HPC.

Our planned research and development efforts pri-
marily focus on the discussed challenges, specifically
on standardized metrics/interfaces and on scalable data
aggregation and processing. Additionally, our ongoing
work also looks at failure injection mechanisms.
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