
Resilience Challenges at the Exascale

Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Proposed Exascale Initiative Road Map

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3 PB 1.6 PB 5 PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 O(100) O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s
System size (nodes) 18,700 100,000 500,000 O(million)
Total concurrency 225,000 3,200,000 O(50,000,000) O(billion)
Storage 15 PB 30 PB 150 PB 300 PB
IO 0.2 TB/s 2 TB/s 10 TB/s 20 TB/s
MTTI days days days O(1 day)
Power 6 MW ~10MW ~10 MW ~20 MW

My Exascale Resilience Scenario:
MTTI Scales with Node Count

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa

System size (nodes) 5x 5x 2x

MTTI 4 days 19 h 4 min 3 h 52 min 1 h 56 min

Vendors are able to maintain current node MTTI

My Scary Scenario:
Current MTTI of 1 Day

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa

System size (nodes) 5x 5x 2x

MTTI 1 day 4 h 48 min 58 min 29 min

Current system MTTI is actually lower

My Really Scary Scenario:
Component MTTI drops 3% Each Year

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa

System size (nodes) 5x 5x 2x

94.1% 83.3% 76%
MTTI 1 day 4 h 31 min 48 min 22 min

Vendors are not able to maintain current node MTTI

Factors Driving up the Error Rate

•  Significant growth in component count (up to 50x nodes)
results in respectively higher system error rate

•  Smaller circuit sizes and lower voltages increase soft error
vulnerability (bit flips caused by thermal and voltage
variations as well as radiation)

•  Power management cycling decreases component
lifetimes due to thermal and mechanical stresses

•  Hardware fault detection and recovery is limited by power
consumption requirements and costs

•  Heterogeneous architectures (CPU & GPU cores) add
more complexity to fault detection and recovery

Risks of the Business as Usual Approach

•  Increased error rate requires more frequent checkpoint/
restart, thus lowering efficiency (application progress)

•  Current application-level checkpoint/restart to a parallel
file system is becoming less efficient and soon obsolete

•  Memory to I/O ratio (dump time) improves from 25 min to
8.3 min, but concurrency for coordination and I/O
scheduling increases significantly (50x nodes, 444x cores)

•  Missing strategy for silent data/code corruption will cause
applications to produce erroneous results or just hang

System Availability with Checkpoint/Restart

A 1M node system with
90% uptime requires a
7 nines node rating
with a MTTF/MTTR
ratio of 10M per node.

Existing HPC Resilience Technologies

•  Checkpoint/restart (C/R)
- SSD in Cray X/Y-MP (1982/88) and IBM 3090 (1985)
- Networked disk storage in Intel Paragon XP/S (1992)
- Local & networked disk storage in ASCI White (2000)
- Networked disk storage in Cray XT and IBM BG (2000+)

•  Application-level C/R dominates in practice

•  System-level C/R
- Libckpt (1995), CoCheck (1996), Condor (1997), BLCR(2003)

•  Diskless C/R
- Plank et al. (1997), Charm++/AMPI (2004), SCR (2009)

•  Fault-tolerant message passing
- PVM 3 (1993), Starfish MPI (1999), FT-MPI (2001), MPI-3 (?)

Existing HPC Resilience Technologies

•  Message logging
- Manetho (1992), Egida (1999), MPICH-V (2006)

•  Algorithm-based fault tolerance (ABFT)
- Huang et al. (1984), Chen et al. (2006), Ltaief et al. (2007)

•  Proactive fault tolerance
- Nagarajan et al. (2007), Wang et al. (2008)

•  Log-based failure analysis and prediction
- hPREFECT (2007), Sisyphus (2008)

•  Soft-error resilience
- Parity memory in Cray-1 (1977)
- ECC memory in Cray X-MP (1982)
- ECC for caches and registers in AMD Opteron (2007)

Key Areas for Future Research,
Development, and Standards Work

Theoretical Foundations

•  Lord Kelvin: “If you can’t measure it, you can’t improve it!”

•  Agreed upon definitions, metrics and methods
- System vs. application MTTI, MTTR and availability/efficiency

•  Dependability analysis
- Fault injection studies using modeling and simulation

•  Dependability benchmarking (robustness testing)
- Fault injection studies using experimental evaluation

•  Formal methods, statistics, uncertainty quantification

Enabling Infrastructure

•  Programming models & libraries
- Fault awareness and transparent fault tolerance

•  System software
- Reliable (hardened) system software (OS kernel, file systems)

•  RAS systems and tools
- System and application health monitoring

•  Cooperation and coordination frameworks
- Fault notification across software layers
- Tunable resilience strategies

•  Production solutions of existing resilience technologies
- Enhanced recovery-oriented computing

Fault Prediction and Detection

•  Statistical analysis

• Machine learning

• Anomaly detection

•  Visualization

• Data & information
collection

Monitoring and Control

•  Non-intrusive, scalable monitoring and analysis
- Decentralized/distributed scalable RAS systems

•  Standards-based monitoring and control
- Standardized metrics and application/system interfaces

•  Tunable fidelity
- Adjustable resilience/performance/power trade-off
- Variety of resilience solutions to fit different needs

•  Quality of service and performability
- Measure-improve feedback loop at various granularities

End-to-End Data Integrity

•  Confidence in getting the right answer and using correct
data to make informed decisions

•  Protection from undetected errors that corrupt data/code
- Understanding root causes and error propagation

•  Mitigation strategies against silent code/data corruption
- Application-level checks
- Self-checking code and ECC
- Redundant multi-threading and process pairs

Conclusions

•  Current resilience methods will be unpractical at exascale

•  Alternatives need to be developed into practical solutions

•  Agreed upon definitions, metrics and benchmarks are
needed to measure improvement and to compare fairly

•  Root causes and propagation are not well understood
- No effective fault detection and prediction

•  Resilience is needed across the entire software stack
- System software, programming models, apps and tools
- Communication/coordination between layers

•  Faults and fault recovery will be continuous

•  Tunable solutions to adjust resilience/performance/power

Further References

•  N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott, C.
Engelmann, and B. Harrod. High-End Computing
Resilience: Analysis of Issues Facing the HEC Community
and Path-Forward for Research and Development

•  Scientific Grand Challenges Workshop Series:
http://extremecomputing.labworks.org/

•  International Exascale Software Project:
http://www.exascale.org/

Questions?

