

Scalable System Monitoring

Christian Engelmann

Computer Science and Mathematics Division Oak Ridge National Laboratory, USA

C. Engelmann, Scalable System Monitoring, Resilience Summit @ LACSS, October 13, 2010. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Extreme-Scale High-Performance Computing Systems for Computational Science

top500.org processor count:

- About three years ago the entire 500 list broke the million processor mark
- Now the top 7 add up to over a million

World's Most Powerful Computer.

Oak Ridge National Laboratory

#1

Kraken

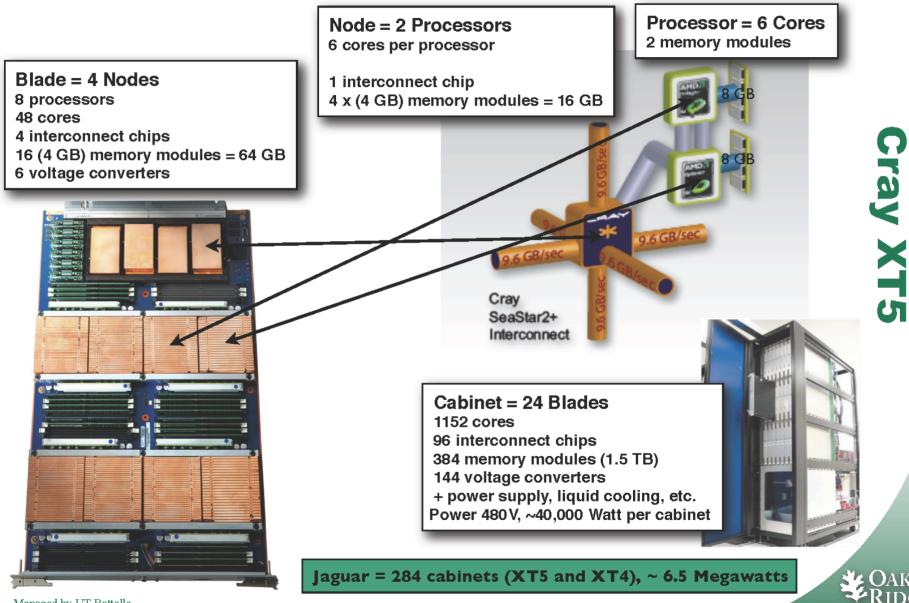
"World's Most Powerful Academic Computer"

University of Tennessee

#3

Managed by UT-Battelle for the Department of Energy

#1: Jaguar at Oak Ridge National Laboratory



National Laboratory

Managed by UT-Battelle for the Department of Energy

Motivation

Large-scale 1 PFlop/s systems are here

- #1 ORNL Jaguar XT5: 1.759 PFlop/s, 224,162 cores
- #2 NSCS Nebulae: 1.271 PFlop/s, 120,640 cores
- -#3 LANL Roadrunner: 1.042 PFlop/s, 122,400 cores
- Other large-scale systems exist
 - #4 NICS Kraken XT5: 0.831 PFlop/s, 98,928 cores
 - #5 Juelich JUGENE: 0.825 PFlop/s, 294,912 cores
 - #6 NASA Pleiades: 0.773 PFlop/s, 81,920 cores

Proposed Exascale Initiative Road Map

Systems	2009	2011	2015	2018
System peak	2 Peta	20 Peta	100-200 Peta	1 Exa
System memory	0.3 PB	1.6 PB	5 PB	10 PB
Node performance	125 GF	200GF	200-400 GF	1-10TF
Node memory BW	25 GB/s	40 GB/s	100 GB/s	200-400 GB/s
Node concurrency	12	32	O(100)	O(1000)
Interconnect BW	1.5 GB/s	22 GB/s	25 GB/s	50 GB/s
System size (nodes)	18,700	100,000	500,000	O(million)
Total concurrency	225,000	3,200,000	O(50,000,000)	O(billion)
Storage	15 PB	30 PB	150 PB	300 PB
10	0.2 TB/s	2 TB/s	10 TB/s	20 TB/s
МТТІ	days	days	days	O(1 day)
Power	6 MW	~10MW	~10 MW	~20 MW

Resilience Issues in Extreme-scale HPC

- Significant growth in component count (up to 50x nodes expected) results in correspondingly higher error rate
- Smaller circuit sizes and lower voltages increase soft error vulnerability (bit flips caused by thermal and voltage variations as well as radiation)
- Hardware fault detection and recovery is limited by power consumption requirements and production costs
- Heterogeneous architectures (CPU & GPU cores) add more complexity to fault detection and recovery
- Power management cycling decreases component lifetimes due to thermal and mechanical stresses

Risks of the Business as Usual Approach

- Increased error rate requires more frequent checkpoint/ restart, thus lowering efficiency (application progress)
- Memory to I/O ratio improves due to less memory/node, but concurrency for coordination and scheduling increases significantly (up to 50x nodes, 444x cores)
- Current application-level checkpoint/restart to a parallel file system is becoming less efficient and soon obsolete
- Missing strategy for silent data/code corruption will cause applications to produce erroneous results or hang

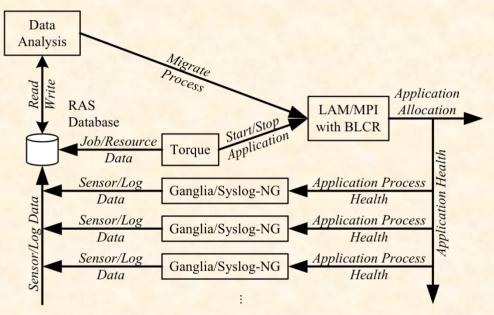
Objectives

- Non-stop scientific high-performance computing
- Develop scalable system software technologies for nextgeneration petascale computing resources
- Address the computer science challenges for extremescale computing:
 - High-level RAS for enhanced productivity
 - Transparent system software support for resilience
 - Model causes and propagation of failures and errors
- As part of this greater effort, this work targets:
 - Scalable system monitoring to support health analysis and anomaly (failures, errors and indicators) reporting

Our Initial Efforts: Proactive Fault Tolerance Framework

- Central MySQL database
- Environmental monitoring

 OpenIPMI and Ganglia
- Event logging and analysis
 Syslog forwarding
- Job & resource monitoring
 - Torque (epilogue/ prologue)
- Migration mechanism
 Process-level with BLCR



Our Initial Efforts: System Monitoring with Ganglia and Syslog

Experiment #1:

- 32-node Linux cluster
- 30 second interval
- 40 Ganglia metrics
- ≈20 GB of data in 27 days
- ≈33 MB/hour
- ≈1 MB/hour per node
- ≈275 kb/interval
- NOT SCALABLE

Experiment #2:

- 32-node Linux cluster
- 30 second interval
- 40 Ganglia metrics
- No measurable impact on NAS benchmarks

Class C NPB on 32 nodes	CG	FT	LU
Average time in seconds	264	235	261
Average time under load in seconds	264	236	260

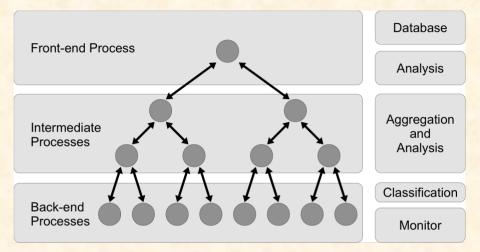
Table 2. NPB test results (averages over 10 runs)

Other Related Work

- Ganglia and Nagios:
 - IT monitoring using network multicast or linear query
 - Support for hierarchical grouping of monitored nodes
 - Does not scale beyond 2,000 nodes due to data size
- HPC vendor RAS systems (e.g. Cray and IBM):
 - HPC system monitoring similar to Ganglia with scalability enhancements and SQL support
 - Scalability limits reached today with 10,000-100,000 nodes (operating system instances)
- Multicast Reduction Network (MRNet)
 - Generic tree-based over-lay network (TBON)
 - Recent work on aggregating node-local Ganglia data files in fan-in tree using group file operations

Technical Approach

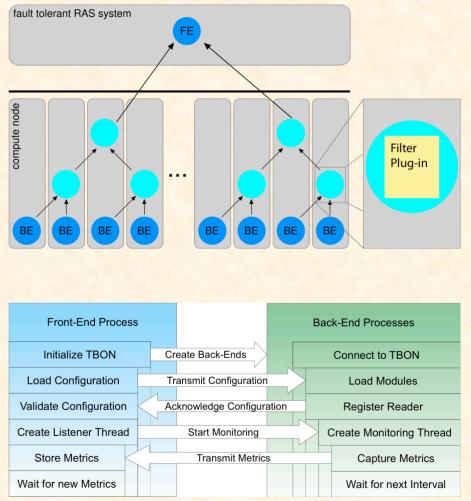
- Classify monitoring metrics locally before transmission to reduce monitoring data
- Leverage a TBON with its in-flight processing to reduce data further
 - Data aggregation using the fan-in tree
 - System configuration using the fan-out tree



- Back-ends gather data
 Sample and classify
- Intermediates reduce data
 Group and compress
- Front-end stores data

Implementation

- Deploy MRNet for the TBON
- Connect monitor processes at the MRNet back-ends
- Insert aggregation plugins at the MRNet intermediates
- Connect a database writer and configuration tool at the MRNet front-end
- Implemented in C++ using the Boost C++ libraries
- C++ interface to MySQL for the database writer



Implementation Details: Front-End

- Located on the RAS management node (also often the head node running the job and resource management)
- Responsible for setting up the TBON, including the intermediates and back-ends
- Responsible for storing the received data in a MySQL database
- Instantiation: Boots up MRNet, configures the streams, and loads and configures needed modules
- Reconfiguration: Shutdown, reconfigure, and startup (runtime reconfiguration is currently in development)
- Only metric class updates are received and stored with the appropriate time stamp

Implementation Details: Back-ends

- Located on the nodes to be monitored
- Gather metrics using the /proc file system and and libsensors (Intelligent Platform Management Interface)
- Collection, classification, and transmission is performed in regular intervals for each metric
- Overlapping metric intervals and respective outgoing messages are aggregated
- One message per interval with metric IDs and classes
- Messages contain updates only

back-end ID count metric ID class ... metric ID class

Figure 5. Message format for transferring metric updates from back-ends to intermediates

Implementation Details: Intermediates

- Located on the same nodes as the back-ends, or on existing separated hierarchical RAS subsystems
- Configured for synchronous operation to process wave fronts of messages coming from back-ends
- Aggregation plug-ins (primitive forwarding filters) loaded at configuration time that simply attach incoming messages to each other
- In-flight processing, such as statistical analysis is in development
 back-end ID count metric ID class ... metric ID class

•••

··· back-end ID count metric ID class ··· metric ID class

Figure 6. Message format for aggregating metric updates by the intermediates

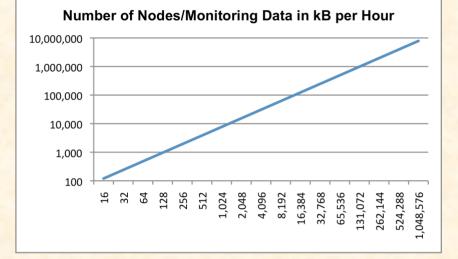
Experimental Results: Monitoring Data Accumulation

- 8-year old 32-node Intel-based Linux cluster
 Perfect test environment due to failing hardware
- 18 monitoring metrics:
 - Processor heat and utilization, memory utilization, fan speeds, disk and network I/O rates, ...
- 30 second sample interval for all metrics
- Collected data at the head node:
 - -≈ 1MB in 4 hours
 - <mark>-≈250kB/ho</mark>ur
 - -≈ 2kB/interval
 - -≈ 56x less data than collected by Ganglia

Experimental Results: Data Accumulation Scaling Analysis

- Worst-case scenario:
 - Monitoring data amount scales with system size
- On 32 nodes, the measured accumulation rate was:
 - 64 B/interval per node
- The theoretical rate for 100,000 nodes is:
 - 6.1 MB/interval
 - -732 MB/hour
- The theoretical rate for 1,000,000 nodes is:
 - 61 MB/interval

-7.2 GB/hour



- The accumulation rate is:
 - Acceptable for off-line (post mortem) analysis
 - Too high for realistic real-time response (online) scenarios

Experimental Results: Performance Impact on Applications

- The monitoring system performs communication and computation on nodes
- There is a potential for performance degradation
- Performed NAS Parallel Benchmark (NPB) suite runs data during collection
- No measurable overhead at this scale (32 nodes)
- No measurable overhead with Ganglia as well

Class C NPB on 32 nodes	CG	FT	LU
Without monitoring	264	235	260
With monitoring	264	235	260
Overhead	0%	0%	0%

Table 1. NPB performance on the test clusterwith/without the developed monitoring system(averages over 10 runs in seconds)

- 32-node test system scale is too small to impact application performance
- Ongoing work focuses on much larger-scale tests

Conclusions and Future Work

- Developed a monitoring system that allows to trade-off accuracy in a tunable fashion to gain scalability without compromising fidelity
- The approach relies on classifying each metric and on aggregating messages in a fan-in tree fashion
- The prototype was able to reduce the amount of collected data by a factor of 56 in comparison to Ganglia
- A simple scaling study revealed that further data reduction is needed for monitoring extreme-scale systems
- Ongoing work focuses on in-flight statistical analysis and system log message aggregation and reduction
 - Histograms for metrics and pattern matching for syslog

Questions?

More details can be found at:

S. Böhm, C. Engelmann, and S. L. Scott. Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments. In Proceedings of HPCC 2010.

C. Engelmann, Scalable System Monitoring, Resilience Summit @ LACSS, October 13, 2010. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY