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Solving the Resilience Problem Requires Deep 
Understanding 
•  HPC resilience is a cost optimization problem 
•  Performance, resilience, power and deployment cost 

•  The challenge is to build a reliable system within a given cost budget that 
achieves the expected performance 
•  This requires fully understanding the resilience problem and offering 

efficient resilience mitigation technologies 
•  What is the fault model of HPC systems? 
•  What is the impact of faults on HPC applications? 
•  How can mitigation in hardware and/or software help at what cost? 
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The Catalog Project 
•  The Catalog project creates the missing HPC fault model from fault data 

of actual large-scale production systems 
•  A collaboration between Oak Ridge National Laboratory, Argonne National 

Laboratory and Lawrence Livermore National Laboratory 
•  Funded by the US Department of Energy (DOE) 

•  The project identifies, categorizes and models the fault, error and failure 
properties of DOE systems 
•  It develops a fault taxonomy, catalog and models that capture the 

observed and inferred conditions in current systems and extrapolates this 
knowledge to exascale systems 
•  This project will provide a clear picture of the fault characteristics in the 

DOE computing environments 
•  It will improve resilience through reliable fault detection at an early stage 

and actionable information for efficient mitigation 
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Approach (1/5) 
•  Create an HPC fault catalog with 
•  A common HPC fault taxonomy 
•  Specific fault data from systems 
•  Fault projections of future systems 
•  System & component fault models: 
•  Representative models 
•  Predictive models 
•  Decision making models 
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Approach (2/5) 
•  Fuse system log data for offline 
•  Event identification 
•  Event categorization 
•  Root cause analyses 
•  Event modeling 
•  Visualization 

•  Leverages ORNL’s RAVEN and 
ANL’s HELO/ELSA tools 
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Approach (3/5) 
•  Model the impact of faults on 

apps using realistic fault injection 
•  Application vulnerability, including 

algorithmic masking 
•  Error propagation within 

applications, including error detection 
delays and containment 

•  Failure modes of applications, 
including catastrophic, erroneous, 
and masked 

•  Using production codes, proxy 
apps and CORAL benchmarks 
•  NEK5000/NEKbone, CoMD/ddcMD, 

Lulesh, AMG (hypre), Kripke 

•  Using LLNL’s GREMLINs & ANL’s 
FlipIt fault injection tools 
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Approach (4/5) 
•  Fuse real-time system health 

data for online 
•  Event identification 
•  Event categorization 
•  Root cause analyses 
•  Event modeling 
•  Visualization 

•  Based on ORNL’s RAVEN and 
ANL’s HELO/ELSA tools 

•  Uses system monitoring tools 
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Approach (5/5) 
•  Identify additional 

instrumentation points for 
•  Early detection 
•  More accurate categorization 

•  For example: 
•  Instrument the file system MDS for 

feedback on transaction rates/delays Fault&Catalog&
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Status – Fault Catalog (1/2) 
System	 Data	Dura,on	(days)	 Failures	 MTBF	(hours)	
Jaugar	 1461	 2620	 13.38	
Titan	 900	 1662	 13.00	

•  Already analyzed a lot of data from 
Titan & Jaguar at ORNL 
•  Node failures, memory errors, OS 

kernel panics, Lustre errors, etc. 

•  Titan had an initial lower reliability 
than Jaguar, but has improved 

•  Titan has long phases of stability 
with short phases of instability 
•  Significant temporal & spatial locality 
•  Partially invalidates common 

assumptions about MTBF in HPC 
•  Significantly impacts checkpointing 

strategies and job queue lengths 

C. Engelmann. The Missing High-Performance Computing Fault Model. SIAM PP'16, Paris, France, April, 2016.   

#	 Jaguar	Failure	Types	 User	or	System?	
1	 Error->		'Out	of	Memory'			 User	
2	 Error->		'Machine	Check	ExcepGon'			 System	
3	 Error->		'Node	Heartbeat	Fault'			 System	
4	 Error->		'Kernel	Panic'			 System	
5	 Error->		'Link	InacGve'			 System	
6	 Error->		'SeaStar	Heartbeat	Fault'			 System	

#	 Titan	Failure	Types	 User	or	System?	
1	 		Type:	Machine	Check	ExcepGon				 System	
2	 		Type:	Kernel	Panic				 System	
3	 		Type:	GPU	DBE				 System	
4	 		Type:	SXM	Power	Off				 System	
5	 		Type:	Blade	Heartbeat	Fault				 System	

3 Devesh Tiwari
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Status – Fault Catalog (2/2) 
•  Work on Titan GPU errors 

communicated to Nvidia 
•  Work on Titan DRAM & cache 

errors in collaboration with AMD 
•  Fault ≠ error ≠ failure 
•  Working on root causes and 

propagation chains 

•  In the process of collecting similar 
data from Mira at ANL and from 
unclassified LLNL systems 

•  Getting ready to put together the 
first version of the catalog with 
Titan and Jaguar data 
•  Taxonomy and fault statistics 

14 Devesh Tiwari

Figure 12: Spatial distribution of XID 13 error with
di↵erent time threshold filtering.

on all the nodes are accounted for. Fig. 12 (middle) shows
the spatial distribution of XID 13 for the case when a five-
second filtering is applied, i.e., any XID 13 error appearing
in the console log after a previously encountered XID 13 is
ignored if the time di↵erence is less than five seconds. E↵ec-
tively, this counts only one XID 13 event per job because the
job would crash after the error. Fig. 12 (bottom) shows the
spatial distribution of XID 13 events that occurred within
the five-second window.

First, we observe that the XID 13 errors exhibit uneven
spatial distribution (Fig. 12 (middle)). This indicates that
debug jobs may be unevenly distributed across the cabinets.
A more surprising observation is that both Fig. 12 (top) and
(bottom) show a distinct pattern where alternate cabinets
have greater event density. This is due to folded-torus cab-
ling used in Titan [8] to avoid uneven length of cables in the
classic 3-D torus. This causes nodes within the same job to
be allocated in this alternating manner in the 3-D torus Ge-
mini interconnect resulting in such a pattern. We also found
that five seconds was a reasonable interval within which all
nodes in the same job reported the error.

Observation 7. Spatial distribution of user application
related XID errors can be understood using the physical
organization and interconnect of the system. Typically, we
observed that the errors appear on all the nodes allocated to
the job within five seconds.

While XID 13 is not supposed to be caused by hardware,
we found an instance where a particular node was repeatedly
encountering XID 13, irrespective of the application schedu-
led on it. Since XID 13 is not associated with hardware,
we did not take the node down immediately after the error
event. We later confirmed, after the node diagnostic testing,
that it was indeed a problem related with the hardware.

Figure 13: Temporal re-occurance relationship bet-
ween di↵erent XID events (for a time
window of 300 sec.)

Observation 8. It is extremely challenging to pinpoint
the source (hardware, software, firmware, thermal issues
etc.) of any XID error. NVIDIA has performed rigorous
tests to come up with the list of possible sources of these
XID errors. But, we recently observed a case where XID 13
was due to hardware instead of other problems as previously
assumed/known.

We investigate the parent-child relationship among di↵e-
rent Xid events in Fig. 13. The figure shows the fraction of
Xid events shown on ‘Previous Failure’ axis that will obser-
ve an event shown on ‘Following Failure’ within a 300 sec
window. We use a large time window here in order to allow
more time for child events to show up after a parent event.
The top heatmap includes all event pairs while the bottom
heatmap excludes the pairs of same type of events. We can
observe that a DBE (XID 48) is likely to be followed by
XID 45 and XID 63, and XID 13 is likely to be followed by
XID 43. We also observe that many XID errors often oc-
cur multiple times (or at multiple nodes in the same job)
in the console logs after the original XID event. This can
be observed by the entries along the diagonal which show
high values for these XIDs. On the other hand, o↵ the bus,
XID 38, XID 48 (DBE), and XID 63 do not show multiple
occurrences within a 300-second time window. This implies
that these events are relatively more isolated in nature.

Observation 9. Doing correlation analysis between dif-
ferent types of errors help us understand which errors are
more likely to be followed by another type of error, which er-
rors occur in isolation and may not have precursor events,
etc.

[SC 2015] Reliability Lessons Learned From GPU Experience With The Titan 
Supercomputer at Oak Ridge Leadership Computing Facility 

Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, Don Maxwell, Proceedings of Int'l Conference on 
High Performance Computing, Networking, Storage and Analysis, Supercomputing, (SC), 2015. 
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Status – Offline Analysis 
•  Adapted ORNL’s RAVEN offline 

analysis tool for Titan log data 
Adding new techniques in RAVEN: 
•  Detection of emerging abnormal 

status of a supercomputer 
•  Taking an initial “big data” 

approach to analyzing 
unstructured logs 
•  Monitoring event streams to 

capture how much they are 
influencing one another to assess 
system health trajectory 
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Context-Preserving 
Transformation of Logs 

Database Design for 
Scalable/Flexible Insertion/
Retrieval of Logs 

Implementation of Spatial/
Temporal Query Engine 

Visualization of  Query 
Results for Investigation 

12 



RAS Data Analysis Through Visually 
Enhanced Navigation (RAVEN) (1/2) 
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RAS Data Analysis Through Visually 
Enhanced Navigation (RAVEN) (2/2) 
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Hierarchical Event Log Organizer (HELO) 
•  HELO-based event log processing 

1.  Extracts description fields for all events 
from a log 

2.  Classifies all extracted descriptions 
based on syntax analysis 

3.  Generates a template for each 
classified description group 

4.  Inserts the description template ID back 
into the log 

•  HELO has been develop for production 
use at NCSA 

•  Adapted HELO for Mira’s RAS log 
•  Analyzed a 1-month log 
•  Generated 87 templates, i.e., identified 

87 different event types 
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Correlation Analysis with HELO 
•  Exploring across-field, temporal 

and spatial event correlation 
•  Employing spatial-temporal 

filtering for event statistics and 
root-cause analysis 
•  RAS event vs. location 
•  Job event vs. location 
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Compute priority probability 

Compute joint probability 

Compute conditional probability 

Identify correlation across fields 
by probability distribution 

Generate templates by HELO 

Regularize/Filter RAS log 
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Event Log Signal Analyzer (ELSA)  
•  Extracts correlation between 

events in HELO groups using 
signal analysis 
•  Transforms event groups into 

time series (based on time 
stamps) 
•  Analyzes the time series as 

signals to identify anomalies 
•  Correlates identified anomalies 
•  Adapting ELSA to Mira 
•  Plan to integrate HELO/ELSA 

with RAVEN for offline and 
online analysis 
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Deliverables 
•  2016 
•  Initial fault catalog & models 
•  Comprehensive offline analysis framework with improved techniques 
•  Infrastructure for realistic fault injection experiments 

•  2017 
•  Updated fault catalog & models 
•  Characterization of application sensitivity using fault injection 
•  Refined instrumentation for offline analysis  

•  2018 
•  Final fault catalog & models 
•  Application and system fault and error propagation models 
•  Comprehensive online analysis framework with real-time visualization 
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Questions? 
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