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Motivation Case Study: Proactive Process Migration
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Design Patterns for Resilience

- A design pattern provides a generalizable solution to a recurring
problem

. It formalizes a solution with an interface and a behavior
specification

Case Study: Cross-Layer Hardware/Software
Hybrid Solution

- Design patterns do not provide concrete solutions

- They capture the essential elements of solutions, permitting reuse ‘ Application Code
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detection, containment and mitigation capabilities

- Enables writing patterns in consistent format to allow readers to
quickly understand context and solution
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Resilience Design Spaces Framework

- Design for resilience can be viewed as a
series of refinements
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Activation - The design process is defined by 5 design

Interface Resilience Solution Spaces

Fault Model

- Navigating each design space progressively
adds more detail to the overall design of the
resilience solution

Resilience Design Patterns Specification v1.2

- Taxonomy of resilience terms
and metrics e

Resilience Design Patterns

A Structured Approach to Resilience st Extemes Scale - version 1.2

Resilience Capability

- A single solution may solve more than one
resilience problem

Interfaces

- Survey of resilience techniques
- Multiple solutions often solve different

- Classification of resilience design
resilience problems more efficiently

patterns

Implementation Mechanisms

- Catalog of resilience design patterns

- Uses a pattern language to describe TR e
solutions . . .

Design Space Exploration for Resilience

« Vertical and horizontal pattern compositions describe the resilience
capabilities of a system

- 3 strateqy patterns, 5 architectural
patterns, 11 structural patterns,
and 5 state patterns
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- Pattern coordination leverages beneficial and avoids
counterproductive interactions

- Pattern composition optimizes the performance, resilience and power
consumption trade-off

Resilience Design Patterns Classification
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Systematic Modeling & Design of Resilience
Solutions

- Abstract the system with models:

- System component models
o Syst
(performance, resilience and Component

R%s'lli{?nce
power consumption models) Patiemn

- Resilience design pattern models
(performance, resilience and power
consumption models)

- Application models (performance,
resilience and power consumption
models)

- Evaluate solutions using modeling

. ) Parametrized
and simulation

System Model

- Discover suitability of pattern
combinations for system-specific

resilience problems .. .
P Concrete Resilience Solution

« Predict behavior on different
hardware architectures and in
different software environments

System Component Models
- Already extensive work by ORNL, ANL and LLNL in analyzing DOE systems

- The Catalog project identifies, categorizes and models the fault,
error and failure properties of DOE systems
- Fault, error and failure types
- Probability distributions
- Temporal and spatial locality and correlation
- Propagation paths and detection latency
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Resilience Design Pattern Models
+ Preliminary mathematical

reliability and performance n
y P Fault Diagnosis Taystem =To+ Y tinference/

models for each pattern =

n—1

Reconfiguration Teystem = Trr + (1 — TrF). +Thr

- Take into account detection .
latency and performance Rollback
loss due to repair and/or

system degradation

Toystem = (Trr +7)/1 where Tpp = 0 + 8/r

Roll forward Toystem = 0+ 4/r

Redundancy Teystem = Tsgr-((1 — A) + B.A)) + Ty

« Ongoing work in outcome-
based metrics considers value
and performance efficiency

- Correctness and time to solution

« Preliminary power consumption models are still work in progress

Application Models
- Significant amount of existing work in application performance models

- Some amount of existing work in application reliability models
- Application vulnerability studies
- Error propagation patterns
- Resilient solvers
- More work is needed
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application power consumption
models
- More work is needed

Modeling and Simulation for Design Space
Exploration (Future Work)

- Model the performance, resilience, and
power consumption of an entire system

- Start at compute-node granularity with f \

- System component models
H
- Simulate dynamic interactions " )

- Resilience design pattern models
between the system, resilience solutions and applications

Power

Consumption

- Application models

- Move to finer-grain resolution to include on-node communication,
computation and storage

« Build upon prior work with the Extreme-scale Simulator (xSim)

Web site: https://ornlwiki.atlassian.net/wiki/spaces/RDP, PI: Christian Engelmann, engelmannc@ornl.gov




