
Concepts for OpenMP Target Offload Resilience?

Christian Engelmann1, Geoffroy R. Vallée2, and Swaroop Pophale1

1 Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
{engelmannc,pophaless}@ornl.gov

2 Sylabs, Inc, 1191 Solano Ave, Unit 6634, Albany, CA 94706
geoffroy@sylabs.io

Abstract. Recent reliability issues with one of the fastest supercom-
puters in the world, Titan at Oak Ridge National Laboratory (ORNL),
demonstrated the need for resilience in large-scale heterogeneous com-
puting. OpenMP currently does not address error and failure behavior.
This paper takes a first step toward resilience for heterogeneous sys-
tems by providing the concepts for resilient OpenMP offload to devices.
Using real-world error and failure observations, the paper describes the
concepts and terminology for resilient OpenMP target offload, including
error and failure classes and resilience strategies. It details the experi-
enced general-purpose computing graphics processing unit (GPGPU) er-
rors and failures in Titan. It further proposes improvements in OpenMP,
including a preliminary prototype design, to support resilient offload to
devices for efficient handling of errors and failures in heterogeneous high-
performance computing (HPC) systems.

Keywords: Supercomputing · Resilience · OpenMP.

1 Introduction

Resilience, i.e., obtaining a correct solution in a timely and efficient manner, is
a key challenge in extreme-scale HPC. Heterogeneity, i.e., using multiple, and
potentially configurable, types of processors, accelerators and memory/storage
in a single platform, adds significant complexity to the HPC hardware/software
ecosystem. The diverse set of compute and memory components in today’s and
future HPC systems require novel resilience solutions.

? Research sponsored by the Laboratory Directed Research and Development Pro-
gram of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the
U.S. Department of Energy. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of En-
ergy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



2 C. Engelmann et al.

There is only preliminary work in resilience for heterogeneous HPC systems,
such as checkpoint/restart for GPGPUs using OpenCL with VOCL-FT [16].
There is also fine-grain transaction-based application-level checkpoint/restart
with the Fault Tolerance Interface (FTI) [2]. Rolex [12] is an initial set of C/C++
language extensions for fine-grain resilience, which specify how data variables
and code block execution may be repaired during program execution.

In contrast, the Titan supercomputer at ORNL experienced severe GPGPU
reliability issues over its life time (2012–2019). In late 2016, 12 out of Titan’s
18,688 GPGPUs failed per day [21]. Approximately 11,000 GPGPUs were re-
placed in the 2017–2019 time frame due to failures or high failure probability.
The only mitigation available was application-level checkpoint/restart, which
was never designed to efficiently handle such high failure rates. Titan’s suc-
cessor, the Summit supercomputer at ORNL [20], has 27,648 GPGPUs. While
it is the expectation that Titan’s severe reliability issues were a rather unique
experience, hope is not a strategy. There is an urgent need for fine-grain and low-
overhead resilience capabilities at the parallel programming model that permit
specifying what types of errors and failures should be handled and how.

Efficient software-based solutions to fill gaps in detection, masking, recovery,
and avoidance of errors and failures require coordination. Based on the underly-
ing execution model and intrinsic resilience features of the hardware, the various
components in a heterogeneous system can be organized into protection domains.
Employed resilience solutions can handle errors and failures in specific compo-
nents and granularities where it is most appropriate to do so and in coordination
with the rest of the system, which prevents errors from propagating and failures
from cascading beyond these protection domains.

This paper describes concepts for resilience in OpenMP based on real-world
observations from the largest heterogeneous HPC system in the world. It focuses
on offload to devices as a first step toward resilience in OpenMP. The paper
describes the used concepts and terminology, including general fault, error and
failure classes. It derives error and failure scopes and classes for OpenMP target
offload and maps them to the experienced GPGPU errors and failures in Titan.
Using these concepts, this paper proposes improvements to enable resilience for
OpenMP offload to devices and details a preliminary prototype design based on
the concept of quality of service (QoS).

2 System Model

This section describes the involved concepts and terminology for OpenMP target
offload. It continues with a short overview of general fault, error and failure
classes and common terms that will be used in this context. It further defines
the error and failure scopes and classes for OpenMP target offload.

2.1 OpenMP Target Offload

An OpenMP thread offloads the code and data of a target region in the form
of a target task from the host device (parent device) to a target device using a



Concepts for OpenMP Target Offload Resilience 3

target construct. The target device can be specified by a device number, otherwise
the default device number is used. The target task may be undeferred, i.e., the
OpenMP thread waits for the completion of the target task, or deferred, i.e., the
OpenMP thread does not wait for the completion of the target task. Target task
input and output data is mapped to and from the host device to the target device.
Space for target task runtime data may be allocated on the target device.

The work presented in this paper primarily focuses on an OpenMP thread
running on a conventional processor core and offloading a target region as a target
task to a GPGPU. It does not focus on an OpenMP thread executing an OpenMP
task on the host device, as the shared memory aspects are significantly more
complex and require different error and failure models. This work is, however,
applicable to a great extend to offloading a target region as a target task to other
types of target devices that OpenMP may support.

The system model assumes that target task input data is transferred or made
accessible to the target device before the target task starts, target task runtime
data is allocated before it starts, and target task output data is transferred to
or made accessible to the host device after it ends. Only the target task modifies
its input, output, and runtime data during its execution, i.e., the data is not
shared with the host device. The target task is typically a parallel execution on
the GPGPU and the data may be shared between threads on the GPGPU, i.e.,
target task data may be shared within the target device during its execution.

2.2 Faults, Errors and Failures

Error and failure behavior in OpenMP is currently undefined. Consequently, im-
plementations are left to handle them (or not) in a non-uniform way. In general,
a fault is an underlying flaw/defect in a system that has potential to cause prob-
lems. A fault can be dormant and can have no effect. When activated during
system operation, a fault leads to an error and an illegal system state. A failure
occurs if an error reaches the service interface of a system, resulting in behavior
that is inconsistent with the system’s specification. Prior work [11,19] identified
the following general fault, error and failure classes and common terms:

– {benign,dormant,active} {permanent,transient,intermittent} {hard,soft} fault
• Benign: An inactive fault that does not activate.
• Dormant: An inactive fault that potentially becomes active at some point.
• Active: A fault that causes an error at the moment it becomes active.
• Permanent: The presence of the fault is continuous in time.
• Transient: The presence of the fault is temporary.
• Intermittent: The presence of the fault is temporary and recurring.
• Hard: A fault that is systematically reproducible.
• Soft: A fault that is not systematically reproducible.
• The following common terms map to these fault classes:
∗ Latent fault: Any type of dormant fault.
∗ Solid fault: Any type of hard fault.
∗ Elusive fault: Any type of soft fault.



4 C. Engelmann et al.

– {undetected,detected} {unmasked,masked} {hard,soft} error
• Undetected: An error whose presence is not indicated.
• Detected: An error whose presence is indicated by a message or a signal.
• Masked: An error whose impact is compensated so that the system specifi-

cation is satisfied despite the incorrect state; its propagation is limited.
• Unmasked: An error that has not been compensated and has the potential

to propagate.
• Hard: An error caused by a permanent fault.
• Soft: An error caused by a transient or intermittent fault.
• The following common terms map to these error classes:
∗ Latent error or silent error: Any type of undetected error.
∗ Silent data corruption (SDC): An undetected unmasked hard or soft error.

– {undetected,detected} {permanent,transient,intermittent} {complete,partial,
Byzantine} failure
• Undetected: A failure whose occurrence is not indicated.
• Detected: A failure whose occurrence is indicated by a message or a signal.
• Permanent: The presence of the failure is continuous in time.
• Transient: The presence of the failure is temporary.
• Intermittent: The failure is temporary but recurring in time.
• Complete: A failure that causes service outage of the system.
• Partial: A failure causing a degraded service within the functional specifi-

cation.
• Byzantine: A failure causing an arbitrary deviation from the functional

specification.
• The following common terms map to these failure classes:
∗ Fail-stop: An undetected or detected failure that completely halts system

operation, which often causes an irretrievable loss of state.
∗ Fail-safe: A mode of system operation that mitigates the consequences of

a system failure.

While a fault is the cause of an error, its manifestation as a state change is
considered an error, and the transition to an incorrect service is observed as a
failure (see Fig. 1). A fault-error-failure chain is a directed acyclic graph (DAG)
with faults, errors and failures represented by its vertices. In a system composed
of multiple components, errors may be transformed into other errors and propa-
gate through the system generating further errors, which may eventually result
in a failure. A failure cascade occurs when the failure of a component A causes
an error and subsequently a failure in component B interfaced with A.

2.3 OpenMP Target Offload Error and Failure Scopes and Classes

In terms of hardware errors and failures, OpenMP offloading has a host device
and target device scope. In terms of software errors and failures, OpenMP thread
and target task scopes exist. The host device and OpenMP thread scopes are



Concepts for OpenMP Target Offload Resilience 5

Fault Error Failure
(Anomaly) (Invalid State) (System Specification Violation)

Activation Propagation

Fig. 1. Relationship between fault, error and failure

not considered in this work due to the complex shared memory aspects it in-
volves. Only target device and target task errors and failures are considered. The
following error and failure classes are defined:

– {undetected, detected} {unmasked, masked} {hard, soft} target device error
– {undetected, detected} {unmasked, masked} {hard, soft} target task error
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target device failure
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target task failure

A total of 16 error classes for target devices and target tasks are defined based
on the general error classes. Undetected masked errors are rather irrelevant, as
the masking makes them undetectable by any error detector. Detected masked
errors are less relevant, as the masking already limits error propagation. A re-
silience strategy may still do something about a detected masked error though,
such as to avoid it in the future. Undetected errors may become detectable
through a resilience strategy. Undetected errors that do not become detectable
are problematic, as no resilience strategy is able to deal with them.

A total of 36 failure classes for target devices and target tasks are defined based
on the general error failure classes. Undetected failures may become detectable
through a resilience strategy. Undetected failures that do not become detectable
are problematic, as no resilience strategy is able to deal with them.

3 Observed Errors and Failures

This section provides an overview of the observed and inferred errors and failures
in the Titan supercomputer at ORNL that are relevant for OpenMP target
offload with GPGPUs. It maps these errors and failures the previously defined
OpenMP offloading error and failure classes.

3.1 GPGPU Errors and Failures in Titan

The Titan supercomputer deployed at ORNL in November 2012 as the fastest
in the world will be decommissioned in 2019, still being the 9th fastest. It is a
hybrid-architecture Cray XK7 with a theoretical peak performance of 27 PFlops



6 C. Engelmann et al.

and a LINPACK performance of 17.95 PFlops. Each of Titan’s 18,688 compute
nodes consists of an NVIDIA K20X Kepler GPGPU and a 16-core AMD Opteron
processor. A significant amount of work has been published about the observed
and inferred errors and failures in Titan [13,9,15,14,21]. The following Titan
GPGPU (target device/task) errors can be mapped to the previously defined
OpenMP offloading error classes (see Table 1 for a summary):

– Target device error correcting code (ECC) double-bit error: A detected un-
masked soft error in target device memory. This error is detected and signaled
by the target device. It typically transitions to a target task abort.

– Target device SDC: An undetected unmasked soft error in target device memory
or logic. It is not signaled and can propagate to a target task SDC, a target
task abort, or a target task delay, including an indefinite delay (hang).

– Target task SDC: An undetected unmasked soft error in target task data. It is
not signaled and can transition to a target task abort or a target task delay,
including an indefinite delay. It may propagate to incorrect target task output.

These Titan GPGPU (target device/task) failures can be mapped to the pre-
viously defined OpenMP offloading failure classes (see Table 2 for a summary):

– Target device Peripheral Component Interconnect (PCI) bus width degrade: A
detected transient, intermittent or permanent partial failure of the PCI con-
nection between the host device and the target device. It is typically caused by
a PCI hardware failure. This failure results in degraded transfer performance
for target task input and output data. It can cascade to a target task delay.

– Target device PCI bus disconnect: A detected permanent complete failure of
the PCI connection between the host device and the target device or a detected
permanent complete failure of the target device. It is typically caused by a PCI
hardware or GPGPU failure. This failure can cascade to a target task abort.

– Target device dynamic page retirement (DPR): A detected transient complete
failure of the target device memory. It is typically caused by the GPGPU when
preventing or repairing a detected permanent partial failure of the target device
memory. This failure can cascade to a target task abort.

– Target device SXM power off: A detected permanent complete failure of the
target device. It is typically caused by a voltage fault. This failure can cascade
to a target task abort.

– Target task abort: A detected permanent complete failure of a target task. It is
typically caused by a target task error or a target device error or failure.

– Target task delay: A detected permanent partial failure of a target task. It is
typically caused by target task SDC or a target device PCI width degrade.

4 Resilience for OpenMP Target Offload

Errors may propagate or transition to failures and failures may cascade in other
parts of the system, such as the host device and OpenMP threads, depending



Concepts for OpenMP Target Offload Resilience 7

Table 1. Mapping of Titan GPGPU errors to the OpenMP offloading error classes

Error Error Class

Target device ECC double-bit error Detected unmasked soft target device error

Target device SDC Undetected unmasked soft target device error

Target task SDC Undetected unmasked soft target task error

Table 2. Mapping of Titan GPGPU failures to the OpenMP offloading failure classes

Failure Failure Class

Target device PCI width degrade Detected transient partial target device failure
Detected intermittent partial target device failure
Detected permanent partial target device failure

Target device PCI disconnect Detected permanent complete target device failure

Target device DPR Detected transient complete target device failure

Target device SXM power off Detected permanent complete target device failure

Target task abort Detected permanent complete target task failure

Target task delay Detected permanent partial target task failure

on employed resilience strategies. Since OpenMP currently does not employ re-
silience strategies, a target task abort failure will cascade to an OpenMP thread
abort failure and a target task delay failure will cascade to an OpenMP thread
delay failure. Additionally, any complete target device failure will cascade to an
OpenMP thread abort failure. Target task SDC may propagate to a OpenMP
thread SDC, which then may transition to an OpenMP thread delay or abort fail-
ure or propagate to incorrect OpenMP thread output. This section discusses the
individual needs for changes in the OpenMP standard and implementations to
employ a reasonable set of resilience strategies for OpenMP offload to devices.

4.1 Error and Failure Detection and Notification

Errors and failures need to be detected and employed resilience strategies need
to be notified in order to be able to deal with them.

Errors and failures detected by the target device are reported to the OpenMP
runtime after attempted target task execution. Employed resilience strategies
may transparently handle them. However, some resilience strategies need appli-
cation feedback to decide on the course of action, such as to asses if an error
or failure is acceptable. A reporting and feedback capability for device-detected
errors and failures is needed in OpenMP. This could be implemented using func-
tion callbacks and an OpenMP language feature for defining resilience policies
using the previously defined OpenMP offloading error and failure classes. Since
detailed error and failure information could be helpful to make decisions, such as
to assess the severity of a target device ECC double-bit error, OpenMP support
for target device error reporting to the application is needed.

Errors and failures may also be detected by the application, such as by check-
ing the correctness of target task output. A notification capability for application-



8 C. Engelmann et al.

detected errors and failures is needed in OpenMP to enable the use of resilience
strategies by the application. This could be implemented using an OpenMP
language feature for raising error notifications to the OpenMP runtime.

4.2 Fail-Fast and Graceful Shutdown

The fail-fast resilience strategy is designed to detect and report errors and fail-
ures as soon as possible. It also stops normal operation if there is no other
resilience strategy in place to handle a specific error or failure. At the very least,
the default error and failure behavior of OpenMP in general should be defined as
fail-fast. This permits resilience strategies that are in place outside of OpenMP
to efficiently handle errors and failures. A primary example is application-level
checkpoint/restart, where any computation an application continues after an
unrecoverable error or failure is wasted time.

For OpenMP target offload, fail-fast means that the host device detects and
reports errors and failures as soon as possible. It also means that the OpenMP
runtime aborts target tasks impacted by the error or failure as soon as possible.
For performance failures, such as the target device PCI width degrade that can
cascade to a target task delay, this means aborting a target task. The resilience
strategy of graceful degradation, which would risk/accept a target task delay
is described in the following subsection. The fail-fast strategy can also be em-
ployed in conjunction with application-level error or failure detection, such as
through an application-level correctness check of the target task output and a
corresponding abort upon error detection.

Graceful shutdown avoids error propagation and failure cascades beyond the
component that is being shutdown. An uncontrolled stop of normal operation,
such as a crash, can result in errors or failures in other system components. Op-
erating system (OS) features usually prevent such effects by triggering cleanup
procedures, such as after a crash. However, the OS may not have control over
everything an OpenMP application is involved in, such as when an OS bypass
is employed for networking/storage or a workflow software framework is used.
Another example is the clean execution of an Message Passing Interface (MPI)
abort after an OpenMP abort due to a target task failure. Error handlers can
perform application-level cleanup during a graceful shutdown, but they would
need to be triggered by the OpenMP runtime upon a fail-fast abort.

4.3 Graceful Degradation

Graceful degradation continues operation after an error or failure at the cost of
performance or correctness that is deemed acceptable. In case of a performance
failure, such as the target device PCI width degrade that can cascade to a target
task delay, this means not aborting a target task and accepting the possible
performance degradation, but reporting the failure to the application/user.

In case of a resource outage, such as the target device PCI disconnect that
can cascade to a target task abort, this means continuing operation with less
resources while employing a resilience strategy for aborted tasks. For example,



Concepts for OpenMP Target Offload Resilience 9

an aborted task may be re-executed on a different target device using a rollback
recovery strategy (described in the following subsection) while the failed target
device is removed from OpenMP’s pool of target devices. This requires OpenMP
support for shrinking the number of target devices after a failure.

In case of a detected error, graceful degradation means to continue operation
despite the error and to accept a possible error propagation. The application
may need to make a decision if an error is acceptable.

4.4 Rollback Recovery

The rollback recovery resilience strategy transparently re-executes an erroneous
or failed target task using the original target task input. The re-execution may be
performed on the same target device, assuming that it is available and has not
been removed from OpenMP’s pool of target devices due to graceful degradation.
If it has been removed, the re-execution is performed on a different target device.
Successive target task errors or failures may result in corresponding successive
re-executions. The number of successive rollbacks should be restricted to avoid
endless rollbacks. On systems where the target task input is not copied to the
target device but used in-place, the input may be backed up before offloading to
assure its integrity, i.e., to protect it from being corrupted.

An OpenMP language extension is needed to specify the rollback recovery
resilience strategy and its parameters, such as the maximum number of rollbacks,
for each target task. The OpenMP runtime relies on target device error and failure
detection and on application error detection notification to initiate rollbacks.

4.5 Redundancy

Redundancy in space executes target tasks at the same time on different target
devices, while redundancy in time executes them sequentially on the same target
device. A mix between both executes them on multiple target devices, where at
least one target device is being reused. Common levels of redundancy are two
and three, where two redundant target tasks detect a target task error and detect
and mask a target task failure. Three redundant target tasks detect and mask
a target task error and two target task failures. Error detection uses target task
output comparison, while error masking uses the output of the majority. Failure
detection and masking uses the output of the fastest surviving target task.

An OpenMP language extension is needed to specify the redundancy resilience
strategy and its parameters, such as redundancy level (2 or 3) and resource usage
(space, time or both). The OpenMP runtime relies on target device error and
failure detection and on application error detection notification. It also relies on
target task output comparison (e.g., bit-wise comparison or error bounds).

5 Preliminary Prototype

We detail in this section some aspects of the design and implementation of
our solution for OpenMP target offload resilience. Both are driven by software



10 C. Engelmann et al.

engineering concerns, best-practices in extreme scale computing and available
standards and libraries.

5.1 Design Details

Because our work is in the context of complex software components (a compiler),
a standard (OpenMP) and a set of new concepts (QoS), one of our main chal-
lenges from a design and software engineering point-of-view is the separation of
concerns. It is for example beneficial to have a clear separate implementation of
the QoS and OpenMP support, and enable a fine-grain interaction of the result-
ing libraries. By doing so, it becomes easier to define, implement, modify and
maintain each component, as well as explicitly and precisely define how these
components interact. We believe this is especially critical when using complex
production-level software such as a main-stream compiler (Low Level Virtual
Machine (LLVM)). Another level of complexity comes from the asynchronous
aspect of the problem we are trying to solve: the QoS runtime needs to asyn-
chronously interact with the OpenMP runtime to enable system monitoring,
fault detection and potentially recovery.

Our design centers on a novel concept for QoS and corresponding OpenMP
language and runtime extensions. The QoS language extensions allow application
developers to specify their resilience strategy without focusing on the implemen-
tation details. The QoS runtime extensions create a corresponding contract that
maps application resilience requirements to the underlying hardware and soft-
ware capabilities.

A QoS contract is defined as a set of QoS parameters that reflect the users’
resilience requirements by identifying the requested resilience strategies. We pro-
pose a QoS language that provides all the required semantics to manipulate QoS
parameters which can be applied to both application’s data and tasks. These pa-
rameters are handled via generic “get/set” interfaces, and can be expressed as:
(1) key/value pairs; (2) bounded values; and (3) ranges of values. The interface
uses the block concept, similarly to OpenMP, to define the scope in which pa-
rameters are valid and the QoS contract with the runtime system. To simplify
the definition of new QoS contracts, predefined QoS classes offer coherent sets of
parameter that achieve popular resilience strategies. By using these classes, users
only need to specify a few, if any, parameters, and let the system manage QoS
policies that are already available. The following example uses QoS key/value
pairs for specifying triple redundancy for a target task:

#pragma omp qoskv resilience (TASK_REDUNDANCY, BOOL, TRUE)

#pragma omp qoskv resilience (TASK_REDUNDANCY_FACTOR, INT, 3)

{

#pragma omp target ...

...

}

An implementation of OpenMP is extended to offer an event-based QoS-
aware runtime for resilience with a QoS Scheduler and QoS Negotiation Schemes



Concepts for OpenMP Target Offload Resilience 11

at its core (see Fig. 2). The QoS Negotiation Schemes drive the method to enforce
the QoS requirements, specifying the type of contract that the application and
the system establish. Two types of schemes are proposed: (1) best effort, for
which the system will match the requirements without strong guarantees, i.e.,
breaches of QoS contracts are possible, reported, but do not stop the execution of
the application; (2) guaranteed, for which the system will match the requirements
with strong guarantees, i.e., the application will stop in the event of a breach.

• Key/value pairs, bounded values, & ranges of values
• QoS classes

QoS Parameters

• Guaranteed
• Best effort

QoS Negotiation Schemes

• QoS contracts
• Resource management & monitoring
• Resilience responses & breach of contract notifications

QoS Scheduler

Fig. 2. Core components of a QoS-aware parallel programming model runtime

The QoS Scheduler instantiates QoS parameters and resilience strategies,
deploying a QoS contract that relies on system services (e.g., for monitoring
of task offloading and error/failure detection), as well as resource allocators
(e.g., for deploying a task on a specific GPGPU). The QoS scheduler ensures
that everything complies with the QoS contract. If a discrepancy is observed, a
breach of contract will be raised (software exception). This generates an event
that activates the configured responses, such as resilience actions. Application
developers are able to specify a function (handler) that would be automatically
called by the QoS scheduler upon a breach of a QoS contract. This enables a
programmatic way to handle breaches of QoS contracts when custom actions
are required, without imposing complex modifications of the application’s code.
Fig. 3 presents an overview of the core components that are involved for the
specification, implementation and control of QoS contract.

Our design requires coordination between the QoS and OpenMP runtimes.
Such an inter-runtime coordination requires the following capabilities: (i) no-
tifications, e.g., in order to guarantee progress, a runtime should be able to
raise an event to generically notify another runtime/library for coordination
purposes (e.g., resource management); and (ii) a key/value store shared by run-
times/libraries, for example to store and load QoS parameters. Fortunately, the



12 C. Engelmann et al.

PMIx [4] standard supports these features and existing libraries can easily be
extended to be PMIx compliant by using the PMIx reference implementation.

Fig. 3. Schematic overview of the QoS solution

5.2 Implementation details

As previously stated, our QoS library, ORQOS, developed to provide the QoS
runtime capabilities, is based on PMIx. We also extended the OpenMP runtime
to be PMIx-compliant, which ultimately enables inter-library communication
and coordination. Practically, our prototype is therefore composed of our QoS
library, ORQOS, and an extension of OpenMP based on the LLVM 7.0.0 release.
Specifically, the QoS directives and clauses for OpenMP were added to clang

and LLVM. As a result, the QoS library is fairly easy to maintain because of its
limited size and can potentially be reused in a different context. For example,
we are considering reusing it with other programming languages, such as MPI.
Similarly, the LLVM extensions remain fairly limited and easy to maintain.

Fig. 4 shows the workflow for compiling OpenMP code with QoS extensions.
When the OpenMP code is compiled, it is transformed into an intermediate
code with the QoS directives converted into calls to ORQOS. These calls per-
form two tasks: (i) initialize PMIx to permit data exchange between libraries
through its key/value store; and (ii) store QoS key/value pairs to make them
accessible to other runtimes. After generating the intermediate code, LLVM cre-
ates the binary with all the required library dependencies, including PMIx and
ORQOS. At runtime, a PMIx server that is hosting the key/value store is im-
plicitly created when the ORQOS and OpenMP runtimes connect to it. This



Concepts for OpenMP Target Offload Resilience 13

enables inter-runtime coordination through PMIx key/value pairs and PMIx
events. Monitoring and enforcement of QoS contracts is implemented only in
the ORQOS runtime, limiting the need for further modifying other components.

PMIx Server/Runtime

ORQOS 
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

OpenMP 
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

ELF Binary
Run-tim

e

#pragma omp qoskv (…)
{

…
}

PMIx_Init(…)
PMIx_Put(…)
...

Intermediate code (clang + LLVM)

OpenMP code

Generated code

PMIx_Init(…)
PMIx_Put(…)
...

Generate binary (LLVM)

Com
pile-tim

e

Fig. 4. Compile-time workflow and run-time interactions of the prototype using LLVM.

6 Related Work

The current state of practice for HPC resilience is global application-level check-
point/restart. It is a single-layer approach that burdens the user with employing
a strategy at extreme coarse granularity, i.e., the job level. Part of the current
state of practice for HPC resilience are also hardware solutions at extreme fine
granularity, such as ECC for memories, redundant power supplies, and manage-
ment systems for monitoring and control.

The current state of research is more advanced and includes fault-tolerant
MPI, fault-aware MPI, redundant MPI, proactive fault tolerance, containment
domains, and resilient algorithms. MPI solutions provide resilience at process
granularity. Fault-tolerant MPI [3] and fault-aware MPI [10] require global re-
configuration and either local or global recovery. Redundant MPI [8] has signif-
icant overheads. Containment domains [5], or sometimes referred to as recovery
blocks, use finer-grain checkpoint/restart strategies, such as at the sequential
execution block level (e.g., task) or the parallel execution block level (e.g., par-
allel loop, iteration or application phase). There is also fine-grain transaction-
based application-level checkpoint/restart with the FTI [2] essentially imple-
ments containment domains at the parallel execution block level. Resilient al-
gorithms [7,6,18,1] utilize data redundancy, computational redundancy, or self
stabilization. Individual solutions tend to be algorithm specific.

Resilience Oriented Language Extensions (Rolex) [12] offers C/C++ data
type qualifiers for resilience and C/C++ pragma directives for fault tolerant ex-



14 C. Engelmann et al.

ecution blocks. While developed independently from OpenMP, Rolex does offer
OpenMP-like resilient programming. It does not offer support for heterogeneous
systems. Rolex is also not transparent, as it requires the application program-
mer to specify resilience strategies in detail. Another OpenMP pragma-based
resilience scheme explored in DIvergent NOde cloning (DINO) [17] focuses on
data protection by immediately performing correctness check after the last use
of a variable based on a vulnerability factor metric. This scheme is limited to
soft errors in memory.

There is only preliminary work in resilience for heterogeneous systems. VOCL-
FT [16] offers checkpoint/restart for computation offloaded to GPGPUs using
OpenCL. VOCL-FT transparently intercepts the communication between the
originating process and the local or remote GPGPU to automatically recover
from ECC errors experienced on the GPGPU during computation.

7 Conclusion

This paper is motivated by experiences with GPGPU errors and failures from the
largest heterogeneous HPC system in the world. It offers concepts for resilience
using target offload as a first step toward resilience in OpenMP. It describes
the underlying concepts and terminology and the observed errors and failures.
It derives error and failure classes for OpenMP target offload from the obser-
vations using the underlying concepts and terminology. This paper proposes a
number of improvements to enable OpenMP target offload resilience, including
a preliminary prototype design and some implementation aspects using a novel
concept for QoS.

Future work includes improving the prototype to demonstrate the proposed
improvements on a large-scale heterogeneous HPC system with a scientific ap-
plication. Its evaluation will use appropriate metrics, such as, ease of use, per-
formance, and resilience. The ease of use evaluation identifies how much effort
in terms of additional lines of code and implementation time is required to
use the QoS capabilities. The performance evaluation compares an unmodified
OpenMP with the developed prototype under error- and failure-free conditions.
The resilience evaluation performs error and failure injection experiments and
measures the time to correct solution under various error and failure conditions
with different QoS contracts. Additional future work will focus on the OpenMP
language extensions for QoS, specifically on clearly defining QoS parameters and
classes. Other future work could also focus on the reuse of our QoS library in
the context of other HPC programming languages. For instance, it would be in-
teresting to investigate whether the concept of QoS could be used in the context
of MPI to specify resilience, performance and energy consumption requirements
in a portable manner. In this context, users could use QoS contracts to specify
requirements at both the application and job level but let the runtime find the
best compromise to satisfy all or most of the expressed requirements. If possible
this would enable a new set of capabilities without drastically increase the size
and complexity of standards such as OpenMP and MPI.



Concepts for OpenMP Target Offload Resilience 15

References

1. Ashraf, R., Hukerikar, S., Engelmann, C.: Pattern-based modeling of multire-
silience solutions for high-performance computing. In: Proceedings of the 9th
ACM/SPEC International Conference on Performance Engineering (ICPE) 2018.
pp. 80–87 (Apr 2018). https://doi.org/10.1145/3184407.3184421

2. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama,
N., Matsuoka, S.: FTI: High performance fault tolerance interface for hy-
brid systems. In: International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC11). pp. 1–12 (Nov 2011).
https://doi.org/10.1145/2063384.2063427

3. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure re-
covery of MPI communication capability: Design and rationale. The International
Journal of High Performance Computing Applications 27(3), 244–254 (2013).
https://doi.org/10.1177/1094342013488238

4. Castain, R.H., Solt, D., Hursey, J., Bouteiller, A.: Pmix: Process management for
exascale environments. In: European MPI Users’ Group Meeting (EuroMPI’17).
pp. 14:1–14:10 (Sep 2017). https://doi.org/10.1145/3127024.3127027

5. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L.,
Erez, M.: Containment domains: A scalable, efficient, and flexible resilience scheme
for exascale systems. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC’12). pp. 58:1–58:11.
IEEE Computer Society Press (Nov 2012). https://doi.org/10.1109/SC.2012.36

6. Davies, T., Chen, Z.: Correcting soft errors online in LU factoriza-
tion. In: Proceedings of the 22nd International Symposium on High-
performance Parallel and Distributed Computing (HPDC’13). pp. 167–178 (2013).
https://doi.org/10.1145/2493123.2462920

7. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC
on the GMRES iterative solver. In: 28th International Parallel and Dis-
tributed Processing Symposium (IPDPS’14). pp. 1193–1202 (May 2014).
https://doi.org/10.1109/IPDPS.2014.123

8. Fiala, D., Mueller, F., Engelmann, C., Ferreira, K., Brightwell, R., Riesen, R.: De-
tection and correction of silent data corruption for large-scale high-performance
computing. In: Proceedings of the 25th IEEE/ACM International Conference on
High Performance Computing, Networking, Storage and Analysis (SC’12). pp.
78:1–78:12 (Nov 2012). https://doi.org/10.1109/SC.2012.49

9. Gupta, S., Patel, T., Engelmann, C., Tiwari, D.: Failures in large scale systems:
Long-term measurement, analysis, and implications. In: International Conference
on High Performance Computing, Networking, Storage and Analysis (SC17). pp.
44:1–44:12 (Nov 2017). https://doi.org/10.1145/3126908.3126937

10. Hassani, A., Skjellum, A., Brightwell, R.: Design and evaluation of FA-MPI,
a transactional resilience scheme for non-blocking MPI. In: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. pp.
750–755 (June 2014). https://doi.org/10.1109/DSN.2014.78

11. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach
to resilience at extreme scale (version 1.2). Tech. Rep. ORNL/TM-2017/745, Oak
Ridge National Laboratory (Aug 2017). https://doi.org/10.2172/1436045

12. Hukerikar, S., Lucas, R.F.: Rolex: Resilience-oriented language extensions
for extreme-scale systems. The Journal of Supercomputing pp. 1–33 (2016).
https://doi.org/10.1007/s11227-016-1752-5

http://icpe2018.spec.org
http://icpe2018.spec.org
https://doi.org/10.1145/3184407.3184421
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1145/3127024.3127027
https://doi.org/10.1109/SC.2012.36
https://doi.org/10.1145/2493123.2462920
https://doi.org/10.1109/IPDPS.2014.123
http://sc12.supercomputing.org
http://sc12.supercomputing.org
https://doi.org/10.1109/SC.2012.49
https://doi.org/10.1145/3126908.3126937
https://doi.org/10.1109/DSN.2014.78
https://doi.org/10.2172/1436045
https://doi.org/10.1007/s11227-016-1752-5


16 C. Engelmann et al.

13. Meneses, E., Ni, X., Jones, T., Maxwell, D.: Analyzing the interplay of failures
and workload on a leadership-class supercomputer. In: Cray User Group Meeting
(CUG’14) (Mar 2014), https://cug.org/proceedings/cug2015_proceedings/

includes/files/pap169.pdf

14. Nie, B., Xue, J., Gupta, S., Engelmann, C., Smirni, E., Tiwari, D.: Characterizing
temperature, power, and soft-error behaviors in data center systems: Insights, chal-
lenges, and opportunities. In: International Symposium on the Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS’17). pp.
22–31 (Sep 2017). https://doi.org/10.1109/MASCOTS.2017.12

15. Nie, B., Xue, J., Gupta, S., Patel, T., Engelmann, C., Smirni, E., Tiwari, D.:
Machine learning models for GPU error prediction in a large scale HPC system.
In: International Conference on Dependable Systems and Networks (DSN’18). pp.
95–106 (Jun 2018). https://doi.org/10.1109/DSN.2018.00022

16. Pena, A.J., Bland, W., Balaji, P.: VOCL-FT: Introducing techniques for efficient
soft error coprocessor recovery. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC’15). pp.
1–12 (Nov 2015). https://doi.org/10.1145/2807591.2807640

17. Rezaei, A., Mueller, F., Hargrove, P., Roman, E.: DINO: Divergent node cloning
for sustained redundancy in hpc. Journal of Parallel and Distributed Computing
109, 350–362 (November 2017). https://doi.org/10.1016/j.jpdc.2017.06.010

18. Sao, P., Vuduc, R.: Self-stabilizing iterative solvers. In: Proceedings of the
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA’13). pp. 4:1–4:8 (Nov 2013). https://doi.org/10.1145/2530268.2530272

19. Snir, M., et al.: Addressing failures in exascale computing. International Journal of
High Performance Computing Applications (IJHPCA) 28(2), 127–171 (May 2014).
https://doi.org/10.1177/1094342014522573

20. Vazhkudai, S., et al.: The design, deployment, and evaluation of the CORAL pre-
exascale systems. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC’18). pp. 52:1–52:12
(Nov 2018). https://doi.org/10.1109/SC.2018.00055

21. Zimmer, C., Maxwell, D., McNally, S., Atchley, S., Vazhkudai, S.S.: GPU
age-aware scheduling to improve the reliability of leadership jobs on Titan.
In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC’18). pp. 7:1–7:11 (Nov 2018).
https://doi.org/10.1109/SC.2018.00010

https://cug.org/proceedings/cug2015_proceedings/includes/files/pap169.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap169.pdf
https://doi.org/10.1109/MASCOTS.2017.12
https://doi.org/10.1109/DSN.2018.00022
https://doi.org/10.1145/2807591.2807640
https://doi.org/10.1016/j.jpdc.2017.06.010
https://doi.org/10.1145/2530268.2530272
http://hpc.sagepub.com
http://hpc.sagepub.com
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1109/SC.2018.00055
https://doi.org/10.1109/SC.2018.00010

	Concepts for OpenMP Target Offload Resilience

