
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Concepts for OpenMP Target Offload
Resilience

Christian Engelmann (ORNL)
Geoffroy R. Vallée (Sylabs, Inc)
Swaroop Pophale (ORNL)

Contact: engelmannc@ornl.gov

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory

22

Background

• Resilience is a key challenge in extreme-scale computing
– Less reliable components (worst case: 12 GPU failures/day on Titan)
– More components (Summit has almost 50% more GPUs than Titan)
– More dependencies (1 GPU failure takes a 6-GPU node out on Summit)

• Heterogeneity adds significant complexity to the extreme-scale
hardware/software ecosystem
– No fine-grain protection domains & resilience at the component level
– Coarse-grain checkpoint/restart at the job level is standard

33

2014 2015 2016 2017 2018 2019

44

J. T. Daly. Methodology and metrics for quantifying application throughput. In Proceedings of the Nuclear
Explosives Code Developers Conference (NECDC) 2006, Los Alamos, NM, USA, Oct. 23-27, 2006.

M
Tc=

 MTTI
Interval Checkpoint

55% Worst-Case
Efficiency of Titan

55

Problem Statement

• The burden for providing resilience is currently on the user
– Global checkpoint/restart is currently the only practical solution

• A programming model needs to provide resilience with an easy to use
interface to permit wide-spread adoption
– Have clear error & failure models and corresponding abstractions

– Hide the complexities of protection domains and resilience strategies
– Offer efficient resilience with little programming burden

66

Proposed Solution

• Offer an easy to use and generic Quality of Service (QoS) interface for
resilience
– Use abstract, easy to understand, terms and programming constructs

– Enable users to define their resilience needs

• Establish QoS contracts between the application and the system
– Offer resilience QoS contract options for accelerator offload
– Report contract breaches back to the application

• Embed QoS interfaces, coordination mechanisms and resilience strategies
in the OpenMP language and runtime
– An OpenMP that is resilient to accelerator errors/failures: rOpenMP

77

Accomplished/Planned Work

1. Create models of the impact of GPU errors and failures on the OpenMP
runtime environment

2. Develop resilience strategies and corresponding protection domains for
applications using OpenMP

3. Create OpenMP QoS language extensions to allow applications to
describe resilience needs

4. Develop OpenMP runtime extensions and policies to meet application
needs with resilience strategies

5. Create prototype and demonstrate its capabilities with the miniQMC
miniapp on Summit

88

Models: General Fault Classes

Concepts for OpenMP Target O✏oad Resilience 3

target construct. The target device can be specified by a device number, otherwise
the default device number is used. The target task may be undeferred, i.e., the
OpenMP thread waits for the completion of the target task, or deferred, i.e., the
OpenMP thread does not wait for the completion of the target task. Target task
input and output data is mapped to and from the host device to the target device.
Space for target task runtime data may be allocated on the target device.

The work presented in this paper primarily focuses on an OpenMP thread
running on a conventional processor core and o✏oading a target region as a target
task to a GPGPU. It does not focus on an OpenMP thread executing an OpenMP
task on the host device, as the shared memory aspects are significantly more
complex and require di↵erent error and failure models. This work is, however,
applicable to a great extend to o✏oading a target region as a target task to other
types of target devices that OpenMP may support.

The system model assumes that target task input data is transferred or made
accessible to the target device before the target task starts, target task runtime
data is allocated before it starts, and target task output data is transferred to
or made accessible to the host device after it ends. Only the target task modifies
its input, output, and runtime data during its execution, i.e., the data is not
shared with the host device. The target task is typically a parallel execution on
the GPGPU and the data may be shared between threads on the GPGPU, i.e.,
target task data may be shared within the target device during its execution.

2.2 Faults, Errors and Failures

Error and failure behavior in OpenMP is currently undefined. Consequently, im-
plementations are left to handle them (or not) in a non-uniform way. In general,
a fault is an underlying flaw/defect in a system that has potential to cause prob-
lems. A fault can be dormant and can have no e↵ect. When activated during
system operation, a fault leads to an error and an illegal system state. A failure
occurs if an error reaches the service interface of a system, resulting in behavior
that is inconsistent with the system’s specification. Prior work [11,19] identified
the following general fault, error and failure classes and common terms:

– {benign,dormant,active} {permanent,transient,intermittent} {hard,soft} fault
• Benign: An inactive fault that does not activate.
• Dormant: An inactive fault that potentially becomes active at some point.
• Active: A fault that causes an error at the moment it becomes active.
• Permanent: The presence of the fault is continuous in time.
• Transient: The presence of the fault is temporary.
• Intermittent: The presence of the fault is temporary and recurring.
• Hard: A fault that is systematically reproducible.
• Soft: A fault that is not systematically reproducible.
• The following common terms map to these fault classes:
⇤ Latent fault: Any type of dormant fault.
⇤ Solid fault: Any type of hard fault.
⇤ Elusive fault: Any type of soft fault.

Fault Error Failure
(Anomaly) (Invalid State) (System Specification Violation)

Activation Propagation

99

Models: General Error Classes4 C. Engelmann et al.

– {undetected,detected} {unmasked,masked} {hard,soft} error
• Undetected: An error whose presence is not indicated.
• Detected: An error whose presence is indicated by a message or a signal.
• Masked: An error whose impact is compensated so that the system specifi-

cation is satisfied despite the incorrect state; its propagation is limited.
• Unmasked: An error that has not been compensated and has the potential

to propagate.
• Hard: An error caused by a permanent fault.
• Soft: An error caused by a transient or intermittent fault.
• The following common terms map to these error classes:

⇤ Latent error or silent error: Any type of undetected error.
⇤ Silent data corruption (SDC): An undetected unmasked hard or soft error.

– {undetected,detected} {permanent,transient,intermittent} {complete,partial,
Byzantine} failure
• Undetected: A failure whose occurrence is not indicated.
• Detected: A failure whose occurrence is indicated by a message or a signal.
• Permanent: The presence of the failure is continuous in time.
• Transient: The presence of the failure is temporary.
• Intermittent: The failure is temporary but recurring in time.
• Complete: A failure that causes service outage of the system.
• Partial: A failure causing a degraded service within the functional specifi-

cation.
• Byzantine: A failure causing an arbitrary deviation from the functional

specification.
• The following common terms map to these failure classes:

⇤ Fail-stop: An undetected or detected failure that completely halts system
operation, which often causes an irretrievable loss of state.

⇤ Fail-safe: A mode of system operation that mitigates the consequences of
a system failure.

While a fault is the cause of an error, its manifestation as a state change is
considered an error, and the transition to an incorrect service is observed as a
failure (see Fig. 1). A fault-error-failure chain is a directed acyclic graph (DAG)
with faults, errors and failures represented by its vertices. In a system composed
of multiple components, errors may be transformed into other errors and propa-
gate through the system generating further errors, which may eventually result
in a failure. A failure cascade occurs when the failure of a component A causes
an error and subsequently a failure in component B interfaced with A.

2.3 OpenMP Target O✏oad Error and Failure Scopes and Classes

In terms of hardware errors and failures, OpenMP o✏oading has a host device
and target device scope. In terms of software errors and failures, OpenMP thread
and target task scopes exist. The host device and OpenMP thread scopes are

Fault Error Failure
(Anomaly) (Invalid State) (System Specification Violation)

Activation Propagation

1010

Models: General Failure Classes

4 C. Engelmann et al.

– {undetected,detected} {unmasked,masked} {hard,soft} error
• Undetected: An error whose presence is not indicated.
• Detected: An error whose presence is indicated by a message or a signal.
• Masked: An error whose impact is compensated so that the system specifi-

cation is satisfied despite the incorrect state; its propagation is limited.
• Unmasked: An error that has not been compensated and has the potential

to propagate.
• Hard: An error caused by a permanent fault.
• Soft: An error caused by a transient or intermittent fault.
• The following common terms map to these error classes:

⇤ Latent error or silent error: Any type of undetected error.
⇤ Silent data corruption (SDC): An undetected unmasked hard or soft error.

– {undetected,detected} {permanent,transient,intermittent} {complete,partial,
Byzantine} failure
• Undetected: A failure whose occurrence is not indicated.
• Detected: A failure whose occurrence is indicated by a message or a signal.
• Permanent: The presence of the failure is continuous in time.
• Transient: The presence of the failure is temporary.
• Intermittent: The failure is temporary but recurring in time.
• Complete: A failure that causes service outage of the system.
• Partial: A failure causing a degraded service within the functional specifi-

cation.
• Byzantine: A failure causing an arbitrary deviation from the functional

specification.
• The following common terms map to these failure classes:

⇤ Fail-stop: An undetected or detected failure that completely halts system
operation, which often causes an irretrievable loss of state.

⇤ Fail-safe: A mode of system operation that mitigates the consequences of
a system failure.

While a fault is the cause of an error, its manifestation as a state change is
considered an error, and the transition to an incorrect service is observed as a
failure (see Fig. 1). A fault-error-failure chain is a directed acyclic graph (DAG)
with faults, errors and failures represented by its vertices. In a system composed
of multiple components, errors may be transformed into other errors and propa-
gate through the system generating further errors, which may eventually result
in a failure. A failure cascade occurs when the failure of a component A causes
an error and subsequently a failure in component B interfaced with A.

2.3 OpenMP Target O✏oad Error and Failure Scopes and Classes

In terms of hardware errors and failures, OpenMP o✏oading has a host device
and target device scope. In terms of software errors and failures, OpenMP thread
and target task scopes exist. The host device and OpenMP thread scopes are

1111

Models: OpenMP Target Offload Error and Failure Classes

Concepts for OpenMP Target O✏oad Resilience 5

Fig. 1. Relationship between fault, error and failure

not considered in this work due to the complex shared memory aspects it in-
volves. Only target device and target task errors and failures are considered. The
following error and failure classes are defined:

– {undetected, detected} {unmasked, masked} {hard, soft} target device error
– {undetected, detected} {unmasked, masked} {hard, soft} target task error
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target device failure
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target task failure

A total of 16 error classes for target devices and target tasks are defined based
on the general error classes. Undetected masked errors are rather irrelevant, as
the masking makes them undetectable by any error detector. Detected masked
errors are less relevant, as the masking already limits error propagation. A re-
silience strategy may still do something about a detected masked error though,
such as to avoid it in the future. Undetected errors may become detectable
through a resilience strategy. Undetected errors that do not become detectable
are problematic, as no resilience strategy is able to deal with them.

A total of 36 failure classes for target devices and target tasks are defined based
on the general error failure classes. Undetected failures may become detectable
through a resilience strategy. Undetected failures that do not become detectable
are problematic, as no resilience strategy is able to deal with them.

3 Observed Errors and Failures

This section provides an overview of the observed and inferred errors and failures
in the Titan supercomputer at ORNL that are relevant for OpenMP target
o✏oad with GPGPUs. It maps these errors and failures the previously defined
OpenMP o✏oading error and failure classes.

3.1 GPGPU Errors and Failures in Titan

The Titan supercomputer deployed at ORNL in November 2012 as the fastest
in the world will be decommissioned in 2019, still being the 9th fastest. It is a
hybrid-architecture Cray XK7 with a theoretical peak performance of 27 PFlops

1212

Models: Mapping of Titan GPU Errors/Failures to Classes
Concepts for OpenMP Target O✏oad Resilience 7

Table 1. Mapping of Titan GPGPU errors to the OpenMP o✏oading error classes

Error Error Class

Target device ECC double-bit error Detected unmasked soft target device error
Target device SDC Undetected unmasked soft target device error
Target task SDC Undetected unmasked soft target task error

Table 2. Mapping of Titan GPGPU failures to the OpenMP o✏oading failure classes

Failure Failure Class

Target device PCI width degrade Detected transient partial target device failure
Detected intermittent partial target device failure
Detected permanent partial target device failure

Target device PCI disconnect Detected permanent complete target device failure
Target device DPR Detected transient complete target device failure
Target device SXM power o↵ Detected permanent complete target device failure
Target task abort Detected permanent complete target task failure
Target task delay Detected permanent partial target task failure

on employed resilience strategies. Since OpenMP currently does not employ re-
silience strategies, a target task abort failure will cascade to an OpenMP thread
abort failure and a target task delay failure will cascade to an OpenMP thread
delay failure. Additionally, any complete target device failure will cascade to an
OpenMP thread abort failure. Target task SDC may propagate to a OpenMP
thread SDC, which then may transition to an OpenMP thread delay or abort fail-
ure or propagate to incorrect OpenMP thread output. This section discusses the
individual needs for changes in the OpenMP standard and implementations to
employ a reasonable set of resilience strategies for OpenMP o✏oad to devices.

4.1 Error and Failure Detection and Notification

Errors and failures need to be detected and employed resilience strategies need
to be notified in order to be able to deal with them.

Errors and failures detected by the target device are reported to the OpenMP
runtime after attempted target task execution. Employed resilience strategies
may transparently handle them. However, some resilience strategies need appli-
cation feedback to decide on the course of action, such as to asses if an error
or failure is acceptable. A reporting and feedback capability for device-detected
errors and failures is needed in OpenMP. This could be implemented using func-
tion callbacks and an OpenMP language feature for defining resilience policies
using the previously defined OpenMP o✏oading error and failure classes. Since
detailed error and failure information could be helpful to make decisions, such as
to assess the severity of a target device ECC double-bit error, OpenMP support
for target device error reporting to the application is needed.

Errors and failures may also be detected by the application, such as by check-
ing the correctness of target task output. A notification capability for application-

1313

Strategies

• Error and failure detection and notification
– Detections by the device/OS must be reported to the OpenMP runtime

• Language feature (such as a callback) for application feedback is needed to
potentially decide on the course of action (such as if an error is acceptable or not)

– Detections by the application must also be reported to the runtime
• Language feature for raising notifications to the OpenMP runtime is needed as well

1414

Strategies

• Fail-fast and graceful shutdown
– Detection, notification and controlled termination as soon as possible
– Graceful shutdown avoids error propagation and failure cascades
– Also enables proper error/failure reporting and root-cause analysis
– Should be the default behavior of OpenMP runtime and applications

1515

Strategies

• Graceful degradation
– Continue operation after an error or failure at the cost of performance

or correctness that is deemed acceptable
– May mean to continue with less or slower devices
– Requires runtime support to dynamically remove devices

• Rollback recovery
– This we know how to do: Save task data and re-execute if needed

• VOCL-FT has done this for OpenCL-accelerated applications
– Language feature to limit the maximum number of rollbacks needed

1616

Strategies

• Redundancy
– Dual- or triple-redundant execution of tasks
– Language feature to specify redundancy and type needed
– Output comparison for error detection and masking

• Redundancy in time
– Execute the same task at the same time on multiple devices

• Redundancy in space
– Execute the same task on the same device multiple times

1717

The Quality of Service (QoS) Approach

• Allow application developers to specify their resilience strategy
without focusing on the implementation details

• Create a contract that maps application resilience
requirements to the underlying hardware/software capabilities

• Specify the resilience strategy without focusing on
implementation details

1818

OpenMP QoS language extensions

• QoS contract: A set of QoS parameters that reflect resilience
requirements by identifying resilience strategies

• QoS parameters: Generic get/set interface, using: (1) key/value
pairs, (2) bounded values and (3) ranges of values

• QoS parameter scope: Code block and related data

• QoS classes: Offer coherent sets of parameters that achieve
popular resilience strategies

1919

OpenMP QoS language extensions

#pragma omp qoskv resilience (TASK_REDUNDANCY, BOOL, TRUE)

#pragma omp qoskv resilience (TASK_REDUNDANCY_FACTOR, INT, 3)

#pragma omp qoskv resilience (TASK_REDUNDANCY_MAJORITY, INT, 2)

#pragma omp qoskv resilience (TASK_REDUNDANCY_COMPARE, BOOL, TRUE)

{

#pragma omp target ...

...

}

2020

OpenMP QoS language extensions: QoS classes

#pragma omp qoskv resilience (TASK_TRIPLE_REDUNDANCY, BOOL, TRUE)

{

#pragma omp target ...

...

}

2121

Event-based OpenMP QoS runtime extensions

• Key/value pairs, bounded values, & ranges of values
• QoS classes

QoS Parameters

• Guaranteed
• Best effort

QoS Negotiation Schemes

• QoS contracts
• Resource management & monitoring
• Resilience responses & breach of contract notifications

QoS Scheduler

2222

Schematic Overview of the QoS Solution

2323

PMIx Server/Runtime

ORQOS
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

OpenMP
library/runtime

PMIx_Init(…)
PMIx_Get(…)
PMIx_Notify(...)

ELF Binary

Run-tim
e

#pragma omp qoskv (…)
{

…
}

PMIx_Init(…)
PMIx_Put(…)
...

Intermediate code (clang + LLVM)

OpenMP code

Generated code

PMIx_Init(…)
PMIx_Put(…)
...

Generate binary (LLVM)

Com
pile-tim

e

Compile-time Workflow and Run-time Interactions of the
Implemented Prototype using LLVM 7

2424

Accomplishments

• Created models of the impact of GPU errors and failures on the OpenMP
runtime environment

• Developed resilience strategies and corresponding protection domains
for applications using OpenMP

• Created OpenMP QoS language extensions to allow applications to
describe resilience needs

• Developed OpenMP runtime extensions to meet application needs with
resilience strategies

2525

Future Work

• Further extend the OpenMP QoS language and runtime extensions

• Create QoS policies to meet application needs with strategies

• Create the final prototype and demonstrate its capabilities

• Expand the QoS concept to other aspects and the trade-off between
them: performance, resilience and energy

• Expand the QoS concept to MPI and MPI+OpenMP

• Create intent-based QoS extensions for architecture agnostic
approaches

• Develop an adaptive runtime with self-awareness

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Concepts for OpenMP Target Offload
Resilience

Christian Engelmann (ORNL)
Geoffroy R. Vallée (Sylabs, Inc)
Swaroop Pophale (ORNL)

Contact: engelmannc@ornl.gov

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory

