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Motivation

• Resilience in extreme-scale systems is a optimization problem 
between the key system design and deployment cost factors:
– Performance, resilience, and power consumption

• The challenge is to build a reliable system within a given cost 
budget that achieves the expected performance.

• This requires fully understanding the resilience problem and 
offering efficient resilience mitigation technologies.

– What is the fault model of such systems?

– What is the impact of faults on applications?

– How can mitigation in hard-/software help and at what cost?
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Catalog: Characterizing Faults, Errors, and Failures 
in Extreme-Scale Systems

• Identifies, categorizes and models the fault, error and failure 
properties of US Department of Energy (DOE) systems

• Develops a fault taxonomy, catalog and models that capture the 
observed and inferred conditions in current systems and 
extrapolates this knowledge to exascale systems

• Provides a clear picture of the fault characteristics in the DOE 
computing environments.

• Improves resilience through reliable fault detection at an early 
stage and actionable information for efficient mitigation
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Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications (1/4)

• Analyzed 1.2 billion node hours of logs 
from 5 different OLCF supercomputers

• Combined information from different 
logs and created a consistent log 
format for analysis

• Used standard and created new 
methods to model the temporal and 
spatial behavior of failures

• Analyzed the evolution of temporal and 
spatial behavior over the years

• Analyzed the correlation of different 
failure types

• Compared the mean-time between 
failures of the 5 systems
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Table 3: Overall system MTBF for di�erent systems. Scale-
Normalized MTBF is calculated assuming same system contains
18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)
Jaguar XT4 36.91 15.47
Jaguar XT5 22.67 22.67
Jaguar XK6 8.93 8.93

Eos 189.04 7.45
Titan 14.51 14.51

middle part of the bath tub curve) [8, 10]. Therefore, we investi-
gate if the reliability of the system changes during the stable period?

RQ1: Are newer generations of HPC systems becoming less reli-
able?
RQ2: During the stable operational period, does the reliability of
the system changes signi�cantly? If so, by how much?

We use the mean time between failure (MTBF) as the �rst metric
to study a system’s reliability. System MTBF has been a commonly
used measure of a system’s reliability to represent how often the
system is expected to experience a failure on average. It is a simple,
and hence most prevalent, measure of temporal behavior of failure
events on a system. Therefore, we start our analysis by comparing
the MTBF of di�erent systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized
MTBF metric. As shown in Table 1, all systems in our study are
not of the same scale (in terms of number of nodes), therefore, sim-
ply comparing the system MTBF is not a fair comparison for sys-
tem with higher number of nodes. Therefore, the scale-normalized
MTBF metric is presented to compare systemMTBF as if all systems
were deployed with the same number of compute nodes, as de�ne
below.

Scale-Normalized MTBF = MTBF⇥Num of Nodes in the System
Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled
MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar
XT4 and Jaguar XT5 are two consecutive generations of Cray sys-
tems that shared several design features. Similarly, Jaguar XK6 and
Titan XK7 are also two consecutive generations of Cray systems.
We found that it is possible that newer generation of systems may
have higher scale-normalized MTBF than previous generation of
systems. While one metric may not always capture the full relia-
bility characteristics of a system as we discuss later, we observe
the reliability doesn’t necessarily decrease monotonically over dif-
ferent generations of the HPC systems, as projected by previous
studies [11, 26].

Next, we show that comparison across systems based on scale-
normalized MTBF averaged over the whole time may lead to in-
complete and inaccurate characterization. Fig. 1 shows how the
scale-normalized MTBF of the system changes over time. The plot
shows the scale-normalized MTBF metric averaged over each quar-
ter. We point out that we experimented with di�erent granularities
(e.g., week, month, quarter) and were able to ensure statistical sig-
ni�cance for comparison with quarter granularity.

Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of
the systems. For example, Jaguar XT5 systems shows approximately
4x change in scale-normalized MTBF and Titan system shows ap-
proximately 2.5x change in scale-normalized MTBF over time. We
also observe that during some time periods newer generation of
systems have higher scale-normalized MTBF, while during some
time periods previous generation of systems are more reliable –
indicating that there is not necessarily a monotonic trend at the
system level as projected by technology trends and other stud-
ies [8, 10]. We also con�rmed that these changes in MTBF are not
due to software upgrades, as also discussed later di�erent failure
types also exhibit this behavior. This also indicates that improved
operational practices and acceptance tests (e.g., better benchmark
suites for inducing GPU speci�c failures, new memory errors, etc.)
have been able to balance the e�ects of decreasing reliability at
the device level, and we should continue to focus on investing into
improved system maintenance and operational cost in the future.

Summary Our �eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di�erent generations of the HPC systems. Even during the
stable operational period the system MTBF may change by
up to 4x , contrary to conventional wisdom that MTBF of
HPC system during stable operational period doesn’t vary
signi�cantly.

Given the signi�cant variance in system reliability, HPC system
acquisition teams should also consider adding upper bound
on the variance in MTBF as a key metric in the request for
proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility
and support available should the reliability drops below a
certain threshold, instead of only system administrators trying
to improve the user experience during such period.

As optimal checkpointing intervals employed by applications
depend on the MTBF [2], this information should be exposed to
the HPC users easily and systematically to reduce the impact
of failures (i.e., wasted work). Unfortunately, exposing failure
frequency to users is not a widely-adopted practice yet because
of the conventional wisdom that systemMTBF is fairly constant
over time for a stable system.
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Fig. 7: Spatial distribution of failures among cabinets in the system.

TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.

(a) Jaguar XT4 (b) Eos

Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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Fig. 7: Spatial distribution of failures among cabinets in the system.

TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.

(a) Jaguar XT4 (b) Eos

Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.
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Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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Fig. 4: QQ-plots showing goodness of fit for interarrival times of different systems with different probability distribution functions.

(a) (b)

Fig. 5: Weibull shape parameter of each system (overall) and each failure type (a), and Weibull shape parameter of each system
(overall) over time (b). Failures that do not have enough samples to generate a meaningful shape parameters are omitted from the
chart. Eos does not have enough failure events in each quarter to have statistically meaningful shape parameter in each quarter.

temporal locality and not autocorrelation. To answer this, we
look at the Weibull shape parameter and autocorrelation at
lag 1. The correlation between these two measures across
all systems is 0.84. In other words, a system with higher
autocorrelation has higher shape parameter (hence, low degree
of temporal locality). This shows a contradiction in the mea-
sures. This is because shape parameter captures the property
of system having a higher failure rate after a failure event has
occurred, while autocorrelation captures the periodicity in the
data.

Observation 4. Degree of temporal locality should not be
confused with auto-correlation. We show that auto-correlation
is useful for capturing periodicity, but not temporal locality.
In all the systems considered in this study, the amount of
periodicity is system failures in very limited.

In Fig. 5(a), the shape parameter of a failure type is
obtained by filtering out the failure events of the same type
from the logs and fitting the inter-arrival times into a Weibull
distribution. Naturally, the MTBF of different failure types
are also different, and hence, the scale parameter is also in
accordance to the MTBF and shape parameter. We do not
show scale parameter values because they are not related to
the degree of temporal locality. Our results indicate that the
degree of temporal locality varies significantly between the
failure types. It is interesting to see that the failures types that
are common among systems show similar degree of temporal
locality across different systems. For example, Kernel Panic
and LBUG are software related issues and they show low
Weibull shape parameter, i.e., high degree of temporal locality.
This is true across all systems that observe Kernel Panic and
LBUG. Similarly, Voltage fault does not show good temporal
locality and its Weibull shape parameter is closer to 1 or higher
than 1. This is true for all other systems except Eos XC30
where Voltage fault show smaller shape parameter (0.42).

Observation 5. Different failure types can have significantly
different degree of temporal locality. Some failure types, which
are common between different systems, also show similar
degree of temporal locality, such as Voltage Fault, Kernel Panic
and LBUG. The failure rate of common failure types may vary
across systems, but the degree of temporal locality may be very
similar. This can be exploited for other purposes including job
scheduling, proactive fault tolerance techniques.

Next, we attempt to understand how degree of temporal
locality varies over time for different systems. Fig. 5(b) shows
the Weibull shape parameter on quarterly basis for Jaguar XT4,
Jaguar XT5, Jaguar XK6, and Titan XK7 systems. The smallest
system in size, Eos XC30, has been committed because the
failure events in each quarter are not enough to draw a
statistically meaningful Weibull shape parameter. The Weibull
shape parameter for Jaguar XT4 varies between 0.58 and 0.99.
For Jaguar XT5, it declines from 0.76 down to 0.66, and
hence, showing an increase in the degree of temporal locality.
For Titan XK7, the Weibull shape parameter stays between
0.61 and 0.88 while showing a slight trend towards overall
decreasing average. But, as seen in the case of Jaguar XT4,
after Q1 2010 the Weibull shape parameter had a significant
increase and then a drop again in 2011, we can not draw
any conclusive trends from this data. These results indicate
that similar to MTBF metric, degree of temporal locality also
varies significantly over time and to varying extent for different
systems.

We also analyze how phases of MTBF change from
Fig. 1(a) correlate with quarterly Weibull shape parameter. The
correlation coefficient for Jaguar XT4, Jaguar XT5, Jaguar
XK6, and Titan is 0.81, 0.71, -0.97, and -0.03. Therefore,
increase in MTBF may result in higher shape parameter
for Jaguar XT4 and Jaguar XT5 while its the opposite for
Jaguar XK6. Moreover, Titan does not have any significant
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QQ-plots showing goodness of fit for the failure inter-arrival times for 4 studied 
systems with different failure probability density functions (Weibull fits best)



Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications (4/4)

• MTBF can change significantly over time, with often a non-monotonic trend, 
which makes it averaged over lifetime an unattractive choice as metric.

• A set of dominant failure types is common across systems. Only very few 
types contribute most of the failures for each system.

• The degree of temporal locality, which is very high in all studied systems, 
captures temporal characteristics better than auto-correlation.

• Several failure types are likely to reoccur within a short amount of time (e.g., 
one hour) on all systems.

• Spatial locality exists in all systems at all granularities.

• Titan is the only system where spatial locality may be an artifact of the 
power/cooling infrastructure, i.e., hotter parts of the system experience 
more failures.

• The studied systems best fit the Weibull distribution.

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.



LogSCAN: A Big Data Analytics Framework for HPC 
Log Data

• Improved the analysis of 
supercomputer reliability, availability 
and serviceability (RAS) logs using 
modern Big Data analytics tools to 
understand resilience issues at scale

• Assessing system status, identifying 
reliability event patterns and 
correlating events with application 
performance improves supercomputer 
efficiency by identifying error and 
failure modes

• Created a multi-user Big Data analytics 
framework –Log processing by Spark 
and Cassandra-based ANalytics
(LogSCAN) – in ORNL’s private cloud 
of Compute and Data Environment for 
Science (CADES)

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

LogSCAN uses Apache Spark and 
Cassandra to analyze logs and health 

data in a combined offline/online fashion

B. H. Park, Y. Hui, S. Boehm, R. A. Ashraf, C. Layton, and 
C. Engelmann. A Big Data Analytics Framework for 
HPC Log Data: Three Case Studies Using the Titan 
Supercomputer Log. HPCMASPA’18.



Analyzing the Impact of System Reliability Events 
on Applications in the Titan Supercomputer

• Created an understanding of the 
impact of non-fatal reliability events on 
scientific application performance.

• Co-analyzed 13 months of application 
scheduling and reliability event data 
from ORNL’s Titan supercomputer

• Studied the performance characteris-
tics of scientific applications which are 
most affected by RAS events

• Identified system components that are 
most likely to impact the performance 
of scientific applications

• Quantified the slowdown of scientific 
application jobs due to RAS events 
from different components

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Slowdown assessment of applications 
executed on ORNL’s Titan 

supercomputer due to reliability issues 
in various system components: 

R. A. Ashraf and C. Engelmann. Analyzing the Impact of 
System Reliability Events on Applications in the Titan 
Supercomputer. FTXS’18.



System Information Entropy: A Comprehensive 
Informative Metric for Analyzing HPC System Status (1/2)

• Created the System Information 
Entropy (SIE) metric to concisely 
represent health status in a time series

• This metric aids operators in assessing 
system health status by easily and 
quickly identifying its changes

• Used ORNL’s multi-user Big Data 
analytics framework (LogSCAN)

• Analyzed 3+ years of log data from 
ORNL’s Titan (Jan. 2015 – Mar. 2018)

• Applied Principal Component Analysis 
and Shannon Entropy Theory to 
calculate SIEs based on different 
record vs. feature views of the data

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

SIE with Source Type layout (top),
SIE with Nodal Map layout (middle), and

Total event count (bottom)

Y. Hui, B. Park, and C. Engelmann. A Comprehensive 
Informative Metric for Analyzing HPC System Status 
using the LogSCAN Platform. FTXS’18.



System Information Entropy: A Comprehensive 
Informative Metric for Analyzing HPC System Status (2/2)

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

SIE with Source Type layout (top),
SIE with Nodal Map layout (middle), and

Total event count (bottom)



LogAider: Offline Mining of Correlations in
Supercomputer System Logs

• A tool that for mining fault, 
error and failure correlations 
in supercomputer system logs

• Explores correlation across 
fields

• Permits spatial correlation 
analysis

• Enables temporal correlation 
analysis

• Helps in identifying 
propagation chains

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck 
Cappello. LOGAIDER: A tool for mining potential 
correlations of HPC log events. CCGrid’17.

Accuracy of temporal correlation analysis

Spatial K-means clustering based 
on torus network



Exploring Properties and Correlations of Fatal 
Events in a Large-Scale HPC System

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Fatal and warn messages both exhibit 
transitivity property

Explore best fit distribution of fatal 
event intervals (left) and spatial 
correlation of fatal events (right)

Sheng Di, Hanqi Guo, Rinku Gupta, Eric R. Pershey, Marc Snir, 
and Franck Cappello. Exploring Properties and Correlations of 
Fatal Events in a Large-Scale HPC System. in TPDS

• Analyzed 5 years of of system logs from 
ALCF’s Mira supercomputer using the  
LogAider tool for mining correlations

• Takeaways:

– ~80% of the fatal events are 
covered by ~20% of attribute values

– Strong correlations between 
different message IDs, especially 
between fatal and warn message ID

– Mean time between fatal events 
(MTBFE) is 1.3 days

– Weibull is best fit for most events



La VALSE: Visual Analysis of Logs in Supercomputers (1/2)

• A tool for interactive exploration 
of logs with automatic analysis

• For system admins and users

• Multidimensional view: Filtering 
11M events with attributes

• Machine view: Visualizing and 
querying 100K components with 
levels-of-details rendering

• Timeline view: Visualizing trends 
and individual events with novel 
visual designs

• Automatic analysis:
Spatiotemporal correlation with 
dynamic time warping and 
longest common subsequence

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Principal Investigators: Hanqi Guo, Sheng Di, Rinku
Gupta, and Franck Cappello – ANL

La VALSE’s graphical user interface



La VALSE: Visual Analysis of Logs in Supercomputers (2/2)

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.



REFINE: Compiler-level Fault Injection
with High Accuracy and Flexibility

• Allows error propagation studies, 
while maintaining a high accuracy 
when injecting faults

• REFINE is a fault injector that 
instruments applications at the 
compiler backend code

• Because instrumentation occurs at 
the backend, it is closer to machine 
code and as a result can consider 
a larger set of instructions when 
injecting faults

• It provides more accurate and 
more efficient fault injection than 
state-of-the-art IR or application-
level fault injection tools

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S. 
Nikolopoulos, Martin Schulz. REFINE: Realistic Fault 
Injection via Compiler-based Instrumentation for 
Accuracy, Portability and Speed. SC’17.

Instrumentation method and
accuracy of REFINE



FlipTracker: Understanding Natural Error
Resilience  in HPC Applications

• Identified computational 
patterns that explain why some 
science applications are 
naturally resilient to errors

• FlipTracker is a framework that 
identifies naturally resilient code 
patterns

• We found six computational 
resilience patterns in ten 
science programs:
– LULESH, CG, MG, LU, BT, 

IS, DC, SP, FT, KMEANS

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.

Luanzheng Guo, Dong Li, Ignacio Laguna, Martin Schulz. 
FlipTracker: Understanding Natural Error Resilience in HPC 
Applications. SC’18.

HPC Application

for (...) {
x = y * ...
double tmp = x + ...
result = ...

}

y = ...

z = result * ...

while (...) {. ...

Pattern 1
Dead Corrupted 

Locations

Pattern 2
Repeated 
Additions

Pattern 3
Conditional 
Statements

Pattern 4
Shifting

Pattern 5
Data Truncation

Pattern 6
Data Overwriting

This article was featured in HPCwire’s “What’s 
New in HPC Research” article on Sep/18/18.

A resilient pattern example is repeated 
additions, where an erroneous value is 
amortized by many correct addition operations



Questions?

• Web site: https://ornlwiki.atlassian.net/wiki/display/CFEFIES
• Contact:

– Christian Engelmann, engelmannc@ornl.gov

C. Engelmann. Resilience for Extreme Scale Systems: Understanding the Problem. SIAM CSE'19, Spokane, WA, USA.
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