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The Sky is Falling vs. Nothing to See Here

 Nobody buys supercomputers that don’t work!
— High error or failure rates “out of the box” are unacceptable
— The supercomputer industry does need help with that, though

« However, significant and unexpected reliability issues
during operation do happen!

— Bad solder, dirty power, unexpected early wear-out, etc.
— See Titan GPU failures as an example (SC'18 paper)

 We need to design the HPC hardware/software

ecosystem to be able to deal with high error and
failure rates!

— It's risk mitigation 101
— There is a cost/benefit trade-off, though

%OAK RIDGE

National Laboratory




%OAK RIDGE

National Laboratory

AR
Ql“lmg(?_ ;

0101011010101 01 g1 e 00 !

Q1Q

What does fail, why and how?¢ Are
our assumptions correcte
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Reliability of HPC systems: Large-term e AN

RIDGE
Measurement, Analysis, and Implications (1/3)
« Analyzed 1.2 billion node hours of —#=Jaguar XT4 —<— Jaguar XT5 ---*--Jaguar XK6
logs from & different OLCF o EOS ——Titan
supercomputers 3 40 nt X
. . 535 N i \‘, :
« Combined information from different w2 . ‘V,’u !
logs and created a consistent log £ 20 o~ ),’
H 15 L ¥
format for analysis T | e
| S ee : OO RR X
« Used standard and created new R 0 R O A
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methods to model the temporal and
. . . 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |2015
spatial behavior of failures

. Scale-normalized MTBF of each system
® AﬂCﬂyzed The eVO|UTIOI’1 Of TempOI’Cﬂ over time (averaged quarterly)

and spatial behavior over the years

) ) Scale-Normalized MTBF = MTBFxNum of Nodes in the System
- Analyzed the correlation of different Max Number of Nodes across all Systems

failure types

Saurabh Gupta, Devesh Tiwari, Tirthak Patel, and Christian
« Compared the mean-time between Engelmann. Reliability of HPC systems: Large-term

foilures Of ’rhe 5 sys’rems Measurement, Analysis, and Implications. SC’17.
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Failure inter-arrival time for 3 studied systems (MTBF as red vertical line)
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(c) Titan

Spatial distribution of failures among cabinets for 3 studied systems
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QQ-plots showing goodness of fit for the failure inter-arrival times for 4 studied
systems with different failure probability density functions (Weibull fits best)
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If You Can't Measure i,
Improve It.

AR
Ql“lmg(?_ ;

0101011010101 01 g1 e 00 !

Q1Q

How do we get from lengthy post-
mortem analysis to real-time
operational intelligence?
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LogSCAN Real-Time Processing Architecture

</ Tornado
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@ Kapacitor
Compute and Data Environment for Science (CADES)

B. H. Park, Y. Hui, S. Boehm, R. Ashraf, C. Engelmann, and C. Layton. A Big Data Analytics Framework for HPC Log Data:
Three Case Studies Using the Titan Supercomputer Log. HPCMASPA'18.
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New Metrics to Evaluate HPC System Health

3D

General Form of Data Table

Feature 1 Feature 2 Feature N

Record 1

Record 2

Record M

Variance Distribution of Principal Components
2D fl Z

k .
10

1D Shannor;{ Entropy
H==) &ilogs(5)

Entropy: in a general “b-ary” form

2D Principal Components in Feature Space 1D System Information Entropy (SIE)
SVD = ¢; W(t) = pH®
oj: i-th variance out of k eigenvalues of the SVD decomposition b: the logarithmic base used in calculating H. In our analysis, b = 10.

a;: total event counts for the application

System Reliability Event Counts

A=lay az-ay]

o:n
|

Application System Impact (ASI)

M, _stet

ASI = -2 =
l4ll, e

I ll;, and || l;, represent the L;- and L,-norm applied on A, respectively.

The value of ASl is limited to the range (0, 1). When ASI approaches 1, it represents high sparsity or a time interval in which only a few applications are generating
most of system reliability events and vice versa.

Y. Hui, B. H. Park, and C. Engelmann. A Comprehensive Informative Metric for Analyzing HPC System Status using the
LogSCAN Platform. FTXS’19.
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Real-Time Analysis of System Information Entropy
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SIE with Source Type layout (top),
SIE with Nodal Map layout (middle), and
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Why do we abort and restart an
entire job when 1 out of 27,648 GP

has an errore Why don't we just re-
run the single failed GPU executione
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Novel Solution: Design Patterns for Resilience

A design pattern provides a generalizable solution to a
recurring problem

e |t formalizes a solution with an inferface and a behavior
specification

« Design patterns do not provide concrete solutions

« They capture the essential elements of solutions, permitting
reuse and different implementations

« State patterns provide encapsulation of system state for
resilience

« Behavioral patterns provide encapsulation of detection,
containment and mitigation techniques for resilience
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Anatomy of a Resilience Design Pattern

%

A resilience design
pattern is defined in an
event-driven paradigm

Instantiation of pattern
behaviors may cover
combinations of
detection, containment
and mitigation
capabilities

Enables writing patterns in
consistent format to allow
readers to quickly
understand context and
solution
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Resilience Design Patterns Specification v1.2

« Taxonomy of resilience terms and metrics

« Survey of resilience techniques

Resilience Design Patterns

° ClOSSiﬁCOﬂOﬂ Of resi”ence design poﬂ'erns A Structured Approach to Resilience at Extreme Scale - ersion 1.

« Catalog of resilience design patterns

— Uses a pattern language to describe
solutions

— 3 strategy patterns, 5 architectural
patterns, 11 structural patterns, and &
state patterns

« Case studies using the design patterns

OAK RIDGE NATIONAL LABORATORY

« Aresilience design spaces framework

S. Hukerikar and C. Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme
Scale (Version 1.2). Tech. Report, ORNL/TM-2017/745, 2017. DOI: 10.2172/1436045
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Case Study: Checkpoint Recovery with Rollback

Application Code
o Scientific Domain Specific Litjraries
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Case Study: Proactive Process Migration
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Case Study: Cross-Layer Hardware/Software Hybrid
Solution
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Resilience by Design and not as an
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Understanding the cost/benefit

frade-off requires a design space
exploration process!
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Resilience Design Spaces Framework

 Design for resilience can be : .
viewed as a series of refinements Protection Domain

* The design process is defined by
5 design spaces cqult Model

« Navigating each design space
progressively adds more detail to
the overall design of the Resilience Capability
resilience solution

>

« A single solution may solve more
than one resilience problem

* Multiple solutions often solve
dlfferenT reS”Ience prOblemS |mp|emen1‘0hon Mechanisms
more efficiently
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Design Space Exploration for Resilience

%

Vertical and horizontal
pattern compositions
describe the resilience
capabilities of a system

Pattern coordination
leverages beneficial and
avoids counterproductive
interactions

Pattern composition
optimizes the
performance, resilience
and power consumption
trade-off
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Case Study: Multiresilient Iterative Linear Solver

« GMRES minimal residual FT-GMRES Solver
method for solving non-
symmetric linear systems

— Solve: Ax=Db
— Iterative algorithm

« Resilience patterns provide
detection, containment,
and mitigation for soft and
fail-stop errors

— Different soft error detectors
for inner loop

— In-memory checkpointing for
process failures

R. Ashraf, S. Hukerikar, and C. Engelmann. Pattern-based Modeling of Multiresilience Solutions for

High-Performance Computing. ICPE 2018. DOI 10.1145/3184407.3184421.
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Modeling and Simulation for Design Space Exploration
(Ongoing Work)

 Model the performance, resilience,
and power consumption of an
entire system

« Start at compute-node granularity
with

— System component models / \
— Resilience design pattern models

— Application models
. .. ) ¥ Resilience
« Simulate dynamic interactions ! .

between the system, resilience
solutions and applications

« Move to finer-grain resolution to
include on-node communication,
computation and storage
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Resources and Contact

« Catalog: Characterizing Faults, Errors, and Failures in
Extreme-Scale Systems

— https://ornlwiki.atlassian.net/wiki/spaces/CFEFIES

» Resilience Design Patterns: A Structured Approach to
Resilience at Extreme Scale

— https://ornlwiki.atlassian.net/wiki/spaces/RDP

« Christian Engelmann, Oak Ridge National Laboratory
— engelmannc@ornl.gov
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