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The Sky is Falling vs. Nothing to See Here

• Nobody buys supercomputers that don’t work!
– High error or failure rates “out of the box” are unacceptable
– The supercomputer industry does need help with that, though

• However, significant and unexpected reliability issues 
during operation do happen!
– Bad solder, dirty power, unexpected early wear-out, etc.
– See Titan GPU failures as an example (SC’18 paper)

• We need to design the HPC hardware/software 
ecosystem to be able to deal with high error and 
failure rates!
– It’s risk mitigation 101
– There is a cost/benefit trade-off, though



ORNL is managed by UT-Battelle, LLC 
for the US Department of Energy

Understanding the Problem is Key

What does fail, why and how? Are 
our assumptions correct?
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Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications (1/3)

• Analyzed 1.2 billion node hours of 
logs from 5 different OLCF 
supercomputers

• Combined information from different 
logs and created a consistent log 
format for analysis

• Used standard and created new 
methods to model the temporal and 
spatial behavior of failures

• Analyzed the evolution of temporal 
and spatial behavior over the years

• Analyzed the correlation of different 
failure types

• Compared the mean-time between 
failures of the 5 systems
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Scale-normalized MTBF of each system 
over time (averaged quarterly)

Saurabh Gupta, Devesh Tiwari, Tirthak Patel, and Christian 
Engelmann. Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications. SC’17.

Table 3: Overall system MTBF for di�erent systems. Scale-
Normalized MTBF is calculated assuming same system contains
18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)
Jaguar XT4 36.91 15.47
Jaguar XT5 22.67 22.67
Jaguar XK6 8.93 8.93

Eos 189.04 7.45
Titan 14.51 14.51

middle part of the bath tub curve) [8, 10]. Therefore, we investi-
gate if the reliability of the system changes during the stable period?

RQ1: Are newer generations of HPC systems becoming less reli-
able?
RQ2: During the stable operational period, does the reliability of
the system changes signi�cantly? If so, by how much?

We use the mean time between failure (MTBF) as the �rst metric
to study a system’s reliability. System MTBF has been a commonly
used measure of a system’s reliability to represent how often the
system is expected to experience a failure on average. It is a simple,
and hence most prevalent, measure of temporal behavior of failure
events on a system. Therefore, we start our analysis by comparing
the MTBF of di�erent systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized
MTBF metric. As shown in Table 1, all systems in our study are
not of the same scale (in terms of number of nodes), therefore, sim-
ply comparing the system MTBF is not a fair comparison for sys-
tem with higher number of nodes. Therefore, the scale-normalized
MTBF metric is presented to compare systemMTBF as if all systems
were deployed with the same number of compute nodes, as de�ne
below.

Scale-Normalized MTBF = MTBF⇥Num of Nodes in the System
Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled
MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar
XT4 and Jaguar XT5 are two consecutive generations of Cray sys-
tems that shared several design features. Similarly, Jaguar XK6 and
Titan XK7 are also two consecutive generations of Cray systems.
We found that it is possible that newer generation of systems may
have higher scale-normalized MTBF than previous generation of
systems. While one metric may not always capture the full relia-
bility characteristics of a system as we discuss later, we observe
the reliability doesn’t necessarily decrease monotonically over dif-
ferent generations of the HPC systems, as projected by previous
studies [11, 26].

Next, we show that comparison across systems based on scale-
normalized MTBF averaged over the whole time may lead to in-
complete and inaccurate characterization. Fig. 1 shows how the
scale-normalized MTBF of the system changes over time. The plot
shows the scale-normalized MTBF metric averaged over each quar-
ter. We point out that we experimented with di�erent granularities
(e.g., week, month, quarter) and were able to ensure statistical sig-
ni�cance for comparison with quarter granularity.

Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of
the systems. For example, Jaguar XT5 systems shows approximately
4x change in scale-normalized MTBF and Titan system shows ap-
proximately 2.5x change in scale-normalized MTBF over time. We
also observe that during some time periods newer generation of
systems have higher scale-normalized MTBF, while during some
time periods previous generation of systems are more reliable –
indicating that there is not necessarily a monotonic trend at the
system level as projected by technology trends and other stud-
ies [8, 10]. We also con�rmed that these changes in MTBF are not
due to software upgrades, as also discussed later di�erent failure
types also exhibit this behavior. This also indicates that improved
operational practices and acceptance tests (e.g., better benchmark
suites for inducing GPU speci�c failures, new memory errors, etc.)
have been able to balance the e�ects of decreasing reliability at
the device level, and we should continue to focus on investing into
improved system maintenance and operational cost in the future.

Summary Our �eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di�erent generations of the HPC systems. Even during the
stable operational period the system MTBF may change by
up to 4x , contrary to conventional wisdom that MTBF of
HPC system during stable operational period doesn’t vary
signi�cantly.

Given the signi�cant variance in system reliability, HPC system
acquisition teams should also consider adding upper bound
on the variance in MTBF as a key metric in the request for
proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility
and support available should the reliability drops below a
certain threshold, instead of only system administrators trying
to improve the user experience during such period.

As optimal checkpointing intervals employed by applications
depend on the MTBF [2], this information should be exposed to
the HPC users easily and systematically to reduce the impact
of failures (i.e., wasted work). Unfortunately, exposing failure
frequency to users is not a widely-adopted practice yet because
of the conventional wisdom that systemMTBF is fairly constant
over time for a stable system.

3
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Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications (2/3)
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Reliability of HPC systems: Large-term 
Measurement, Analysis, and Implications (3/3)
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(a) Jaguar XT4 (b) Titan (c) Eos
Failure inter-arrival time for 3 studied systems (MTBF as red vertical line)
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Fig. 7: Spatial distribution of failures among cabinets in the system.

TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.

(a) Jaguar XT4 (b) Eos

Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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Fig. 7: Spatial distribution of failures among cabinets in the system.

TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.

(a) Jaguar XT4 (b) Eos

Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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Fig. 7: Spatial distribution of failures among cabinets in the system.

TABLE IV: Results of KS-test: D-statistic and critical D-value for
0.05 significance level.

System D-statistic Critical D-value Null hypothesis
Jaguar XT4 0.5244 0.0455 Reject
Jaguar XT5 0.3955 0.0516 Reject
Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject
Titan 0.3292 0.0364 Reject

We also conduct Kolmogorov-Smirnov test (KS-test) to
confirm that our observed empirical data is significantly dif-
ferent than uniform distribution. The null hypothesis in KS-
test is that the spatial distribution is taken from a uniform
distribution. Table IV shows the D-statistic and critical D-
value for a 0.5 significance level. For each system, we find
that the null hypothesis is rejected because D-statistic is higher
than critical D-value. Therefore, for all the systems we study
here, the observed distribution is significantly different than a
uniform distribution. We also looked at distributions of failures
on blade and node level, and observe that it also shows such
non-uniformity in the distribution. Due to lack of space, we
do not present these results.

Previous work [5] has shown that for some systems, the
failures are more concentrated in the upper cage in a cabinet
because upper cages are relatively hotter than lower cages and
hence, temperature-sensitive failures are more likely to occur
in upper cages. Therefore, the non-uniformity in the spatial
distribution may be attributed to this. To test this, we plotted
fraction of failures in three cage levels across all systems
(Fig. 8). We found that failures are not necessarily concentrated
in one particular cage level, indicating that power/cooling
mechanism is not necessarily causing all the spatial locality
observed on all systems.

Observation 8. Spatial distribution of failures is not uniform.
This indicates that some locations in the system are more likely
to see failures than others and this property exists across
all of the systems in our study. Also, we demonstrated that
spatial locality property is not an artifact of power/cooling
infrastructure.

This non-uniformity of spatial distribution suggests that
failure events are not independent in space. Therefore, we
study their spatio-temporal characteristics in the following
section.

E. Spatio-temporal Behavior of Failures

In this section, we compare the systems based on their
spatio-temporal behavior of system failure events. In other
words, we look at the recurrence of failures while taking their

Fig. 9: Distribution of failures among cage levels across all
systems for different failure types. Note that Cage 0 is the
lowest and Cage 2 is on top of the stack in the cabinet.

(a) Jaguar XT4 (b) Eos

Fig. 10: Spatial locality for Jaguar XT4 and Eos systems at
different granularity (time window of up to 96 hours).

location into account. We analyze spatio-temporal behavior us-
ing a conditional probability based measure of spatial locality.
We leverage previous works such as [18, 22] for quantification
of ‘spatial locality’ as a conditional probability. Spatial locality
is defined as the conditional probability that given a failure has
occurred in this location, what is the probability a failure will
reappear in the same locale in a given future window. We
express this idea mathematically in the following:

Assume a time series of events F where each event has a
timestamp (t) and location (✓). A time series will be as shown
below:

F0(t = 0, ✓0), F1(t1, ✓1), F2(t2, ✓2), .. Fn(tn, ✓n), ...

F0 is the current failure at t = 0 and Fn is a future failure at
time t = tn. Spatial Locality (SL) is the conditional probability
of the event, given current failure is at location A, that a future
failure within time T will be in the same locale. SL is also a
function of granularity ⇥ which decides if ✓0 and ✓n are in the
same locale. Eq. 2 shows the spatial locality SL(T,⇥) defined
as the conditional probability. Since, the system has more than
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Fig. 4: QQ-plots showing goodness of fit for interarrival times of different systems with different probability distribution functions.

(a) (b)

Fig. 5: Weibull shape parameter of each system (overall) and each failure type (a), and Weibull shape parameter of each system
(overall) over time (b). Failures that do not have enough samples to generate a meaningful shape parameters are omitted from the
chart. Eos does not have enough failure events in each quarter to have statistically meaningful shape parameter in each quarter.

temporal locality and not autocorrelation. To answer this, we
look at the Weibull shape parameter and autocorrelation at
lag 1. The correlation between these two measures across
all systems is 0.84. In other words, a system with higher
autocorrelation has higher shape parameter (hence, low degree
of temporal locality). This shows a contradiction in the mea-
sures. This is because shape parameter captures the property
of system having a higher failure rate after a failure event has
occurred, while autocorrelation captures the periodicity in the
data.

Observation 4. Degree of temporal locality should not be
confused with auto-correlation. We show that auto-correlation
is useful for capturing periodicity, but not temporal locality.
In all the systems considered in this study, the amount of
periodicity is system failures in very limited.

In Fig. 5(a), the shape parameter of a failure type is
obtained by filtering out the failure events of the same type
from the logs and fitting the inter-arrival times into a Weibull
distribution. Naturally, the MTBF of different failure types
are also different, and hence, the scale parameter is also in
accordance to the MTBF and shape parameter. We do not
show scale parameter values because they are not related to
the degree of temporal locality. Our results indicate that the
degree of temporal locality varies significantly between the
failure types. It is interesting to see that the failures types that
are common among systems show similar degree of temporal
locality across different systems. For example, Kernel Panic
and LBUG are software related issues and they show low
Weibull shape parameter, i.e., high degree of temporal locality.
This is true across all systems that observe Kernel Panic and
LBUG. Similarly, Voltage fault does not show good temporal
locality and its Weibull shape parameter is closer to 1 or higher
than 1. This is true for all other systems except Eos XC30
where Voltage fault show smaller shape parameter (0.42).

Observation 5. Different failure types can have significantly
different degree of temporal locality. Some failure types, which
are common between different systems, also show similar
degree of temporal locality, such as Voltage Fault, Kernel Panic
and LBUG. The failure rate of common failure types may vary
across systems, but the degree of temporal locality may be very
similar. This can be exploited for other purposes including job
scheduling, proactive fault tolerance techniques.

Next, we attempt to understand how degree of temporal
locality varies over time for different systems. Fig. 5(b) shows
the Weibull shape parameter on quarterly basis for Jaguar XT4,
Jaguar XT5, Jaguar XK6, and Titan XK7 systems. The smallest
system in size, Eos XC30, has been committed because the
failure events in each quarter are not enough to draw a
statistically meaningful Weibull shape parameter. The Weibull
shape parameter for Jaguar XT4 varies between 0.58 and 0.99.
For Jaguar XT5, it declines from 0.76 down to 0.66, and
hence, showing an increase in the degree of temporal locality.
For Titan XK7, the Weibull shape parameter stays between
0.61 and 0.88 while showing a slight trend towards overall
decreasing average. But, as seen in the case of Jaguar XT4,
after Q1 2010 the Weibull shape parameter had a significant
increase and then a drop again in 2011, we can not draw
any conclusive trends from this data. These results indicate
that similar to MTBF metric, degree of temporal locality also
varies significantly over time and to varying extent for different
systems.

We also analyze how phases of MTBF change from
Fig. 1(a) correlate with quarterly Weibull shape parameter. The
correlation coefficient for Jaguar XT4, Jaguar XT5, Jaguar
XK6, and Titan is 0.81, 0.71, -0.97, and -0.03. Therefore,
increase in MTBF may result in higher shape parameter
for Jaguar XT4 and Jaguar XT5 while its the opposite for
Jaguar XK6. Moreover, Titan does not have any significant

5

QQ-plots showing goodness of fit for the failure inter-arrival times for 4 studied 
systems with different failure probability density functions (Weibull fits best)
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If You Can't Measure It, You Can't 
Improve It. 

How do we get from lengthy post-
mortem analysis to real-time 
operational intelligence?
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LogSCAN Real-Time Processing Architecture

B. H. Park, Y. Hui, S. Boehm, R. Ashraf, C. Engelmann, and C. Layton. A Big Data Analytics Framework for HPC Log Data: 
Three Case Studies Using the Titan Supercomputer Log. HPCMASPA’18.
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New Metrics to Evaluate HPC System Health
Variance Distribution of Principal Components

!" =	 %&∑ %&()

System Information Entropy (SIE)
*(,) = ./(0)

b: the logarithmic base used in calculating H. In our analysis, b = 10.

General Form of Data Table
Feature 1 Feature 2 … … Feature N

Record 1

Record 2

…

…

…

…

Record M

Principal Components in Feature Space
SVD ⟹2"

σ4: i-th variance out of k eigenvalues of the SVD decomposition

Shannon Entropy

6 = −8 !"9:;<(!")
=

>
Entropy: in a general ”b-ary” form

2D

2D

1D

1D

3D

Application System Impact (ASI)

	 "# and 	 "$ represent the L1- and L2-norm applied on %⃗, respectively.

ASI =
%⃗ "$
%⃗ "#

=
∑ ,-./0

∑ ,-/
0

System Reliability Event Counts

ai: total event counts for the application “i”

%⃗ = [,0 	,.⋯,/]

The value of ASI is limited to the range (0, 1). When ASI approaches 1, it represents high sparsity or a time interval in which only a few applications are generating 
most of system reliability events and vice versa.  

Y. Hui, B. H. Park, and C. Engelmann. A Comprehensive Informative Metric for Analyzing HPC System Status using the 
LogSCAN Platform. FTXS’19.
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Real-Time Analysis of System Information Entropy

SIE with Source Type layout (top),
SIE with Nodal Map layout (middle), and

Total event count (bottom)
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Coordinating Multiple Solutions is Key

Why do we abort and restart an 
entire job when 1 out of 27,648 GPUs 
has an error? Why don’t we just re-
run the single failed GPU execution?
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Novel Solution: Design Patterns for Resilience

• A design pattern provides a generalizable solution to a 
recurring problem

• It formalizes a solution with an interface and a behavior 
specification

• Design patterns do not provide concrete solutions

• They capture the essential elements of solutions, permitting 
reuse and different implementations

• State patterns provide encapsulation of system state for 
resilience

• Behavioral patterns provide encapsulation of detection, 
containment and mitigation techniques for resilience
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Anatomy of a Resilience Design Pattern

• A resilience design 
pattern is defined in an 
event-driven paradigm

• Instantiation of pattern 
behaviors may cover 
combinations of 
detection, containment 
and mitigation 
capabilities

• Enables writing patterns in 
consistent format to allow 
readers to quickly 
understand context and 
solution

Behavior

Response 
Interface

Activation 
Interface



1414 Open slide master to edit

Resilience Design Patterns Classification
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Resilience Design Patterns Specification v1.2

• Taxonomy of resilience terms and metrics

• Survey of resilience techniques

• Classification of resilience design patterns

• Catalog of resilience design patterns
– Uses a pattern language to describe 

solutions
– 3 strategy patterns, 5 architectural 

patterns, 11 structural patterns, and 5 
state patterns 

• Case studies using the design patterns

• A resilience design spaces framework

S. Hukerikar and C. Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme 
Scale (Version 1.2). Tech. Report, ORNL/TM-2017/745, 2017. DOI: 10.2172/1436045

ORNL/TM-2017/745

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale - version 1.2

Saurabh Hukerikar
Christian Engelmann

August 2017Approved for public release.

Distribution is unlimited.
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Case Study: Checkpoint Recovery with Rollback 
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Case Study: Proactive Process Migration 
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Case Study: Cross-Layer Hardware/Software Hybrid 
Solution
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Resilience by Design and not as an 
Afterthought

Understanding the cost/benefit 
trade-off requires a design space 
exploration process!



2020 Open slide master to edit

Resilience Design Spaces Framework

• Design for resilience can be 
viewed as a series of refinements

• The design process is defined by 
5 design spaces

• Navigating each design space 
progressively adds more detail to 
the overall design of the 
resilience solution

• A single solution may solve more 
than one resilience problem

• Multiple solutions often solve 
different resilience problems 
more efficiently

Resilience Capability

Fault Model

Protection Domain

Implementation Mechanisms

Interfaces
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Design Space Exploration for Resilience 

• Vertical and horizontal 
pattern compositions 
describe the resilience 
capabilities of a system 

• Pattern coordination 
leverages beneficial and 
avoids counterproductive 
interactions

• Pattern composition 
optimizes the 
performance, resilience 
and power consumption 
trade-off
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Case Study: Multiresilient Iterative Linear Solver

• GMRES minimal residual 
method for solving non-
symmetric linear systems
– Solve: Ax = b
– Iterative algorithm

• Resilience patterns provide 
detection, containment, 
and mitigation for soft and 
fail-stop errors
– Different soft error detectors 

for inner loop
– In-memory checkpointing for 

process failures

FT-GMRES Solver

R. Ashraf, S. Hukerikar, and C. Engelmann. Pattern-based Modeling of Multiresilience Solutions for 
High-Performance Computing. ICPE 2018. DOI 10.1145/3184407.3184421.
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Modeling and Simulation for Design Space Exploration 
(Ongoing Work)

• Model the performance, resilience, 
and power consumption of an 
entire system

• Start at compute-node granularity 
with
– System component models
– Resilience design pattern models
– Application models

• Simulate dynamic interactions 
between the system, resilience 
solutions and applications

• Move to finer-grain resolution to 
include on-node communication, 
computation and storage

Power 
Consumption

ResiliencePerformance
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Resources and Contact

• Catalog: Characterizing Faults, Errors, and Failures in 
Extreme-Scale Systems
– https://ornlwiki.atlassian.net/wiki/spaces/CFEFIES

• Resilience Design Patterns: A Structured Approach to 
Resilience at Extreme Scale
– https://ornlwiki.atlassian.net/wiki/spaces/RDP

• Christian Engelmann, Oak Ridge National Laboratory
– engelmannc@ornl.gov

https://ornlwiki.atlassian.net/wiki/spaces/CFEFIES
https://ornlwiki.atlassian.net/wiki/spaces/RDP
http://ornl.gov

