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ABSTRACT
The open Self-driven Experiments for Science / Interconnected
Science Ecosystem (INTERSECT) architecture connects scientific
instruments and robot-controlled laboratories with computing and
data resources at the edge, the Cloud or the high-performance
computing center to enable autonomous experiments, self-driving
laboratories, smart manufacturing, and artificial intelligence driven
design, discovery and evaluation. Its a novel approach consists of
science use case design patterns, a system of systems architecture,
and a microservice architecture.
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1 INTRODUCTION
As outlined in the U.S. Department of Energy (DoE)’s Artificial
intelligence (AI) for Science reports [2, 7] and the DoE’s Compu-
tational Facilities Research Workshop report [3], science break-
throughs with autonomous experiments, self-driving laboratories,
smart manufacturing, and AI-driven design, discovery and evalu-
ation require intelligent systems, instruments, and facilities that
enable automation and reduce human-in-the-loop needs.

Machine-in-the-loop intelligence for decision-making reduces
such human-in-the-loop needs with an autonomous online con-
trol, collecting experiment data, analyzing it, and taking appro-
priate operational actions for experiment steering or design. A
common federated hardware/software architecture is needed that
connects instruments with edge and center computing resources
and autonomously collects, transfers, stores, processes, curates, and
archives scientific data.

The INTERSECT open architecture connects scientific instru-
ments and robot-controlled laboratories with computing and data
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resources at the edge, the Cloud or the high-performance comput-
ing center to enable such autonomous experiments and self-driving
laboratories. Oak Ridge National Laboratory (ORNL) is currently de-
veloping and deploying several prototypes using this architecture,
such as in autonomous additive manufacturing, autonomous con-
tinuous flow reactor synthesis, autonomous electron microscopy,
and an autonomous robotic chemistry laboratory.

This poster summarizes the current status of the INTERSECT
open architecture and the progress made a year after its initial
publication in summer/fall 2022 [1, 4–6] to update the community
on recent significant improvements in the science use case design
pattern, system of systems (SoS) architecture and microservice ar-
chitecture specifications, and to seek feedback from the community.

2 THE INTERSECT OPEN ARCHITECTURE
The approach is inspired by the U.S. Department of Defense Ar-
chitecture Framework (DoDAF) [9] and its different architectural
viewpoints, such as (i) operational scenarios, (ii) composition, in-
terconnectivity and context, (iii) services and their capabilities, (iv)
policies, standards and guidance, and (v) capability. However, the
INTERSECT open architecture [4] separates these viewpoints dif-
ferently for clarity as: (1) science use case design patterns [5], (2) a
SoS architecture with some of the DoDAF viewpoints [6], and (3) a
microservice architecture [1].

Science use cases (for autonomous experiments and self-driving
laboratories, smart manufacturing, and AI-driven design, discovery
and evaluation) are described as design patterns to identify and
abstract the involved components and their interactions in terms
of control, work, and data flow. The SoS architecture clarifies used
terms, architectural elements, their interactions, and compliance.
The microservice architecture maps the science use case design
patterns to the SoS architecture with loosely coupled microservices
and standardized interfaces.

This approach separates different granularities of architectural
design decisions. At coarse granularity (design patterns), the overall
objective of a self-driving laboratory is considered and how it is
achieved. At mid-level granularity (SoS architecture), the instru-
ments, robots, networks, and computing systems that are part of a
self-driving laboratory are considered and how they interact with
each other. At fine granularity, the individual microservices that
orchestrate experiment control, data transfer, and data analysis are
considered.

2.1 Science Use Case Design Patterns
The basic template for a science use case design pattern is defined
in a loop control problem paradigm [5]. There are two classes of
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science use case design patterns: strategy patterns and architec-
tural patterns. Strategy patterns define high-level solution methods
using experiment control architecture features at a very coarse
granularity. Architectural patterns define more specific solution
methods using hardware and software architecture features at a
finer granularity.

While the architectural patterns do inherit the features of certain
parent strategy patterns, they also address additional problems that
are not exposed at the high abstraction level of the strategy patterns.
A specific solution may require the composition of patterns, such
as the Experiment Steering and Design of Experiments strategy
patterns and correspondingly the Local Experiment Steering and
Distributed Design of Experiments architectural patterns.

2.2 System of Systems architecture
The SoS architecture decomposes the federated hardware/software
ecosystem into smaller and less complex systems and components
within these systems [6]. It permits the development of individ-
ual systems and components with clearly defined interfaces, data
formats, and communication protocols. This not only separates con-
cerns and functionality for reusability, but also promotes pluggabil-
ity and extensibility with uniform protocols and system/component
life cycles.

Instead of developing individual monolithic solutions for each
science use case, the SoS architecture provides one solution that
can be easily adapted to different use cases using different composi-
tions of systems. It offers operational and managerial independence
of systems and of components within systems, geographical dis-
tribution with a physically distributed and federated ecosystem,
emergent behavior based on the interplay between systems and
components, and evolutionary development through pluggability
and extensibility.

2.3 Microservice Architecture
The microservice architecture provides a catalog of infrastructure
and experiment-specific microservices [1]. The microservices are
defined to facilitate composition within the federated SoS architec-
ture. INTERSECT infrastructure microservices represent common
service functionality and capabilities, such as data management,
computing, messaging, and workflow orchestration that are likely
to be generally useful across many science ecosystems without the
need for customization. Experiment-specific microservices, on the
other hand, represent services whose implementation may require
detailed application knowledge, such as experiment planning or
steering services that require knowledge of experiment-specific
control parameters and their associated constraints.

3 CONCLUSION
The INTERSECT open architecture has been implemented in part
by the INTERSECT Software Development Kit project [8] and inte-
grated in part in a co-design effort with the INTERSECT domain
science projects at ORNL, such as autonomous electron microscopy.
Ongoing work focuses on finalizing the INTERSECT open architec-
ture, releasing a version 1.0, obtaining feedback from the commu-
nity, and improving the architecture documentation.

Future work seeks to clarify the relationships between the IN-
TERSECT science use case design patterns and execution patterns,
scientific workflowmotifs, and workflow execution patterns, which
are not design patterns but categorize behavioral commonalities
of workflows. Further research investigates cybersecurity policies
and practices that affect the SoS architecture, such as experienced
by multi-site experiment workflows. Other planned efforts focus
on the concepts, data types, and interfaces for error reporting and
handling in the SoS architecture and the microservice architecture.
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