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ABSTRACT

Resilience is one of the key challenges inmaintaining high eiciency

of future extreme scale supercomputers. Researchers and system

practitioners rely on ield-data studies to understand reliability

characteristics and plan for future HPC systems. In this work, we

compare and contrast the reliability characteristics of multiple large-

scale HPC production systems. Our study covers more than one

billion compute node hours across ive diferent systems over a

period of 8 years. We conirm previous indings which continue to

be valid, discover new indings, and discuss their implications.
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1 INTRODUCTION

Maintaining high system reliability continues to be an essential

aspect of large scale HPC computing facilities. Improved system

reliability leads to more productive scientiic computing and hence,

faster scientiic discovery. Unfortunately, improving and maintain-

ing a high level of system reliability is quite challenging for multiple

reasons. First, the number of components are increasing rapidly

in large scale HPC systems to meet the compute power demands

from the computational scientists, and hence, the likelihood of

failures is also increasing [14]. Second, due to shrinking process

technology, processors have become more susceptible to soft-errors,

process variation related errors, and manufacturing defect [1, 10].

Third, as the complexity of the system grows, managing system

reliability becomes more diicult [22, 26]. It becomes challenging
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to proportionally increase the number of studies that collect, an-

alyze and share long-term infrastructural experiences providing

comprehensive quantiication of failures characteristics.

As an example, one of the highly cited and most comprehen-

sive study that shared failure related characteristics of large HPC

systems was published by academic researchers almost a decade

ago [36]. Systems covered in that study spanned between 1996 and

2005. Since then, there have been a sequence of studies document-

ing the failure characteristics of large scale HPC systems [8, 11,

17, 24, 25, 29]. However, most of them either focus on particular

component of the system such as disks/memory [3, 20, 27, 35, 37,

40], or they focus on one particular system for a short period of

time [7, 11, 17, 24, 28]. Despite these eforts, the study by Schroeder

et al. [36] continues to be the only work to analyze multiple HPC

systems that spans over a long period of time. However, researchers

and system practitioners rely on ield-data studies to improve their

understanding about the reliability characteristics of HPC systems

and accordingly plan for better future systems.

To address this challenge, this work presents lessons learned

from characterizing and analyzing multiple large scale produc-

tion systems with very diferent system component composition

and characteristics, spanning from 2008 to 2015. In particular, we

analyze the system failure data from ive diferent HPC systems

deployed at the Oak Ridge National Laboratory (ORNL). These sys-

tems include Jaguar XT4, Jaguar XT5, Jaguar XK6, Titan, and Eos

where the peak computational power alone varies from approxi-

mately 0.27 Petalops to 27 Petalops (almost 100x improvement).

Overall, our study covers more than one billion compute node hours

across ive diferent systems across generations.

We share characterization, analysis, and lessons learned from

deep investigation of multiple HPC systems. Our study reveals

several interesting insights about large scale system reliability. Our

work discusses new take-aways and conirm previous indings

which continue to be valid. In particular, we investigate if the newer

HPC systems have become dramatically less reliable as projected

by technology roadmaps and other studies [10, 14, 26, 38]. We

investigate how the failure characteristics change over time during

the stable operational period of a HPC system. We quantify and

characterize multiple metrics to capture the failure characteristics

of a HPC system, and show how these can be used to discover

interesting characteristics of diferent failure types and systems.

We discuss the signiicance and implications of our indings and

how they can be used by researchers, system acquisition teams,

and system operators to potentially improve the overall eiciency

of current HPC systems, and better provisioning and application

software resiliency strategies for future HPC systems.
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Table 1: HPC Systems analyzed in this study.

System Number of

Nodes

Period

Jaguar XT4 (31328 cores, quad-core AMD Opteron processor per node, SeaStar2) 7,832 Jan’08-Mar’11

Jaguar XT5 (149504 cores, four dual-core AMD Opteron processor per node, SeaStar2+) 18,688 Jan’09-Dec’11

Jaguar XK6 (298,592 cores, 16-core Opteron-6274 processor per node, Gemini) 18,688 Jan’12-Oct’12

Eos XC 30 (23,553 cores, 2 sockets of 16-core Intel Xeon E5-2670 (with hyperthreading) per node, Aries) 736 Sep’13-Sep’15

Titan XK7 (560,640 cores, one 16-core Opteron-6274 and one K20x Nvidia GPU per node, Gemini) 18,688 May’13-Sep’15

Table 2: List of failure types observed on the systems in this study.

Failure Event Type Component

Afected

Bad Page State Software ś

Blade Heartbeat Fault Hardware Module

Core Hang Hardware Node/CPU

GPU Double Bit Error (DBE) Hardware GPU

HT Lockup Hardware CPU

Kernel Panic Software OS

L0 Heartbeat Fault Hardware Module

Lustre Bug (LBUG) Software File System

Lustre Server Failure Software File System

Machine Check Exception (MCE) Hardware CPU/Memory

Module Emergency Power Of

(EPO)

Hardware Module

Module Failed Hardware Module

Node Heartbeat Fault Hardware Module/Node

PCI Width Degrade Hardware GPU

RX message CRC error Hardware Interconnect

RX message header CRC error Hardware Interconnect

SCSI Error Hardware ś

SeaStar Heartbeat Fault Hardware Interconnect

Seastar Lockup Hardware Interconnect

SXM Power Of Hardware GPU

VERTY Fault Hardware Module

Voltage Fault Hardware Module

WarnTemp Power Of Hardware CPU

2 BACKGROUND AND METHODOLOGY

This section irst describes the high performance computing sys-

tems analyzed in this study. Then, we describe our data measure-

ment and analysis methodology. The section concludes by describ-

ing the scope and potential limitations of this study.

Systems This study analyzes system failure data from ive dif-

ferent production HPC systems. These systems are Jaguar XT4

supercomputer, Jaguar XT5 supercomputer, Jaguar XK6 supercom-

puter, Eos XC30 system, and Titan XK7 supercomputer (Table 1).

Our study covers over a billion node-hours across ive diferent

production HPC systems.

Measurement The syslog data is collected continuously to ex-

tract record of failures, problems, and potential issues. This data

is also used to report problems to vendors and build a knowledge

base for system administration. The data measured and collected

for this study using diferent instrumentation and logging methods,

is from January 2008 to September 2015. In total, this is 11.26 sys-

tem years or 1.22 Billion node hours of operational data. The data

collected from these HPC systems is regularly parsed on software

management workstations to alert the system operators of any

faulty behavior and system failure events. Instrumentation points

are already available in the hardware and system software which

are turned on to collect critical information such that it does not

cause signiicant interference with the operations of the machine

and workloads running on the machine. For our analysis, we con-

verted the data into a time series containing time-stamp, type of

event, physical location of event, and other relevant information.

This processing step is carefully designed, executed, and veriied

with sys-admin staf. Table 2 lists all the failure types across difer-

ent systems. The table also shows the primary nature of the failure

(software/hardware) and key component afected by the event.

Our data processing step revealed that some failure events are

recorded multiple times in the system logs because of multiple

locations reporting the side-efects of the actual failure event. We

conirmed from the system operators, who have extensive experi-

ence in system monitoring and diagnostics, to carefully drop such

events from our analysis to avoid side-efects on the validity of our

indings. We only consider the actual parent events in our analy-

sis and exclude these potential follow-up failure events that occur

within a 300 second window after the actual failure. We chose a

300 second time period conservatively to avoid any bias in analyz-

ing event correlation. Other works such as [29] have also adopted

such iltering methods. We also drop failures from acceptance and

early user tests (early part of the bath tub curve) to avoid skew in

the analysis. We note that only statistically signiicant results are

presented in this paper.

Scope and Limitations Despite the wealth of data analyzed

in this study to gather insights into the systems and comparing

several generation of systems, we recognize that, like any other

work, it has its limitations and scope.

This study is based on a post-hoc analysis, and therefore, it is not

possible to answer ‘what if’ type questions that requires modiica-

tions to the system and observe the efect of such modiication. We

assessed that performing accurate and high-coverage root-cause

analysis of failures is not possible given the complexity and gran-

ularity of data measurement, collection, and dynamic operational

environment. Therefore, root-cause analysis is not the goal of this

study. We also note that a large-scale computing facility has a dy-

namic environment which is subject to frequent system software

updates. In this study, we do not attempt to analyze, model, or

isolate the efect of those changes. Our study ensures that major

disruptions caused by a particular maintenance phase or software

updates doesn’t skew our indings. As we draw conclusions from

the measured data, we carefully consider and point out the method-

ological pitfalls or hidden factors that can afect the analysis, e.g.,
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dropping failures from acceptance and early user tests (early part

of the bath tub curve) to avoid skew in the analysis. We recognize

that human-in-the-loop can also afect our analysis. We noticed

that it especially impacts the repair time in certain cases. It was not

possible to perform an accurate and robust analysis to account for

this efect and its impact on the repair time. Hence, we decided to

the exclude repair-time analysis.

Another limitation of our study may appear to be that all the

systems studied here are Cray systems from ORNL. Note that there

are various system components that are actually not Cray-speciic

such as various generations of AMD/Intel CPUs, Nvidia GPUs, and

DIMM modules. The interconnect and maintenance styles are Cray

speciic. Knowledge of maintenance-and-testing style at ORNL has

made the failure analysis more accurate. It is often not possible to

obtain data of similar granularity and detail from other facilities to

perform complete analysis with high level of conidence. Including

analysis on partial data may not necessarily increase the conidence

level of our indings and the methodology becomes inevitably less

robust.

We also note that Oak Ridge Leadership Computing facility is a

typical large-scale data center with standard operational practices

in place. For example, the temperature and humidity sensors are

placed throughout the data center room for monitoring. Temper-

ature measurements are collected at the cage level too. Air-low

is monitored carefully to avoid hotspots. Four transformers are

employed on-site with 480V/100A and 480V/20A circuits. Power-

cooling is maintained vi standard chiller and cooling tower set-up,

resulting in the overall PUE of 1.24. This study for several gener-

ation of Cray systems at ORNL provides a unique opportunity to

understand the evolution of large scale HPC systems. While ORNL

speciic knowledge has made the failure analysis more accurate,

we also recognize that indings can be sometimes speciic to this

facility or systems considered in this study.

We also discuss cases where similar observations were conirmed

at other facilities. Overall, we believe that this work will enable oth-

ers to learn from these lessons, apply new metrics, and verify/refute

the indings presented here.

3 UNDERSTANDING AND ANALYZING
SYSTEM FAILURE CHARACTERISTICS

The goal of this section is to understand and analyze the diferent

characteristics of system failure events over a long period of time

on ive large-scale HPC production systems: Jaguar XT4, Jaguar

XT5, Jaguar XK6, Eos XC30, and Titan XK7. We derive insights

and lessons learned for researchers and practitioners by analyzing

how failure characteristics change over time and are afected by

diferent failure types.

Multiple studies have found and project that the newer HPC sys-

tems are typically expected to bemuch less reliable due to increasing

complexity of the system design, decreasing device dependability,

shrinking process technology [10, 14]. Therefore, we investigate if

this is true for the data measured from the HPC systems consid-

ered in this study. Furthermore, multiple researchers have shown

that the failure rates remain fairly stable during the stable opera-

tional period (typically referred to as the middle part of the bath

tub curve) [11, 13]. Therefore, we investigate if the failure rate of

Table 3: Overall MTBF for diferent systems. Scale-Normalized

MTBF is calculated assuming same system contains 18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)

Jaguar XT4 36.91 15.47

Jaguar XT5 22.67 22.67

Jaguar XK6 8.93 8.93

Eos 189.04 7.45

Titan 14.51 14.51

the system changes during the stable period.

RQ1: Are newer generations of HPC systems becoming less reli-

able?

RQ2: During the stable operational period, does the reliability of

the system change signiicantly? If so, by how much?

We use the mean time between failure (MTBF) as the irst simple

metric to study failure characteristic. Here, failure is deined as an

hardware or system-software related error event that causes an

application to crash (application related bugs that cause an applica-

tion to fail are not counted toward MTBF calculation). Application

MTBF caused due to system related problems has been a commonly

used metric to represent how often an application is expected to

experience a failure on average, due to system related errors. It is

simple to measure and express. Therefore, we start our analysis by

comparing the MTBF across systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized

MTBF metric. As shown in Table 1, all systems in our study are not

of the same scale (in terms of number of nodes), therefore, simply

comparing the MTBF is not a fair comparison across systems with

diferent number of nodes, as a system with more number of nodes

is more likely to experience higher number failures if everything

else remains the same. Therefore, the scale-normalized MTBF met-

ric is presented to compare MTBF as if all systems were deployed

with the same number of compute nodes, as deined below. We also

note that scale-normalized MTBF does not capture the non-linear

increase in complexity of the system as the system size grows, or

account for diference in number of components per node. This

increased complexity and varying number of components per node

may impact the MTBF. However, there is no robust methodology

to capture this non-linear increase in complexity and its efect on

MTBF. Therefore, we use scale-normalized MTBF to understand

irst-order trends.

Scale-Normalized MTBF =
MTBF×Num of Nodes in the System

Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled

MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar

XT4 and Jaguar XT5 are two consecutive generations of Cray sys-

tems that shared several design features. Similarly, Jaguar XK6 and

Titan XK7 are also two consecutive generations of Cray systems.

We found that it is possible that newer generation of systems may

have higher scale-normalized MTBF than previous generation of

systems. While one metric may not always capture the full relia-

bility characteristics of a system as we discuss later, we observe

the reliability doesn’t necessarily decrease monotonically over dif-

ferent generations of the HPC systems, as projected by previous
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studies [14, 38]. Next, we show that comparison across systems

based on scale-normalizedMTBF averaged over the whole timemay

lead to incomplete and inaccurate characterization. Fig. 1 shows

how the scale-normalized MTBF of the system changes over time.

The plot shows the scale-normalized MTBF metric averaged over

each quarter. We point out that we experimented with diferent

granularities (e.g., week, month, quarter) and were able to ensure

statistical signiicance for comparison with quarter granularity.

Fig. 1 quantitatively shows that the scale-normalized MTBF

changes drastically even during the stable operational periods of the

systems. For example, Jaguar XT5 systems shows approximately 4x

change in scale-normalized MTBF and Titan system shows approx-

imately 2.5x change in scale-normalized MTBF over time. We also

observe that during some time periods newer generation of systems

have higher scale-normalized MTBF, while during some time peri-

ods previous generation of systems are more reliable ś indicating

that there is not necessarily a monotonic trend at the system level

as projected by technology trends and other studies [11, 13]. We

also conirmed that these changes in MTBF are not due to software

upgrades. As discussed later in detail, diferent failure types also

exhibit this behavior. Also, as per our deinition of MTBF, a system

outage still counts as one failure and hence, does not account for

variance in MTBF.

Summary Our ield study shows that the reliability of HPC

systems doesn’t necessarily decrease monotonically over

diferent generations of the HPC systems. Even during the

stable operational period the MTBF may change by up to 4x ,

contrary to indings from prior studies showing that MTBF

of HPC system during stable operational period doesn’t vary

signiicantly [11, 37, 39].

As optimal checkpointing intervals employed by applications

depend on the MTBF [5, 15], this information should be exposed

to the HPC users easily and systematically to reduce the im-

pact of failures (i.e., wasted work). This inding can be used by

other HPC centers to guide users to make better checkpointing

decisions.

The variance in MTBF can be caused by the changing temporal

and spatial characteristics of failure events. These characteristics

and most frequent failure types are discussed later in the paper.

Given the signiicant variance in system reliability, HPC system

acquisition teams at HPC centers can use this inding by adding

upper bound on the variance in MTBF as a key metric in the request

for proposals and contracts. This will attempt to ensure that system

manufacturers and integrators have additional responsibility and

support available should the reliability drops below a certain thresh-

old, as opposed to only system administrators trying to improve the

user experience during such period. For example, if the MTBF drops

dramatically below a certain threshold due to hardware issue, the

spare parts required beyond the threshold could be cost-shared by

the vendor. We also note that such ideas need to be implemented in

ways where both parties always have rewards and risks associated

with abnormal operational eiciency phases.

Next natural question to ask is: what types of failures dominate

the overall number of failures and what can we learn from their
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Figure 1: Scale-normalized MTBF of each system over time

(averaged quarterly).

temporal characteristics?

RQ3: One may expect that few failure types dominate [11, 17],

but how much do these dominant failures change over time and

across systems?

Fig. 2 shows the fraction of each failure type with respect to the

total number of failures on the system.

First, we ind that a small subset of failure types constitute a

major fraction of total failures across many systems. Three failure

types: Machine Check Exception (MCE), Kernel Panic, and Node

Heartbeat fault combined together constitute more than 70% of

the total failures on all three Jaguar systems (refer to Table 2 for

failure type: hardware / software). On Titan, the GPU related errors

(SXM power of and double bit errors) contribute roughly 30% of

all failures. Signiicant fraction of hardware related errors, such

as MCE and GPU related errors, emphasizes the importance of

better provisioning and replication of CPU and GPU memory. For

example, GPU related errors and MCEs constitute more than 60%

of failures on Titan.

We note that major system software related bug such as Kernel

Panic and Lustre Bugs contribute approximately 20%. We notice

that SeaStar errors (interconnect related errors) interrupted applica-

tions on Jaguar XT5 system approximately 10% of the total failure

instances. In comparison, interconnect related errors are less than

1% on new systems with Gemini and Aries interconnects.

We point out that we have carefully counted Node Heartbeat

fault as system failure only when these events have resulted in

application interruptions and not as false alarms. X86 CPUs log

errors are detected by the CPU asMCEs. MCEs can be uncorrectable

errors in the CPU caches, in main memory, in the front side bus or

CPU interconnect, etc. Potential causes include cosmic radiation,

voltage/power luctuations, process variation, among other reasons.

It is natural to hypothesize that a dominant particular failure

type could be a result of all failures of that particular type occur-

ring in a short period of time. To refute this, Fig. 3 shows how

the fraction of m failure types changes over time for Jaguar XT5

system (we observed similar trends for other systems). We show

that dominant failure types occur throughout the period instead

of being concentrated over shorter periods. We also note that their

contribution toward number of failures changes over time.
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Summary Our study conirms that a few failure types

constitute a major fraction of all failures.

However, unlike prior studies indicating that software

failures are dominant failure types (e.g., ile system and

kernel related failures) [8, 11], we found that hardware related

errors (e.g., uncorrectable memory errors) are equally or

more dominant across systems over the whole period of

time ś implicating the importance of better provisioning and

replication of CPU and GPU memory against such errors via

compression, replication etc. [9, 23]. We also observed that

resilience of Cray interconnect has improved signiicantly from

older generation to newer generation.

Given the signiicant variance in MTBF among diferent

failure types, HPC system acquisition teams should also

consider adding MTBF bound for diferent failure types as a

key metric in the request for proposals and contracts.

As noted by previous work [15, 16, 34], exponential distribu-

tion is not the best itting parametric model for failure recurrence

behavior; instead Weibull distribution has been shown to better

it the ield data from real systems. Note that this has important

implication on hazard rate of the system. Exponential distribution

with mean λ has a constant hazard rate of 1/λ. On the other hand,

a Weibull distribution with parameters (λ, k) is given as Eq.1. Since

this rate is not constant and decreases with the value of x (k is

less than 1 for Weibull distribution), the failure rate is higher when

the value of x is smaller. In other words, failures are more likely

to re-occur close to failure events. Therefore, we propose to use k

as the parameter to represent the degree of temporal recurrence

behavior. The closer k is to 1 (i.e., closer to exponential distribution),

the lower is the degree of recurrence. Moreover, k is complementary

to using MTBF because MTBF and k can uniquely determine the

parameters (λ, k) of the itting Weibull distribution.

h(x ;k ,λ) =
k

λ
(
x

λ
)k−1 (1)

RQ4: Prior studies have shown that system failures have temporal

recurrence property [4, 15, 16, 28]. But, does this temporal

recurrence property of system failures change across systems and

diferent failure types?

To the best of our knowledge, we are the irst to investigate if

the degree of temporal recurrence varies over time across diferent

systems. Fig. 5 shows the temporal recurrence parameter for Jaguar

XT4, Jaguar XT5, Jaguar XK6, and Titan XK7 systems at a quarterly

granularity. Eos XC30 system is not included in this analysis because

we found that the number of failure events were not enough to

pass the test of statistical signiicance.

We observe that the degree of temporal recurrence changes sig-

niicantly over time and across systems. For example, the temporal

recurrence parameter for Jaguar XT4 varies between 0.58 and 0.99.

For Jaguar XT5, it declines from 0.76 down to 0.66, and hence, show

an increase in the degree of temporal recurrence. Interestingly and

counter-intuitively, in the same period of time, the MTBF of Jaguar

XT5 system increases signiicantly (Fig. 5). To test this trend fur-

ther, we computed the correlation between the sequence of MTBFs

and temporal recurrence parameter over diferent time period and

across systems. We found the correlation coeicient for Jaguar XT4,

Jaguar XT5, Jaguar XK6, and Titan are 0.81, 0.71, -0.97, and -0.03.

This shows that a high likelihood of temporal recurrence doesn’t

necessarily mean lower MTBF. It varies signiicantly between these

systems. MTBF and temporal recurrence parameter capture two

diferent aspects of the system reliability and can not be used as a

proxy for each other. As an implication, a highly reliable system

(i.e., high MTBF) may still exhibit quite strong temporal recurrence

of system failures (i.e., small temporal recurrence parameter).
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Figure 4: Temporal recurrence parameter per failure type for each system. Lower parameter value means higher temporal

recurrence.
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Figure 5: Temporal recurrence parameter of each system

over time (averaged quarterly). Lower parameter value

means higher temporal recurrence.

Continuing the similar line of investigation, we explore if the de-

gree of temporal recurrence varies for diferent failure types across

diferent systems. Fig. 4 shows the temporal recurrence parameter

of each failure type across diferent systems. We point out that

the MTBF of each failure type is diferent across diferent systems

due to change in frequency of failures across systems. However,

interestingly, we observe that the temporal recurrence parameter is

similar for a given failure type across systems. For example, Kernel

Panic and LBUG show low temporal recurrence parameter (approx.

0.40) across systems while Voltage Fault failure shows high tempo-

ral recurrence parameter (closer to 1) across systems except Eos.

This indings indicate that temporal recurrence property is inher-

ent to a particular type. Software related failures tend to exhibit

higher temporal recurrence (and hence, lower temporal recurrence

parameter). On the other hand, system power/cooling related fail-

ures are relatively less temporally correlated, resulting in relatively

lower temporal recurrence (and hence, relatively higher temporal

recurrence parameter). This observation can help in the planning

for proactive action and repair mechanism for a given failure type.

A system could also be proactively stress tested for some particular

type of failures after the irst occurrence of the failure ś to avoid

the impact of future failures on critical jobs.

Next, we investigate the temporal recurrence characteristics

among diferent failure types. In Fig. 6, temporal recurrence charac-

teristics amongst diferent failure types is presented as heatmaps.

The heatmaps show the probability of a failure type (say B) follow-

ing another failure type (say A) within a time window. In other

words, it is the conditional probability that given failure type A has

just occurred, a failure of type B will occur within the time window

(T). In Fig. 6, we show the results for 1 hour time window for Jaguar

XT4, Jaguar XT5, Jaguar XK6, and Titan XK7. We found similar

trends for larger time window sizes.

We observe that all failure types exhibit strong temporal recur-

rence relationship with themselves across all systems. In other

words, a given failure is often followed by another failure of the

same type within 1 hour across all systems. We note that this

observation is not skewed since we have already discarded any

superluous reporting of same failure event in the failure logs by

applying strong iltering methods (described in Section 2). Interest-

ingly, we found a strong recurrence relationship between a Seastar

Lockup being followed by Machine Check Exception (Fig. 6(a)).

We investigated deeper and found that Seastar lockup may cause

the memory corruption in the router that can also manifest as a

MCE failure later depending on the memory access pattern and

ECC scrubber frequency. Catching these failure correlations can be

used by system designers and operators to deploy resilience related

proactive measures for user jobs.

Summary We found that the temporal recurrence property

varies signiicantly over time for a given system.

We are the irst to show that the temporal recurrence

property for diferent failure types are signiicantly diferent,

but similar across systems. These observations can be used to

their advantage by system operators to improve planning for

proactive action and repair mechanism for a given failure type.

We also showed how MTBF and temporal recurrence parameter

captures two diferent aspects of the system reliability ś any

one alone is not suicient. We also demonstrated and explained

interesting temporal recurrence relationship between same

failure types.

Next, we want to investigate temporal characteristics of failures.

We explore the temporal characteristics of failures in more detail

by asking the following speciic questions:
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Figure 6: Temporal recurrence relationship between failure types on diferent systems. The heatmaps show the results for one

hour time window. SeaStar refers to SeaStar Heartbeat Faults and Seastar refers to Seastar Lockup events.
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Figure 7: Normalized failure rate of all failures across sys-

tems at per-hour granularity (normalized to the average of

failure frequency over 24 hours).

RQ5: How does the temporal characteristics of failures change

over hour-of-the-day, day-of-the-week, and month-of-the-year?

RQ6: Do these characteristics change across systems and

failure types?

Fig. 7 shows the normalized failure rate of all failures across

all systems at per-hour granularity. We found that the failure rate

increases during afternoon hours, potentially because of increased

utilization. However, the amount of variance is signiicant and de-

pends heavily on the system. The normalized failure rate is approx.

20-40% higher than average during afternoon hours for most sys-

tems. However, interestingly the normalized failure rate is still

quite high during the night and early morning hours (50% of the
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Figure 8: Normalized failure rate of Machine Check Excep-

tion failures across systems at per-hour granularity (normal-

ized to the average of failure frequency over 24 hours).

average rate), indicating that one can not assume very low failure

rate during the night and early morning hours, as scientiic users

run high throughput batch jobs that can run overnight.

While the increased failure rate is expected during certain hours,

we investigate if this trend holds true for individual failure types.

Surprisingly, we discovered that hardware related failures do not

necessarily follow the same trend of increase in failure rate during

afternoon hours. To demonstrate this, we have chosen Machine

Check Exception, a dominant hardware related error, as a proxy

to demonstrate this trend; other hardware related errors show a

similar trend. Fig. 8 shows MCE errors occur throughout all hours

during a day. We note that Eos XC30 system is primarily a data

analytics cluster and is not utilized at its peak capability all the time,

unlike other systems. The users tend to schedule jobs on analytics
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Figure 9: Normalized failure rate of all failures across sys-

tems at day-of-the-week granularity (normalized to the av-

erage of failure frequency over all seven days in the week).
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Figure 10: Normalized failure rate of Machine Check Ex-

ception failures across systems at day-of-the-week granular-

ity (normalized to the average of failure frequency over all

seven days in the week).

cluster in bursts; the bursty nature of MCE errors on Eos is an

artifact of that utilization pattern.
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Figure 11: Normalized failure rate of all failures across sys-

tems atmonth granularity (normalized to the average of fail-

ure frequency over all twelve months in the year and length

of the observation period).
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Figure 12: Normalized failure rate of Machine Check Ex-

ception failures across systems at month granularity (nor-

malized to the average of failure frequency over all twelve

months in the year and length of the observation period).

Next, Fig. 9 and 10 shows the normalized failure rate of all failures

and machine check exceptions (uncorrectable hardware errors)

across systems at day-of-the-week granularity. We found that the

failure rate during the weekend can be 20-30% lower than weekdays,

even for machine check exceptions (uncorrectable hardware errors).

This could be better analyzed in conjunction with utilization data.

Unavailability detailed and accurate resource utilization data limits

us to explore the correlation between failures and utilization. It

could be useful exercise for system operators to better understand

and exploit such a possible correlation.
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Finally, we attempt to understand the frequency distribution of

failures over months in a calendar year. Fig. 11 and 12 show the nor-

malized failure rate across systems atmonth-of-the-year granularity

for all failures and MCE errors, respectively. We make two observa-

tions. First, the frequency of failures is not necessarily uniformly

distributed. All systems tend to have lower failure rate during Oct-

Jan time period by up to 20%, while March-May is relatively higher

failure rate period.This observation can have signiicant implica-

tions about spare-provisioning and support/maintenance contracts

from the vendor śwhich could be planned at the quarter granularity

instead of year granularity and may result in cost-savings. Second,

we noticed that MCE errors do not show signiicantly diferent

behavior at month granularity. However, we do note that Titan

has much higher failure rate during the Jun-Aug period because a

speciic project focused on a diferent deadline to produce results

at scale during this period.

Summary We found that the failure rate increases during

afternoon hours by upto 40%. However, this is not true for all

failure types. For example, uncorrectable memory errors do not

necessarily show increased failure rate during afternoon hours.

The failure rate during the weekend can be 20-30% lower than

the weekdays in some systems. Our ield data shows that the

frequency of failures is not necessarily uniformly distributed

over months. HPC systems tend to have lower failure rate

during Oct-Jan time period by up to 20%, while March-May

is relatively higher failure rate period. This observation

can be beneicial to facility operators for devising better

spare-provisioning strategies.

After investigating the temporal characteristics, we explore the

spatial characteristics of failures. In particular, we ask the following

questions:

RQ7:What is the spatial distribution of failures across systems?

How can one express this mathematically to enable its use in

runtime systems and analytical tools that want to take advantage

of spatial distribution of failures?

RQ8: Are spatial characteristics an artifact of temporal

characteristics? How are they correlated with frequency of failures

(MTBF)?

Fig. 13 shows how failures are distributed among cabinets for

diferent systems. We observe from the igure that the distribution

of failures among cabinets is not uniform. To investigate deeper at

iner compute granularity, we analyze the distribution of failures

across the cages in each system. Fig. 14 shows the fraction of failures

for each cage in the system sorted from highest to lowest for Jaguar

XT5, Jaguar XK6, and Titan XK7. The igure shows that the failures

are not uniformly distributed across cages either. Our results show

that this is true across a number of systems of diferent sizes and

component compositions..

To prove the statistical signiicance, we conducted Kolmogorov-

Smirnov test (KS-test) to conirm that our observed empirical data

Table 4: Testing uniformity of neighborhood recurrence property:

results of KS-test (D-statistic and critical D-value for 0.05 signii-

cance level).

System D-statistic Critical D-value Null hypothesis

Jaguar XT4 0.5244 0.0455 Reject

Jaguar XT5 0.3955 0.0516 Reject

Jaguar XK6 0.4366 0.0516 Reject

Eos 0.1747 0.1408 Reject

Titan 0.3292 0.0364 Reject

is signiicantly diferent than randomly generated uniform distribu-

tion. The null hypothesis in KS-test is that the spatial distribution is

taken from a uniform distribution. Table 4 shows the D-statistic and

critical D-value for a 0.05 signiicance level. For each system, we

ind that the null hypothesis is rejected because D-statistic is higher

than critical D-value. Therefore, for all the systems we study here,

the observed distribution is signiicantly diferent than a uniform

distribution. We also looked at distributions of failures on blade

and node level, and observe that it also shows that the distribution

is not randomly uniform.

This observation has signiicant implications for users and job

schedulers. First, given this neighborhood recurrence property one

may want to avoid scheduling critical jobs in the neighborhood of

the location where last failure happened.

Second, users may use replication as a mechanism to tolerate

failures. Replicated execution can decrease the perceived failure

rate of the job. But, some job schedulers such Moab and scheduling

techniques pack jobs in space to improve locality [41]. If replicated

job is submitted under the same batch script, it is likely to experience

higher failure rate due to neighborhood recurrence property. Users

can submit replicas under diferent batch jobs in an attempt to avoid

job scheduler’s attempt to pack jobs closely in the same batch script.

This method also increases the probability that these jobs may not

start simultaneously, and may not be placed physically close by.

Next, we attempt to deine neighborhood recurrence property

more formally. Neighborhood recurrence property can be deined

as the conditional probability that given a failure has occurred at a

particular location, what is the probability a failure will reappear

in the same locale in a given future window. Assume a time series

of events F where each event has a timestamp (t ) and location (θ ).

A time series can be expressed as:

F0 (t = 0,θ0), F1 (t1,θ1), F2 (t2,θ2), .. Fn (tn ,θn ), ...

F0 is the current failure at t = 0 and Fn is a future failure at time

t = tn . Neighborhood recurrence property (NRP) is the conditional

probability of the event, given current failure is at location A, a

future failure within time T will be in the same locale. NRP is also

a function of granularity Θ which decides if θ0 and θn are in the

same locale. Eq. 2 shows the neighborhood recurrence NRP (T ,Θ)

deined as the conditional probability. Since, the system has more

than one unique location where failures can strike (A1, A2, .. , AM ),

NRP (T ,Θ) can be expanded as shown in Eq. 3 by expressing it as

a weighted sum of probability at those individual locations. Now,

Bayes’ Theorem allows us to simplify Eq. 3 into Eq. 4.

NRP (T , Θ) = P (θn = A ∩ tn − t0 < T , ∃Fn | θ0 = A) (2)
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(a) Jaguar XT5
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(b) Jaguar XK6

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

X
0

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1
0

X
1
1

X
1
2

X
1
3

X
1
4

X
1
5

X
1
6

X
1
7

X
1
8

X
1
9

X
2
0

X
2
1

X
2
2

X
2
3

X
2
4

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for diferent systems. Jaguar XT4 and Eos

not plotted due to space restriction but show similar behavior.
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Figure 14: Non-uniform spatial distribution of system fail-

ures at the cage-level for diferent systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai )

× P (θ0 = Ai ) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai ) (4)

As shown in above equations, the neighborhood recurrence efect

is a function of future time window (T ) and granularity of locale

(Θ). In our analysis, we deine the granularity of locale Θ with

cabinet, cage, blade/module, and node. We calculate NRP at these

granularities over diferent time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-

borhood recurrence efect at each granularity. First, we observe

that neighborhood recurrence efect is present in all systems at all

computing granularities (node, blade, cage, cabinet). Jaguar XT4,

Jaguar XK6 and Titan show similar neighborhood recurrence trends

over time, while Eos and Jaguar XT5 show signiicantly diferent

behavior.

Second, the relative neighborhood recurrence efect between

these systems also changes as the time window is changed. For

example, Eos has higher neighborhood recurrence efect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-

rence efect if the time window is larger than 64 hours.

We note that neighborhood recurrence efect is observed even

for relatively smaller scale system (i.e., Eos) at each granularity (in

Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)

alone is not enough to capture the spatial characteristics of system

failure events. There are two diferent phenomenon that are respon-

sible for this behavior. First, the degree of temporal recurrence is

signiicantly high, i.e., the temporal recurrence parameter is smaller

than other three systems. This implies that the likelihood of subse-

quent failures after a failure event is higher, and therefore, we see

signiicant portion of failures show up in a smaller time window

after a failure, although the MTBF is quite large. Second, other than

the temporal recurrence in failures, there is signiicant neighbor-

hood recurrence in failures where subsequent failures occur in the

vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-

tion and it is not capturing the location dimension. On the other

hand, neighborhood recurrence deals with the spatio-temporal be-

havior. Also, when comparing Jaguar XT5 with other systems, it

shows similar degree of temporal recurrence property as others,

but has much lower neighborhood recurrence efect. This further

strengthens our argument that spatio-temporal behavior is not a

manifestation of temporal recurrence alone, and instead it is a fun-

damental characteristic of system failures which should be used

to describe the reliability characteristics of a system. We clarify

that certain locations may experience higher failures temporarily

(e.g., more failures in higher cages which are relatively hotter than

lower cages), however, this alone doesn’t encapsulate the neigh-

borhood recurrence behavior. Even regions with relatively lower

failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation

coeicient between neighborhood recurrence efect (at the cage

level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53

for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-

tively). Similarly, we computed the correlation coeicient between

neighborhood recurrence efect (at the cage level) and temporal

recurrence parameter for each quarter. The correlation coeicients

are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar

XK6 and Titan system, respectively. This indicates that neighbor-

hood recurrence efect can be both positively and negatively corre-

lated with temporal recurrence, depending upon the system. Pres-

ence of both types of correlation suggests that neighborhood recur-

rence efect is not subsumed by the temporal recurrence parameter
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Figure 15: Neighborhood recurrence property at diferent granularity across systems for time window of up to 96 hours.

or MTBF metric; it is a separate property of a system that should

be used if one desires to fully characterize the reliability of a system.

Summary We found that the spatial distribution of failures

is not uniform at any compute granularity across systems. We

discussed signiicant implications of this observation for users

and job schedulers.

We showed how to capture neighborhood recurrence efect

mathematically and demonstrated that neighborhood recur-

rence efect is not strongly correlated with MTBF or degree of

temporal recurrence. Neighborhood recurrence efect should

be used as a separate reliability characteristic of a system. It

can not be subsumed by temporal characteristics such as MTBF

or temporal recurrence. Interestingly, researchers at LLNL and

Argonne National Laboratory have independently veriied that

our observations about spatial distribution of failures hold true

in their systems as well [6, 30], which are not Cray systems and

have very diferent system composition.

4 RELATED WORK AND CONCLUSION

Quantifying and characterizing the system failures is the irst step

for improving the reliability of HPC computing system. In order

to characterize the failure event, works such as [35] ind a itting

probability density function for the inter-arrival time of failures.

Exponential, Weibull, Lognormal, and Gamma are some common

distributions used to represent empirical data and the best itting

distribution is used to infer the system’s behavior. For example, if

the best itting distribution is Exponential, then the system exhibits

memoryless property, i.e. the failures are independent to each other;

whereas, other distributions do not have this property.

Often the data is summarized by a single number (or a few num-

bers) instead of detailed mathematical functions. This leads to the

average of these distributions, i.e., the mean of inter-arrival times

or mean time between failures (MTBF) to be the one of the most

common metric used in comparing systems. Some other metrics

include reliability growth models to understand if the inter-arrival

times are monotonically increasing [32]. Laplace test is applied

to calculate Laplace factor that can be used to assess the failure

intensity [32]. Gainaru et al. use autocorrelation metric to quantify

the periodicity in system failure events [18]. Diferent peaks in

autocorrelation represent some periodicity in the signal while a

random signal will have a high correlation with itself (zero lag) and

the correlation dies down with increasing lag [18].

On the other hand, in order to predict the failure events the

analysis of the system failure events based on the event types and

correlation among diferent event types is explored by previous

works [8, 19]. The analysis and reliability metrics derived from

the data are system speciic and deal with understanding fault

modes and their characteristics. The development of such analy-

sis methodologies, tools and predictive models can lead to deeper

insights about the underlying system behavior but it remains too

complex to allow system administrators and users to compare reli-

ability of two diferent systems. This work has introduced two new

metrics to characterize temporal and spatial properties of failures

that can be used by other failure analysis eforts [2, 6, 30].

Several studies, such as [8, 11, 17, 24, 25, 29, 31, 33, 34], focus on

system failures characteristics to improve the reliability of HPC sys-

tems. For example, Liang et al. provided a thorough understanding

of diferent component failures including disk, network, memory

and processor for the Blue Gene/L system back in 2006 [24]. Oliner

et al. investigated system RAS logs for multiple HPC systems includ-

ing RedStorm and Thunderbird systems at the LANL and Sandia

Lab back in 2007 [29].

Schroeder et al. have studied the system failures and its impact on

multiple HPC systems at LANL [34]. System studied by Schroeder

et al. spanned between 1996 and 2005, and the system with largest

node count had 1024 nodes ś in the same order as contemporary

fastest supercomputers. However, there has been a lack of such

large-scale reliability studies spanning across multiple systems,

generations, and system types. Recent studies fromUIUC and NCSA

collaboration have attempted to address this gap, however they

have only been limited on particular type of systems [7, 11, 12].

Some studies have also focused on studying the reliability of par-

ticular components such as DRAM, disks, and SSDs. For example,

DRAM-focused eforts have shown manufacture speciic insights

and impact on DRAM reliability [20, 37, 40]. In contrast, this study

covers multiple types of system failures and errors, and also in-

vestigates the impact of failure types, inter-arrival patterns and

spatial correlation in system failures. We compare and contrast the

reliability characteristics of multiple large-scale HPC production

systems, and show how some of the characteristics can be used for

future HPC system provisioning and overall system eiciency.

We note that due to the sensitive nature of the data, it can not

be made publicly available as such. But, it is our continued efort

and inal goal to make parts of the data available for researchers

in near future. Our study will enable others to learn from these

lessons, apply new metrics, and test the indings presented here
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in their environment [6, 30]. We hope that these indings could be

potentially applied to novel systems such as Minerva [21].
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