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Large-scale scientific applications are 
going to face severe resilience 

challenges at exascale!
- "Top Ten Exascale Research Challenges",

DOE ASCAC Subcommittee Report, Feb. 2014



Long-running, large-scale scientific 
applications are interrupted by failures 

on HPC systems. 

At exascale, an application is 
expected to be interrupted every 

couple of hours.



Why investigate the reliability 
characteristics of large-scale systems? 



Reduce Checkpoint I/O Overhead on Large-scale Systems



Expedite Scientific Discovery 



Save Energy – A Positive Impact Beyond the 
Computing Facility  

Compute Node  Blade
 

Cage Cabinet 200 Cabinets (25 rows x 8 columns)
1 hour of lost work on the Titan 

supercomputer is roughly 5-9 MWhr



Systems: 5 Supercomputer Generations at ORNL
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Table 1: HPC Systems analyzed in this study.

System Number of
Nodes

Period

Jaguar XT4 (31328 cores, quad-core AMD Opteron processor per node, SeaStar2) 7,832 Jan’08-Mar’11

Jaguar XT5 (149504 cores, four dual-core AMD Opteron processor per node, SeaStar2+) 18,688 Jan’09-Dec’11

Jaguar XK6 (298,592 cores, 16-core Opteron-6274 processor per node, Gemini) 18,688 Jan’12-Oct’12

Eos XC 30 (23,553 cores, 2 sockets of 16-core Intel Xeon E5-2670 (with hyperthreading) per node, Aries) 736 Sep’13-Sep’15

Titan XK7 (560,640 cores, one 16-core Opteron-6274 and one K20x Nvidia GPU per node, Gemini) 18,688 May’13-Sep’15

Table 2: List of failure types observed on the systems in this study.

Failure Event Type Component
A!ected

Bad Page State Software –

Blade Heartbeat Fault Hardware Module

Core Hang Hardware Node/CPU

GPU Double Bit Error (DBE) Hardware GPU

HT Lockup Hardware CPU

Kernel Panic Software OS

L0 Heartbeat Fault Hardware Module

Lustre Bug (LBUG) Software File System

Lustre Server Failure Software File System

Machine Check Exception (MCE) Hardware CPU/Memory

Module Emergency Power O!
(EPO)

Hardware Module

Module Failed Hardware Module

Node Heartbeat Fault Hardware Module/Node

PCI Width Degrade Hardware GPU

RX message CRC error Hardware Interconnect

RX message header CRC error Hardware Interconnect

SCSI Error Hardware –

SeaStar Heartbeat Fault Hardware Interconnect

Seastar Lockup Hardware Interconnect

SXM Power O! Hardware GPU

VERTY Fault Hardware Module

Voltage Fault Hardware Module

WarnTemp Power O! Hardware CPU

2 BACKGROUND AND METHODOLOGY
This section "rst describes the high performance computing sys-
tems analyzed in this study. Then, we describe our data measure-
ment and analysis methodology. The section concludes by describ-
ing the scope and potential limitations of this study.

Systems This study analyzes system failure data from "ve dif-
ferent production HPC systems. These systems are Jaguar XT4
supercomputer, Jaguar XT5 supercomputer, Jaguar XK6 supercom-
puter, Eos XC30 system, and Titan XK7 supercomputer (Table 1).
Our study covers over a billion node-hours across "ve di!erent
production HPC systems.

Measurement The syslog data is collected continuously to ex-
tract record of failures, problems, and potential issues. This data
is also used to report problems to vendors and build a knowledge
base for system administration. The data measured and collected
for this study using di!erent instrumentation and logging methods,
is from January 2008 to September 2015. In total, this is 11.26 sys-
tem years or 1.22 Billion node hours of operational data. The data
collected from these HPC systems is regularly parsed on software

management workstations to alert the system operators of any
faulty behavior and system failure events. Instrumentation points
are already available in the hardware and system software which
are turned on to collect critical information such that it does not
cause signi"cant interference with the operations of the machine
and workloads running on the machine. For our analysis, we con-
verted the data into a time series containing time-stamp, type of
event, physical location of event, and other relevant information.
This processing step is carefully designed, executed, and veri"ed
with sys-admin sta!. Table 2 lists all the failure types across di!er-
ent systems. The table also shows the primary nature of the failure
(software/hardware) and key component a!ected by the event.

Our data processing step revealed that some failure events are
recorded multiple times in the system logs because of multiple
locations reporting the side-e!ects of the actual failure event. We
con"rmed from the system operators, who have extensive experi-
ence in system monitoring and diagnostics, to carefully drop such
events from our analysis to avoid side-e!ects on the validity of our
"ndings. We only consider the actual parent events in our analy-
sis and exclude these potential follow-up failure events that occur
within a 300 second window after the actual failure. We chose a
300 second time period conservatively to avoid any bias in analyz-
ing event correlation. Other works such as [29] have also adopted
such "ltering methods. We also drop failures from acceptance and
early user tests (early part of the bath tub curve) to avoid skew in
the analysis. We note that only statistically signi"cant results are
presented in this paper.

Scope and Limitations Despite the wealth of data analyzed
in this study to gather insights into the systems and comparing
several generation of systems, we recognize that, like any other
work, it has its limitations and scope.

This study is based on a post-hoc analysis, and therefore, it is not
possible to answer ‘what if’ type questions that requires modi"ca-
tions to the system and observe the e!ect of such modi"cation. We
assessed that performing accurate and high-coverage root-cause
analysis of failures is not possible given the complexity and gran-
ularity of data measurement, collection, and dynamic operational
environment. Therefore, root-cause analysis is not the goal of this
study. We also note that a large-scale computing facility has a dy-
namic environment which is subject to frequent system software
updates. In this study, we do not attempt to analyze, model, or
isolate the e!ect of those changes. Our study ensures that major
disruptions caused by a particular maintenance phase or software
updates doesn’t skew our "ndings. As we draw conclusions from
the measured data, we carefully consider and point out the method-
ological pitfalls or hidden factors that can a!ect the analysis, e.g.,
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Table 1: HPC Systems analyzed in this study.

System Number of
Nodes

Period

Jaguar XT4 (31328 cores, quad-core AMD Opteron processor per node, SeaStar2) 7,832 Jan’08-Mar’11

Jaguar XT5 (149504 cores, four dual-core AMD Opteron processor per node, SeaStar2+) 18,688 Jan’09-Dec’11

Jaguar XK6 (298,592 cores, 16-core Opteron-6274 processor per node, Gemini) 18,688 Jan’12-Oct’12

Eos XC 30 (23,553 cores, 2 sockets of 16-core Intel Xeon E5-2670 (with hyperthreading) per node, Aries) 736 Sep’13-Sep’15

Titan XK7 (560,640 cores, one 16-core Opteron-6274 and one K20x Nvidia GPU per node, Gemini) 18,688 May’13-Sep’15

Table 2: List of failure types observed on the systems in this study.

Failure Event Type Component
A!ected

Bad Page State Software –

Blade Heartbeat Fault Hardware Module

Core Hang Hardware Node/CPU

GPU Double Bit Error (DBE) Hardware GPU

HT Lockup Hardware CPU

Kernel Panic Software OS

L0 Heartbeat Fault Hardware Module

Lustre Bug (LBUG) Software File System

Lustre Server Failure Software File System

Machine Check Exception (MCE) Hardware CPU/Memory

Module Emergency Power O!
(EPO)

Hardware Module

Module Failed Hardware Module

Node Heartbeat Fault Hardware Module/Node

PCI Width Degrade Hardware GPU

RX message CRC error Hardware Interconnect

RX message header CRC error Hardware Interconnect
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SeaStar Heartbeat Fault Hardware Interconnect

Seastar Lockup Hardware Interconnect

SXM Power O! Hardware GPU

VERTY Fault Hardware Module

Voltage Fault Hardware Module

WarnTemp Power O! Hardware CPU

2 BACKGROUND AND METHODOLOGY
This section "rst describes the high performance computing sys-
tems analyzed in this study. Then, we describe our data measure-
ment and analysis methodology. The section concludes by describ-
ing the scope and potential limitations of this study.

Systems This study analyzes system failure data from "ve dif-
ferent production HPC systems. These systems are Jaguar XT4
supercomputer, Jaguar XT5 supercomputer, Jaguar XK6 supercom-
puter, Eos XC30 system, and Titan XK7 supercomputer (Table 1).
Our study covers over a billion node-hours across "ve di!erent
production HPC systems.

Measurement The syslog data is collected continuously to ex-
tract record of failures, problems, and potential issues. This data
is also used to report problems to vendors and build a knowledge
base for system administration. The data measured and collected
for this study using di!erent instrumentation and logging methods,
is from January 2008 to September 2015. In total, this is 11.26 sys-
tem years or 1.22 Billion node hours of operational data. The data
collected from these HPC systems is regularly parsed on software

management workstations to alert the system operators of any
faulty behavior and system failure events. Instrumentation points
are already available in the hardware and system software which
are turned on to collect critical information such that it does not
cause signi"cant interference with the operations of the machine
and workloads running on the machine. For our analysis, we con-
verted the data into a time series containing time-stamp, type of
event, physical location of event, and other relevant information.
This processing step is carefully designed, executed, and veri"ed
with sys-admin sta!. Table 2 lists all the failure types across di!er-
ent systems. The table also shows the primary nature of the failure
(software/hardware) and key component a!ected by the event.

Our data processing step revealed that some failure events are
recorded multiple times in the system logs because of multiple
locations reporting the side-e!ects of the actual failure event. We
con"rmed from the system operators, who have extensive experi-
ence in system monitoring and diagnostics, to carefully drop such
events from our analysis to avoid side-e!ects on the validity of our
"ndings. We only consider the actual parent events in our analy-
sis and exclude these potential follow-up failure events that occur
within a 300 second window after the actual failure. We chose a
300 second time period conservatively to avoid any bias in analyz-
ing event correlation. Other works such as [29] have also adopted
such "ltering methods. We also drop failures from acceptance and
early user tests (early part of the bath tub curve) to avoid skew in
the analysis. We note that only statistically signi"cant results are
presented in this paper.

Scope and Limitations Despite the wealth of data analyzed
in this study to gather insights into the systems and comparing
several generation of systems, we recognize that, like any other
work, it has its limitations and scope.

This study is based on a post-hoc analysis, and therefore, it is not
possible to answer ‘what if’ type questions that requires modi"ca-
tions to the system and observe the e!ect of such modi"cation. We
assessed that performing accurate and high-coverage root-cause
analysis of failures is not possible given the complexity and gran-
ularity of data measurement, collection, and dynamic operational
environment. Therefore, root-cause analysis is not the goal of this
study. We also note that a large-scale computing facility has a dy-
namic environment which is subject to frequent system software
updates. In this study, we do not attempt to analyze, model, or
isolate the e!ect of those changes. Our study ensures that major
disruptions caused by a particular maintenance phase or software
updates doesn’t skew our "ndings. As we draw conclusions from
the measured data, we carefully consider and point out the method-
ological pitfalls or hidden factors that can a!ect the analysis, e.g.,

Scope and Limitations

Failures that cause application aborts

Difficult to isolate effects of multiple 
factors (300 second filter)

Dynamic operating environment 

Root-cause analysis is not the goal
Easy to do (inaccurately)!



Are newer generations of HPC systems 
becoming less reliable?

During the stable operational period, does 
the reliability of the system change 
significantly? If so, by how much? 
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studies [14, 38]. Next, we show that comparison across systems
based on scale-normalizedMTBF averaged over the whole timemay
lead to incomplete and inaccurate characterization. Fig. 1 shows
how the scale-normalized MTBF of the system changes over time.
The plot shows the scale-normalized MTBF metric averaged over
each quarter. We point out that we experimented with di!erent
granularities (e.g., week, month, quarter) and were able to ensure
statistical signi"cance for comparison with quarter granularity.

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of the
systems. For example, Jaguar XT5 systems shows approximately 4x
change in scale-normalized MTBF and Titan system shows approx-
imately 2.5x change in scale-normalized MTBF over time. We also
observe that during some time periods newer generation of systems
have higher scale-normalized MTBF, while during some time peri-
ods previous generation of systems are more reliable – indicating
that there is not necessarily a monotonic trend at the system level
as projected by technology trends and other studies [11, 13]. We
also con"rmed that these changes in MTBF are not due to software
upgrades. As discussed later in detail, di!erent failure types also
exhibit this behavior. Also, as per our de"nition of MTBF, a system
outage still counts as one failure and hence, does not account for
variance in MTBF.

Summary Our "eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di!erent generations of the HPC systems. Even during the
stable operational period the MTBF may change by up to 4x ,
contrary to "ndings from prior studies showing that MTBF
of HPC system during stable operational period doesn’t vary
signi"cantly [11, 37, 39].

As optimal checkpointing intervals employed by applications
depend on the MTBF [5, 15], this information should be exposed
to the HPC users easily and systematically to reduce the im-
pact of failures (i.e., wasted work). This "nding can be used by
other HPC centers to guide users to make better checkpointing
decisions.

The variance in MTBF can be caused by the changing temporal
and spatial characteristics of failure events. These characteristics
and most frequent failure types are discussed later in the paper.
Given the signi"cant variance in system reliability, HPC system
acquisition teams at HPC centers can use this "nding by adding
upper bound on the variance in MTBF as a key metric in the request
for proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility and
support available should the reliability drops below a certain thresh-
old, as opposed to only system administrators trying to improve the
user experience during such period. For example, if the MTBF drops
dramatically below a certain threshold due to hardware issue, the
spare parts required beyond the threshold could be cost-shared by
the vendor. We also note that such ideas need to be implemented in
ways where both parties always have rewards and risks associated
with abnormal operational e#ciency phases.

Next natural question to ask is: what types of failures dominate
the overall number of failures and what can we learn from their
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Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

temporal characteristics?

RQ3: One may expect that few failure types dominate [11, 17],
but how much do these dominant failures change over time and
across systems?

Fig. 2 shows the fraction of each failure type with respect to the
total number of failures on the system.

First, we "nd that a small subset of failure types constitute a
major fraction of total failures across many systems. Three failure
types: Machine Check Exception (MCE), Kernel Panic, and Node
Heartbeat fault combined together constitute more than 70% of
the total failures on all three Jaguar systems (refer to Table 2 for
failure type: hardware / software). On Titan, the GPU related errors
(SXM power o! and double bit errors) contribute roughly 30% of
all failures. Signi"cant fraction of hardware related errors, such
as MCE and GPU related errors, emphasizes the importance of
better provisioning and replication of CPU and GPU memory. For
example, GPU related errors and MCEs constitute more than 60%
of failures on Titan.

We note that major system software related bug such as Kernel
Panic and Lustre Bugs contribute approximately 20%. We notice
that SeaStar errors (interconnect related errors) interrupted applica-
tions on Jaguar XT5 system approximately 10% of the total failure
instances. In comparison, interconnect related errors are less than
1% on new systems with Gemini and Aries interconnects.

We point out that we have carefully counted Node Heartbeat
fault as system failure only when these events have resulted in
application interruptions and not as false alarms. X86 CPUs log
errors are detected by the CPU asMCEs. MCEs can be uncorrectable
errors in the CPU caches, in main memory, in the front side bus or
CPU interconnect, etc. Potential causes include cosmic radiation,
voltage/power $uctuations, process variation, among other reasons.

It is natural to hypothesize that a dominant particular failure
type could be a result of all failures of that particular type occur-
ring in a short period of time. To refute this, Fig. 3 shows how
the fraction of m failure types changes over time for Jaguar XT5
system (we observed similar trends for other systems). We show
that dominant failure types occur throughout the period instead
of being concentrated over shorter periods. We also note that their
contribution toward number of failures changes over time.

Scale normalized MTBF of each system 

Table 3: Overall system MTBF for di�erent systems. Scale-
Normalized MTBF is calculated assuming same system contains
18688 nodes.

System MTBF (hours) Scale-Norm. MTBF (hours)
Jaguar XT4 36.91 15.47
Jaguar XT5 22.67 22.67
Jaguar XK6 8.93 8.93

Eos 189.04 7.45
Titan 14.51 14.51

middle part of the bath tub curve) [8, 10]. Therefore, we investi-
gate if the reliability of the system changes during the stable period?

RQ1: Are newer generations of HPC systems becoming less reli-
able?
RQ2: During the stable operational period, does the reliability of
the system changes signi�cantly? If so, by how much?

We use the mean time between failure (MTBF) as the �rst metric
to study a system’s reliability. System MTBF has been a commonly
used measure of a system’s reliability to represent how often the
system is expected to experience a failure on average. It is a simple,
and hence most prevalent, measure of temporal behavior of failure
events on a system. Therefore, we start our analysis by comparing
the MTBF of di�erent systems in our study.

Table 3 shows the MTBF of each system and a scale-normalized
MTBF metric. As shown in Table 1, all systems in our study are
not of the same scale (in terms of number of nodes), therefore, sim-
ply comparing the system MTBF is not a fair comparison for sys-
tem with higher number of nodes. Therefore, the scale-normalized
MTBF metric is presented to compare systemMTBF as if all systems
were deployed with the same number of compute nodes, as de�ne
below.

Scale-Normalized MTBF = MTBF⇥Num of Nodes in the System
Max Number of Nodes across all Systems

From Table 1, we note that Jaguar XT5 has the highest scaled
MTBF, followed by the Jaguar XT4 and Titan XK7 systems. Jaguar
XT4 and Jaguar XT5 are two consecutive generations of Cray sys-
tems that shared several design features. Similarly, Jaguar XK6 and
Titan XK7 are also two consecutive generations of Cray systems.
We found that it is possible that newer generation of systems may
have higher scale-normalized MTBF than previous generation of
systems. While one metric may not always capture the full relia-
bility characteristics of a system as we discuss later, we observe
the reliability doesn’t necessarily decrease monotonically over dif-
ferent generations of the HPC systems, as projected by previous
studies [11, 26].

Next, we show that comparison across systems based on scale-
normalized MTBF averaged over the whole time may lead to in-
complete and inaccurate characterization. Fig. 1 shows how the
scale-normalized MTBF of the system changes over time. The plot
shows the scale-normalized MTBF metric averaged over each quar-
ter. We point out that we experimented with di�erent granularities
(e.g., week, month, quarter) and were able to ensure statistical sig-
ni�cance for comparison with quarter granularity.

Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of
the systems. For example, Jaguar XT5 systems shows approximately
4x change in scale-normalized MTBF and Titan system shows ap-
proximately 2.5x change in scale-normalized MTBF over time. We
also observe that during some time periods newer generation of
systems have higher scale-normalized MTBF, while during some
time periods previous generation of systems are more reliable –
indicating that there is not necessarily a monotonic trend at the
system level as projected by technology trends and other stud-
ies [8, 10]. We also con�rmed that these changes in MTBF are not
due to software upgrades, as also discussed later di�erent failure
types also exhibit this behavior. This also indicates that improved
operational practices and acceptance tests (e.g., better benchmark
suites for inducing GPU speci�c failures, new memory errors, etc.)
have been able to balance the e�ects of decreasing reliability at
the device level, and we should continue to focus on investing into
improved system maintenance and operational cost in the future.

Summary Our �eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di�erent generations of the HPC systems. Even during the
stable operational period the system MTBF may change by
up to 4x , contrary to conventional wisdom that MTBF of
HPC system during stable operational period doesn’t vary
signi�cantly.

Given the signi�cant variance in system reliability, HPC system
acquisition teams should also consider adding upper bound
on the variance in MTBF as a key metric in the request for
proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility
and support available should the reliability drops below a
certain threshold, instead of only system administrators trying
to improve the user experience during such period.

As optimal checkpointing intervals employed by applications
depend on the MTBF [2], this information should be exposed to
the HPC users easily and systematically to reduce the impact
of failures (i.e., wasted work). Unfortunately, exposing failure
frequency to users is not a widely-adopted practice yet because
of the conventional wisdom that systemMTBF is fairly constant
over time for a stable system.

3
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studies [14, 38]. Next, we show that comparison across systems
based on scale-normalizedMTBF averaged over the whole timemay
lead to incomplete and inaccurate characterization. Fig. 1 shows
how the scale-normalized MTBF of the system changes over time.
The plot shows the scale-normalized MTBF metric averaged over
each quarter. We point out that we experimented with di!erent
granularities (e.g., week, month, quarter) and were able to ensure
statistical signi"cance for comparison with quarter granularity.

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of the
systems. For example, Jaguar XT5 systems shows approximately 4x
change in scale-normalized MTBF and Titan system shows approx-
imately 2.5x change in scale-normalized MTBF over time. We also
observe that during some time periods newer generation of systems
have higher scale-normalized MTBF, while during some time peri-
ods previous generation of systems are more reliable – indicating
that there is not necessarily a monotonic trend at the system level
as projected by technology trends and other studies [11, 13]. We
also con"rmed that these changes in MTBF are not due to software
upgrades. As discussed later in detail, di!erent failure types also
exhibit this behavior. Also, as per our de"nition of MTBF, a system
outage still counts as one failure and hence, does not account for
variance in MTBF.

Summary Our "eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di!erent generations of the HPC systems. Even during the
stable operational period the MTBF may change by up to 4x ,
contrary to "ndings from prior studies showing that MTBF
of HPC system during stable operational period doesn’t vary
signi"cantly [11, 37, 39].

As optimal checkpointing intervals employed by applications
depend on the MTBF [5, 15], this information should be exposed
to the HPC users easily and systematically to reduce the im-
pact of failures (i.e., wasted work). This "nding can be used by
other HPC centers to guide users to make better checkpointing
decisions.

The variance in MTBF can be caused by the changing temporal
and spatial characteristics of failure events. These characteristics
and most frequent failure types are discussed later in the paper.
Given the signi"cant variance in system reliability, HPC system
acquisition teams at HPC centers can use this "nding by adding
upper bound on the variance in MTBF as a key metric in the request
for proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility and
support available should the reliability drops below a certain thresh-
old, as opposed to only system administrators trying to improve the
user experience during such period. For example, if the MTBF drops
dramatically below a certain threshold due to hardware issue, the
spare parts required beyond the threshold could be cost-shared by
the vendor. We also note that such ideas need to be implemented in
ways where both parties always have rewards and risks associated
with abnormal operational e#ciency phases.

Next natural question to ask is: what types of failures dominate
the overall number of failures and what can we learn from their
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Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

temporal characteristics?

RQ3: One may expect that few failure types dominate [11, 17],
but how much do these dominant failures change over time and
across systems?

Fig. 2 shows the fraction of each failure type with respect to the
total number of failures on the system.

First, we "nd that a small subset of failure types constitute a
major fraction of total failures across many systems. Three failure
types: Machine Check Exception (MCE), Kernel Panic, and Node
Heartbeat fault combined together constitute more than 70% of
the total failures on all three Jaguar systems (refer to Table 2 for
failure type: hardware / software). On Titan, the GPU related errors
(SXM power o! and double bit errors) contribute roughly 30% of
all failures. Signi"cant fraction of hardware related errors, such
as MCE and GPU related errors, emphasizes the importance of
better provisioning and replication of CPU and GPU memory. For
example, GPU related errors and MCEs constitute more than 60%
of failures on Titan.

We note that major system software related bug such as Kernel
Panic and Lustre Bugs contribute approximately 20%. We notice
that SeaStar errors (interconnect related errors) interrupted applica-
tions on Jaguar XT5 system approximately 10% of the total failure
instances. In comparison, interconnect related errors are less than
1% on new systems with Gemini and Aries interconnects.

We point out that we have carefully counted Node Heartbeat
fault as system failure only when these events have resulted in
application interruptions and not as false alarms. X86 CPUs log
errors are detected by the CPU asMCEs. MCEs can be uncorrectable
errors in the CPU caches, in main memory, in the front side bus or
CPU interconnect, etc. Potential causes include cosmic radiation,
voltage/power $uctuations, process variation, among other reasons.

It is natural to hypothesize that a dominant particular failure
type could be a result of all failures of that particular type occur-
ring in a short period of time. To refute this, Fig. 3 shows how
the fraction of m failure types changes over time for Jaguar XT5
system (we observed similar trends for other systems). We show
that dominant failure types occur throughout the period instead
of being concentrated over shorter periods. We also note that their
contribution toward number of failures changes over time.

Scale normalized MTBF of each system 

Newer generation of HPC systems are not necessarily 
consistently less reliable than previous generation systems.
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studies [14, 38]. Next, we show that comparison across systems
based on scale-normalizedMTBF averaged over the whole timemay
lead to incomplete and inaccurate characterization. Fig. 1 shows
how the scale-normalized MTBF of the system changes over time.
The plot shows the scale-normalized MTBF metric averaged over
each quarter. We point out that we experimented with di!erent
granularities (e.g., week, month, quarter) and were able to ensure
statistical signi"cance for comparison with quarter granularity.

Fig. 1 quantitatively shows that the scale-normalized MTBF
changes drastically even during the stable operational periods of the
systems. For example, Jaguar XT5 systems shows approximately 4x
change in scale-normalized MTBF and Titan system shows approx-
imately 2.5x change in scale-normalized MTBF over time. We also
observe that during some time periods newer generation of systems
have higher scale-normalized MTBF, while during some time peri-
ods previous generation of systems are more reliable – indicating
that there is not necessarily a monotonic trend at the system level
as projected by technology trends and other studies [11, 13]. We
also con"rmed that these changes in MTBF are not due to software
upgrades. As discussed later in detail, di!erent failure types also
exhibit this behavior. Also, as per our de"nition of MTBF, a system
outage still counts as one failure and hence, does not account for
variance in MTBF.

Summary Our "eld study shows that the reliability of HPC
systems doesn’t necessarily decrease monotonically over
di!erent generations of the HPC systems. Even during the
stable operational period the MTBF may change by up to 4x ,
contrary to "ndings from prior studies showing that MTBF
of HPC system during stable operational period doesn’t vary
signi"cantly [11, 37, 39].

As optimal checkpointing intervals employed by applications
depend on the MTBF [5, 15], this information should be exposed
to the HPC users easily and systematically to reduce the im-
pact of failures (i.e., wasted work). This "nding can be used by
other HPC centers to guide users to make better checkpointing
decisions.

The variance in MTBF can be caused by the changing temporal
and spatial characteristics of failure events. These characteristics
and most frequent failure types are discussed later in the paper.
Given the signi"cant variance in system reliability, HPC system
acquisition teams at HPC centers can use this "nding by adding
upper bound on the variance in MTBF as a key metric in the request
for proposals and contracts. This will attempt to ensure that system
manufacturers and integrators have additional responsibility and
support available should the reliability drops below a certain thresh-
old, as opposed to only system administrators trying to improve the
user experience during such period. For example, if the MTBF drops
dramatically below a certain threshold due to hardware issue, the
spare parts required beyond the threshold could be cost-shared by
the vendor. We also note that such ideas need to be implemented in
ways where both parties always have rewards and risks associated
with abnormal operational e#ciency phases.

Next natural question to ask is: what types of failures dominate
the overall number of failures and what can we learn from their
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Figure 1: Scale-normalized MTBF of each system over time
(averaged quarterly).

temporal characteristics?

RQ3: One may expect that few failure types dominate [11, 17],
but how much do these dominant failures change over time and
across systems?

Fig. 2 shows the fraction of each failure type with respect to the
total number of failures on the system.

First, we "nd that a small subset of failure types constitute a
major fraction of total failures across many systems. Three failure
types: Machine Check Exception (MCE), Kernel Panic, and Node
Heartbeat fault combined together constitute more than 70% of
the total failures on all three Jaguar systems (refer to Table 2 for
failure type: hardware / software). On Titan, the GPU related errors
(SXM power o! and double bit errors) contribute roughly 30% of
all failures. Signi"cant fraction of hardware related errors, such
as MCE and GPU related errors, emphasizes the importance of
better provisioning and replication of CPU and GPU memory. For
example, GPU related errors and MCEs constitute more than 60%
of failures on Titan.

We note that major system software related bug such as Kernel
Panic and Lustre Bugs contribute approximately 20%. We notice
that SeaStar errors (interconnect related errors) interrupted applica-
tions on Jaguar XT5 system approximately 10% of the total failure
instances. In comparison, interconnect related errors are less than
1% on new systems with Gemini and Aries interconnects.

We point out that we have carefully counted Node Heartbeat
fault as system failure only when these events have resulted in
application interruptions and not as false alarms. X86 CPUs log
errors are detected by the CPU asMCEs. MCEs can be uncorrectable
errors in the CPU caches, in main memory, in the front side bus or
CPU interconnect, etc. Potential causes include cosmic radiation,
voltage/power $uctuations, process variation, among other reasons.

It is natural to hypothesize that a dominant particular failure
type could be a result of all failures of that particular type occur-
ring in a short period of time. To refute this, Fig. 3 shows how
the fraction of m failure types changes over time for Jaguar XT5
system (we observed similar trends for other systems). We show
that dominant failure types occur throughout the period instead
of being concentrated over shorter periods. We also note that their
contribution toward number of failures changes over time.

Scale normalized MTBF of each system 

The MTBF of HPC systems doesn’t necessarily decrease 
monotonically over different generations.

Even during the stable operational period, the MTBF may 
change by up to 4x! 



What is the impact and temporal behavior 
of different failure types? 



Contribution of different failure types 
across systems 
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Figure 2: Contribution of di!erent failure types for each system.
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Figure 3: Contribution of key failure types Machine Check
Exception(MCE), Kernel Panic, Node heartbeat fault, and
Seastar heartbeat fault over time (averaged quarterly).

Summary Our study con!rms that a few failure types
constitute a major fraction of all failures.

However, unlike prior studies indicating that software
failures are dominant failure types (e.g., !le system and
kernel related failures) [8, 11], we found that hardware related
errors (e.g., uncorrectable memory errors) are equally or
more dominant across systems over the whole period of
time – implicating the importance of better provisioning and
replication of CPU and GPU memory against such errors via
compression, replication etc. [9, 23]. We also observed that
resilience of Cray interconnect has improved signi!cantly from
older generation to newer generation.

Given the signi!cant variance in MTBF among di"erent
failure types, HPC system acquisition teams should also
consider adding MTBF bound for di"erent failure types as a
key metric in the request for proposals and contracts.

As noted by previous work [15, 16, 34], exponential distribu-
tion is not the best !tting parametric model for failure recurrence
behavior; instead Weibull distribution has been shown to better
!t the !eld data from real systems. Note that this has important
implication on hazard rate of the system. Exponential distribution
with mean λ has a constant hazard rate of 1/λ. On the other hand,
a Weibull distribution with parameters (λ, k) is given as Eq.1. Since
this rate is not constant and decreases with the value of x (k is

less than 1 for Weibull distribution), the failure rate is higher when
the value of x is smaller. In other words, failures are more likely
to re-occur close to failure events. Therefore, we propose to use k
as the parameter to represent the degree of temporal recurrence
behavior. The closer k is to 1 (i.e., closer to exponential distribution),
the lower is the degree of recurrence. Moreover, k is complementary
to using MTBF because MTBF and k can uniquely determine the
parameters (λ, k) of the !tting Weibull distribution.

h(x ;k ,λ) =
k

λ
(
x

λ
)k−1 (1)

RQ4: Prior studies have shown that system failures have temporal
recurrence property [4, 15, 16, 28]. But, does this temporal
recurrence property of system failures change across systems and
di!erent failure types?

To the best of our knowledge, we are the !rst to investigate if
the degree of temporal recurrence varies over time across di"erent
systems. Fig. 5 shows the temporal recurrence parameter for Jaguar
XT4, Jaguar XT5, Jaguar XK6, and Titan XK7 systems at a quarterly
granularity. Eos XC30 system is not included in this analysis because
we found that the number of failure events were not enough to
pass the test of statistical signi!cance.

We observe that the degree of temporal recurrence changes sig-
ni!cantly over time and across systems. For example, the temporal
recurrence parameter for Jaguar XT4 varies between 0.58 and 0.99.
For Jaguar XT5, it declines from 0.76 down to 0.66, and hence, show
an increase in the degree of temporal recurrence. Interestingly and
counter-intuitively, in the same period of time, the MTBF of Jaguar
XT5 system increases signi!cantly (Fig. 5). To test this trend fur-
ther, we computed the correlation between the sequence of MTBFs
and temporal recurrence parameter over di"erent time period and
across systems. We found the correlation coe#cient for Jaguar XT4,
Jaguar XT5, Jaguar XK6, and Titan are 0.81, 0.71, -0.97, and -0.03.
This shows that a high likelihood of temporal recurrence doesn’t
necessarily mean lower MTBF. It varies signi!cantly between these
systems. MTBF and temporal recurrence parameter capture two
di"erent aspects of the system reliability and can not be used as a
proxy for each other. As an implication, a highly reliable system
(i.e., high MTBF) may still exhibit quite strong temporal recurrence
of system failures (i.e., small temporal recurrence parameter).
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Figure 3: Contribution of key failure types Machine Check
Exception(MCE), Kernel Panic, Node heartbeat fault, and
Seastar heartbeat fault over time (averaged quarterly).

Summary Our study con!rms that a few failure types
constitute a major fraction of all failures.

However, unlike prior studies indicating that software
failures are dominant failure types (e.g., !le system and
kernel related failures) [8, 11], we found that hardware related
errors (e.g., uncorrectable memory errors) are equally or
more dominant across systems over the whole period of
time – implicating the importance of better provisioning and
replication of CPU and GPU memory against such errors via
compression, replication etc. [9, 23]. We also observed that
resilience of Cray interconnect has improved signi!cantly from
older generation to newer generation.

Given the signi!cant variance in MTBF among di"erent
failure types, HPC system acquisition teams should also
consider adding MTBF bound for di"erent failure types as a
key metric in the request for proposals and contracts.

As noted by previous work [15, 16, 34], exponential distribu-
tion is not the best !tting parametric model for failure recurrence
behavior; instead Weibull distribution has been shown to better
!t the !eld data from real systems. Note that this has important
implication on hazard rate of the system. Exponential distribution
with mean λ has a constant hazard rate of 1/λ. On the other hand,
a Weibull distribution with parameters (λ, k) is given as Eq.1. Since
this rate is not constant and decreases with the value of x (k is

less than 1 for Weibull distribution), the failure rate is higher when
the value of x is smaller. In other words, failures are more likely
to re-occur close to failure events. Therefore, we propose to use k
as the parameter to represent the degree of temporal recurrence
behavior. The closer k is to 1 (i.e., closer to exponential distribution),
the lower is the degree of recurrence. Moreover, k is complementary
to using MTBF because MTBF and k can uniquely determine the
parameters (λ, k) of the !tting Weibull distribution.

h(x ;k ,λ) =
k

λ
(
x

λ
)k−1 (1)

RQ4: Prior studies have shown that system failures have temporal
recurrence property [4, 15, 16, 28]. But, does this temporal
recurrence property of system failures change across systems and
di!erent failure types?

To the best of our knowledge, we are the !rst to investigate if
the degree of temporal recurrence varies over time across di"erent
systems. Fig. 5 shows the temporal recurrence parameter for Jaguar
XT4, Jaguar XT5, Jaguar XK6, and Titan XK7 systems at a quarterly
granularity. Eos XC30 system is not included in this analysis because
we found that the number of failure events were not enough to
pass the test of statistical signi!cance.

We observe that the degree of temporal recurrence changes sig-
ni!cantly over time and across systems. For example, the temporal
recurrence parameter for Jaguar XT4 varies between 0.58 and 0.99.
For Jaguar XT5, it declines from 0.76 down to 0.66, and hence, show
an increase in the degree of temporal recurrence. Interestingly and
counter-intuitively, in the same period of time, the MTBF of Jaguar
XT5 system increases signi!cantly (Fig. 5). To test this trend fur-
ther, we computed the correlation between the sequence of MTBFs
and temporal recurrence parameter over di"erent time period and
across systems. We found the correlation coe#cient for Jaguar XT4,
Jaguar XT5, Jaguar XK6, and Titan are 0.81, 0.71, -0.97, and -0.03.
This shows that a high likelihood of temporal recurrence doesn’t
necessarily mean lower MTBF. It varies signi!cantly between these
systems. MTBF and temporal recurrence parameter capture two
di"erent aspects of the system reliability and can not be used as a
proxy for each other. As an implication, a highly reliable system
(i.e., high MTBF) may still exhibit quite strong temporal recurrence
of system failures (i.e., small temporal recurrence parameter).

Contribution of different failure types 
over time (for Jaguar XT5)



A few failure types constitute a major fraction of 
all failures.  Hardware related errors (e.g., 

uncorrectable memory errors) are dominant 
across systems over the whole period of time – 

implicating the importance of better provisioning 
and replication of CPU and GPU memory against 

such errors.



Given the significant variance in MTBF among 
different failure types, HPC system acquisition 

teams should also consider adding MTBF bounds 
for different failure types as a key metric in the 

request for proposals and contracts. 



Temporal locality in failures: Does it vary 
across failure types and over time? 



Temporal reoccurrence parameter across 
systems and failure types
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Figure 4: Temporal recurrence parameter per failure type for each system. Lower parameter value means higher temporal
recurrence.
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Figure 5: Temporal recurrence parameter of each system
over time (averaged quarterly). Lower parameter value
means higher temporal recurrence.

Continuing the similar line of investigation, we explore if the de-
gree of temporal recurrence varies for di!erent failure types across
di!erent systems. Fig. 4 shows the temporal recurrence parameter
of each failure type across di!erent systems. We point out that
the MTBF of each failure type is di!erent across di!erent systems
due to change in frequency of failures across systems. However,
interestingly, we observe that the temporal recurrence parameter is
similar for a given failure type across systems. For example, Kernel
Panic and LBUG show low temporal recurrence parameter (approx.
0.40) across systems while Voltage Fault failure shows high tempo-
ral recurrence parameter (closer to 1) across systems except Eos.
This "ndings indicate that temporal recurrence property is inher-
ent to a particular type. Software related failures tend to exhibit
higher temporal recurrence (and hence, lower temporal recurrence
parameter). On the other hand, system power/cooling related fail-
ures are relatively less temporally correlated, resulting in relatively
lower temporal recurrence (and hence, relatively higher temporal
recurrence parameter). This observation can help in the planning
for proactive action and repair mechanism for a given failure type.
A system could also be proactively stress tested for some particular
type of failures after the "rst occurrence of the failure – to avoid
the impact of future failures on critical jobs.

Next, we investigate the temporal recurrence characteristics
among di!erent failure types. In Fig. 6, temporal recurrence charac-
teristics amongst di!erent failure types is presented as heatmaps.

The heatmaps show the probability of a failure type (say B) follow-
ing another failure type (say A) within a time window. In other
words, it is the conditional probability that given failure type A has
just occurred, a failure of type B will occur within the time window
(T). In Fig. 6, we show the results for 1 hour time window for Jaguar
XT4, Jaguar XT5, Jaguar XK6, and Titan XK7. We found similar
trends for larger time window sizes.

We observe that all failure types exhibit strong temporal recur-
rence relationship with themselves across all systems. In other
words, a given failure is often followed by another failure of the
same type within 1 hour across all systems. We note that this
observation is not skewed since we have already discarded any
super#uous reporting of same failure event in the failure logs by
applying strong "ltering methods (described in Section 2). Interest-
ingly, we found a strong recurrence relationship between a Seastar
Lockup being followed by Machine Check Exception (Fig. 6(a)).
We investigated deeper and found that Seastar lockup may cause
the memory corruption in the router that can also manifest as a
MCE failure later depending on the memory access pattern and
ECC scrubber frequency. Catching these failure correlations can be
used by system designers and operators to deploy resilience related
proactive measures for user jobs.

Summary We found that the temporal recurrence property
varies signi"cantly over time for a given system.

We are the "rst to show that the temporal recurrence
property for di!erent failure types are signi"cantly di!erent,
but similar across systems. These observations can be used to
their advantage by system operators to improve planning for
proactive action and repair mechanism for a given failure type.
We also showed how MTBF and temporal recurrence parameter
captures two di!erent aspects of the system reliability – any
one alone is not su$cient. We also demonstrated and explained
interesting temporal recurrence relationship between same
failure types.

Next, we want to investigate temporal characteristics of failures.
We explore the temporal characteristics of failures in more detail
by asking the following speci"c questions:

See the paper for the formal mathematical formulation of the temporal 
reoccurrence parameter 



Temporal reoccurrence parameter over 
time and across systems
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Figure 4: Temporal recurrence parameter per failure type for each system. Lower parameter value means higher temporal
recurrence.
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Figure 5: Temporal recurrence parameter of each system
over time (averaged quarterly). Lower parameter value
means higher temporal recurrence.

Continuing the similar line of investigation, we explore if the de-
gree of temporal recurrence varies for di!erent failure types across
di!erent systems. Fig. 4 shows the temporal recurrence parameter
of each failure type across di!erent systems. We point out that
the MTBF of each failure type is di!erent across di!erent systems
due to change in frequency of failures across systems. However,
interestingly, we observe that the temporal recurrence parameter is
similar for a given failure type across systems. For example, Kernel
Panic and LBUG show low temporal recurrence parameter (approx.
0.40) across systems while Voltage Fault failure shows high tempo-
ral recurrence parameter (closer to 1) across systems except Eos.
This "ndings indicate that temporal recurrence property is inher-
ent to a particular type. Software related failures tend to exhibit
higher temporal recurrence (and hence, lower temporal recurrence
parameter). On the other hand, system power/cooling related fail-
ures are relatively less temporally correlated, resulting in relatively
lower temporal recurrence (and hence, relatively higher temporal
recurrence parameter). This observation can help in the planning
for proactive action and repair mechanism for a given failure type.
A system could also be proactively stress tested for some particular
type of failures after the "rst occurrence of the failure – to avoid
the impact of future failures on critical jobs.

Next, we investigate the temporal recurrence characteristics
among di!erent failure types. In Fig. 6, temporal recurrence charac-
teristics amongst di!erent failure types is presented as heatmaps.

The heatmaps show the probability of a failure type (say B) follow-
ing another failure type (say A) within a time window. In other
words, it is the conditional probability that given failure type A has
just occurred, a failure of type B will occur within the time window
(T). In Fig. 6, we show the results for 1 hour time window for Jaguar
XT4, Jaguar XT5, Jaguar XK6, and Titan XK7. We found similar
trends for larger time window sizes.

We observe that all failure types exhibit strong temporal recur-
rence relationship with themselves across all systems. In other
words, a given failure is often followed by another failure of the
same type within 1 hour across all systems. We note that this
observation is not skewed since we have already discarded any
super#uous reporting of same failure event in the failure logs by
applying strong "ltering methods (described in Section 2). Interest-
ingly, we found a strong recurrence relationship between a Seastar
Lockup being followed by Machine Check Exception (Fig. 6(a)).
We investigated deeper and found that Seastar lockup may cause
the memory corruption in the router that can also manifest as a
MCE failure later depending on the memory access pattern and
ECC scrubber frequency. Catching these failure correlations can be
used by system designers and operators to deploy resilience related
proactive measures for user jobs.

Summary We found that the temporal recurrence property
varies signi"cantly over time for a given system.

We are the "rst to show that the temporal recurrence
property for di!erent failure types are signi"cantly di!erent,
but similar across systems. These observations can be used to
their advantage by system operators to improve planning for
proactive action and repair mechanism for a given failure type.
We also showed how MTBF and temporal recurrence parameter
captures two di!erent aspects of the system reliability – any
one alone is not su$cient. We also demonstrated and explained
interesting temporal recurrence relationship between same
failure types.

Next, we want to investigate temporal characteristics of failures.
We explore the temporal characteristics of failures in more detail
by asking the following speci"c questions:



The temporal reoccurrence property varies 
significantly over time for a given system. 

The temporal reoccurrence property for different 
failure types is significantly different, but similar 

across systems. 

Implications for failure prediction.



The MTBF and the temporal reoccurrence 
parameter capture two different aspects of system 

reliability – any one alone is not sufficient.  



Is there periodicity or are there temporal 
trends in failures? 



All failures over hour of the day 
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Figure 6: Temporal recurrence relationship between failure types on di!erent systems. The heatmaps show the results for one
hour time window. SeaStar refers to SeaStar Heartbeat Faults and Seastar refers to Seastar Lockup events.

Figure 7: Normalized failure rate of all failures across sys-
tems at per-hour granularity (normalized to the average of
failure frequency over 24 hours).

RQ5: How does the temporal characteristics of failures change
over hour-of-the-day, day-of-the-week, and month-of-the-year?

RQ6: Do these characteristics change across systems and
failure types?

Fig. 7 shows the normalized failure rate of all failures across
all systems at per-hour granularity. We found that the failure rate
increases during afternoon hours, potentially because of increased
utilization. However, the amount of variance is signi!cant and de-
pends heavily on the system. The normalized failure rate is approx.
20-40% higher than average during afternoon hours for most sys-
tems. However, interestingly the normalized failure rate is still
quite high during the night and early morning hours (50% of the

Figure 8: Normalized failure rate of Machine Check Excep-
tion failures across systems at per-hour granularity (normal-
ized to the average of failure frequency over 24 hours).

average rate), indicating that one can not assume very low failure
rate during the night and early morning hours, as scienti!c users
run high throughput batch jobs that can run overnight.

While the increased failure rate is expected during certain hours,
we investigate if this trend holds true for individual failure types.
Surprisingly, we discovered that hardware related failures do not
necessarily follow the same trend of increase in failure rate during
afternoon hours. To demonstrate this, we have chosen Machine
Check Exception, a dominant hardware related error, as a proxy
to demonstrate this trend; other hardware related errors show a
similar trend. Fig. 8 shows MCE errors occur throughout all hours
during a day. We note that Eos XC30 system is primarily a data
analytics cluster and is not utilized at its peak capability all the time,
unlike other systems. The users tend to schedule jobs on analytics
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Figure 6: Temporal recurrence relationship between failure types on di!erent systems. The heatmaps show the results for one
hour time window. SeaStar refers to SeaStar Heartbeat Faults and Seastar refers to Seastar Lockup events.

Figure 7: Normalized failure rate of all failures across sys-
tems at per-hour granularity (normalized to the average of
failure frequency over 24 hours).

RQ5: How does the temporal characteristics of failures change
over hour-of-the-day, day-of-the-week, and month-of-the-year?

RQ6: Do these characteristics change across systems and
failure types?

Fig. 7 shows the normalized failure rate of all failures across
all systems at per-hour granularity. We found that the failure rate
increases during afternoon hours, potentially because of increased
utilization. However, the amount of variance is signi!cant and de-
pends heavily on the system. The normalized failure rate is approx.
20-40% higher than average during afternoon hours for most sys-
tems. However, interestingly the normalized failure rate is still
quite high during the night and early morning hours (50% of the

Figure 8: Normalized failure rate of Machine Check Excep-
tion failures across systems at per-hour granularity (normal-
ized to the average of failure frequency over 24 hours).

average rate), indicating that one can not assume very low failure
rate during the night and early morning hours, as scienti!c users
run high throughput batch jobs that can run overnight.

While the increased failure rate is expected during certain hours,
we investigate if this trend holds true for individual failure types.
Surprisingly, we discovered that hardware related failures do not
necessarily follow the same trend of increase in failure rate during
afternoon hours. To demonstrate this, we have chosen Machine
Check Exception, a dominant hardware related error, as a proxy
to demonstrate this trend; other hardware related errors show a
similar trend. Fig. 8 shows MCE errors occur throughout all hours
during a day. We note that Eos XC30 system is primarily a data
analytics cluster and is not utilized at its peak capability all the time,
unlike other systems. The users tend to schedule jobs on analytics

Memory errors over hour of the day 

Failure rate increases during afternoon hours by 
up to 40%. However, this is not true for all failure 
types. Memory errors do not necessarily show 
increased failure rate during afternoon hours.  
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Figure 9: Normalized failure rate of all failures across sys-
tems at day-of-the-week granularity (normalized to the av-
erage of failure frequency over all seven days in the week).

Figure 10: Normalized failure rate of Machine Check Ex-
ception failures across systems at day-of-the-week granular-
ity (normalized to the average of failure frequency over all
seven days in the week).

cluster in bursts; the bursty nature of MCE errors on Eos is an
artifact of that utilization pattern.

Figure 11: Normalized failure rate of all failures across sys-
tems atmonth granularity (normalized to the average of fail-
ure frequency over all twelve months in the year and length
of the observation period).

Figure 12: Normalized failure rate of Machine Check Ex-
ception failures across systems at month granularity (nor-
malized to the average of failure frequency over all twelve
months in the year and length of the observation period).

Next, Fig. 9 and 10 shows the normalized failure rate of all failures
and machine check exceptions (uncorrectable hardware errors)
across systems at day-of-the-week granularity. We found that the
failure rate during the weekend can be 20-30% lower than weekdays,
even for machine check exceptions (uncorrectable hardware errors).
This could be better analyzed in conjunction with utilization data.
Unavailability detailed and accurate resource utilization data limits
us to explore the correlation between failures and utilization. It
could be useful exercise for system operators to better understand
and exploit such a possible correlation.
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Next, Fig. 9 and 10 shows the normalized failure rate of all failures
and machine check exceptions (uncorrectable hardware errors)
across systems at day-of-the-week granularity. We found that the
failure rate during the weekend can be 20-30% lower than weekdays,
even for machine check exceptions (uncorrectable hardware errors).
This could be better analyzed in conjunction with utilization data.
Unavailability detailed and accurate resource utilization data limits
us to explore the correlation between failures and utilization. It
could be useful exercise for system operators to better understand
and exploit such a possible correlation.

All failures over day of the week Memory errors over day of the week

Failure rate seem to decrease during the 
weekend. However, memory errors do not 

necessarily show this trend. Implications about 
utilization and error reporting.  



What about neighborhood effects in 
failures? 
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Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for di!erent systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.
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Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for di!erent systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai )

× P (θ0 = Ai ) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai ) (4)

As shown in above equations, the neighborhood recurrence e!ect
is a function of future time window (T ) and granularity of locale
(Θ). In our analysis, we de"ne the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over di!erent time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence e!ect at each granularity. First, we observe
that neighborhood recurrence e!ect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show signi"cantly di!erent
behavior.

Second, the relative neighborhood recurrence e!ect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence e!ect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence e!ect if the time window is larger than 64 hours.

We note that neighborhood recurrence e!ect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two di!erent phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
signi"cantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
signi"cant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is signi"cant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence e!ect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coe#cient between neighborhood recurrence e!ect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coe#cient between
neighborhood recurrence e!ect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coe#cients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence e!ect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence e!ect is not subsumed by the temporal recurrence parameter
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Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for di!erent systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.
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Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for di!erent systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai )

× P (θ0 = Ai ) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai ) (4)

As shown in above equations, the neighborhood recurrence e!ect
is a function of future time window (T ) and granularity of locale
(Θ). In our analysis, we de"ne the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over di!erent time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence e!ect at each granularity. First, we observe
that neighborhood recurrence e!ect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show signi"cantly di!erent
behavior.

Second, the relative neighborhood recurrence e!ect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence e!ect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence e!ect if the time window is larger than 64 hours.

We note that neighborhood recurrence e!ect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two di!erent phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
signi"cantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
signi"cant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is signi"cant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence e!ect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coe#cient between neighborhood recurrence e!ect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coe#cient between
neighborhood recurrence e!ect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coe#cients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence e!ect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence e!ect is not subsumed by the temporal recurrence parameter
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Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for di!erent systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.
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Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for di!erent systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai )

× P (θ0 = Ai ) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai ) (4)

As shown in above equations, the neighborhood recurrence e!ect
is a function of future time window (T ) and granularity of locale
(Θ). In our analysis, we de"ne the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over di!erent time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence e!ect at each granularity. First, we observe
that neighborhood recurrence e!ect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show signi"cantly di!erent
behavior.

Second, the relative neighborhood recurrence e!ect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence e!ect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence e!ect if the time window is larger than 64 hours.

We note that neighborhood recurrence e!ect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two di!erent phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
signi"cantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
signi"cant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is signi"cant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence e!ect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coe#cient between neighborhood recurrence e!ect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coe#cient between
neighborhood recurrence e!ect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coe#cients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence e!ect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence e!ect is not subsumed by the temporal recurrence parameter

See the paper for the formal mathematical
formulation of the neighborhood reoccurrence property
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Figure 15: Neighborhood recurrence property at di!erent granularity across systems for time window of up to 96 hours.

or MTBF metric; it is a separate property of a system that should
be used if one desires to fully characterize the reliability of a system.

Summary We found that the spatial distribution of failures
is not uniform at any compute granularity across systems. We
discussed signi!cant implications of this observation for users
and job schedulers.
We showed how to capture neighborhood recurrence e"ect
mathematically and demonstrated that neighborhood recur-
rence e"ect is not strongly correlated with MTBF or degree of
temporal recurrence. Neighborhood recurrence e"ect should
be used as a separate reliability characteristic of a system. It
can not be subsumed by temporal characteristics such as MTBF
or temporal recurrence. Interestingly, researchers at LLNL and
Argonne National Laboratory have independently veri!ed that
our observations about spatial distribution of failures hold true
in their systems as well [6, 30], which are not Cray systems and
have very di"erent system composition.

4 RELATEDWORK AND CONCLUSION
Quantifying and characterizing the system failures is the !rst step
for improving the reliability of HPC computing system. In order
to characterize the failure event, works such as [35] !nd a !tting
probability density function for the inter-arrival time of failures.
Exponential, Weibull, Lognormal, and Gamma are some common
distributions used to represent empirical data and the best !tting
distribution is used to infer the system’s behavior. For example, if
the best !tting distribution is Exponential, then the system exhibits
memoryless property, i.e. the failures are independent to each other;
whereas, other distributions do not have this property.

Often the data is summarized by a single number (or a few num-
bers) instead of detailed mathematical functions. This leads to the
average of these distributions, i.e., the mean of inter-arrival times
or mean time between failures (MTBF) to be the one of the most
common metric used in comparing systems. Some other metrics
include reliability growth models to understand if the inter-arrival
times are monotonically increasing [32]. Laplace test is applied
to calculate Laplace factor that can be used to assess the failure
intensity [32]. Gainaru et al. use autocorrelation metric to quantify
the periodicity in system failure events [18]. Di"erent peaks in
autocorrelation represent some periodicity in the signal while a
random signal will have a high correlation with itself (zero lag) and
the correlation dies down with increasing lag [18].

On the other hand, in order to predict the failure events the
analysis of the system failure events based on the event types and
correlation among di"erent event types is explored by previous
works [8, 19]. The analysis and reliability metrics derived from
the data are system speci!c and deal with understanding fault
modes and their characteristics. The development of such analy-
sis methodologies, tools and predictive models can lead to deeper
insights about the underlying system behavior but it remains too
complex to allow system administrators and users to compare reli-
ability of two di"erent systems. This work has introduced two new
metrics to characterize temporal and spatial properties of failures
that can be used by other failure analysis e"orts [2, 6, 30].

Several studies, such as [8, 11, 17, 24, 25, 29, 31, 33, 34], focus on
system failures characteristics to improve the reliability of HPC sys-
tems. For example, Liang et al. provided a thorough understanding
of di"erent component failures including disk, network, memory
and processor for the Blue Gene/L system back in 2006 [24]. Oliner
et al. investigated system RAS logs for multiple HPC systems includ-
ing RedStorm and Thunderbird systems at the LANL and Sandia
Lab back in 2007 [29].

Schroeder et al. have studied the system failures and its impact on
multiple HPC systems at LANL [34]. System studied by Schroeder
et al. spanned between 1996 and 2005, and the system with largest
node count had 1024 nodes – in the same order as contemporary
fastest supercomputers. However, there has been a lack of such
large-scale reliability studies spanning across multiple systems,
generations, and system types. Recent studies fromUIUC and NCSA
collaboration have attempted to address this gap, however they
have only been limited on particular type of systems [7, 11, 12].

Some studies have also focused on studying the reliability of par-
ticular components such as DRAM, disks, and SSDs. For example,
DRAM-focused e"orts have shown manufacture speci!c insights
and impact on DRAM reliability [20, 37, 40]. In contrast, this study
covers multiple types of system failures and errors, and also in-
vestigates the impact of failure types, inter-arrival patterns and
spatial correlation in system failures. We compare and contrast the
reliability characteristics of multiple large-scale HPC production
systems, and show how some of the characteristics can be used for
future HPC system provisioning and overall system e#ciency.

We note that due to the sensitive nature of the data, it can not
be made publicly available as such. But, it is our continued e"ort
and !nal goal to make parts of the data available for researchers
in near future. Our study will enable others to learn from these
lessons, apply new metrics, and test the !ndings presented here



The spatial distribution of failures is not uniform
at any compute granularity across systems. 

Implications for job scheduler and users.

The neighborhood reoccurrence effect is not 
strongly correlated with the MTBF or the degree 

of temporal reoccurrence. 



The neighborhood reoccurrence effect should be 
used as a separate reliability characteristic of a 

system. 

It can not be subsumed by temporal characteristics, 
such as MTBF or temporal reoccurrence. 

 



Conclusion 
Systems show significant variations in reliability 
characteristics, even during the stable operational period. 

Metrics beyond MTBF are needed to capture system failure 
characteristics.

Spatial and temporal characteristics of failures are often left 
unexploited.

Implications for job scheduler, sys admins, and system 
acquisition team.
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