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Abstract:

Multi-level cache hierarchies are widely used in high-performance storage systems to
improve I/O performance. However, traditional cache management algorithms are
not suited well for such cache organizations. Recently proposed multi-level cache
replacement algorithms using aggressive exclusive caching work well with single or
multiple-client, low-correlated workloads, but suffer serious performance degradation
with multiple-client, high-correlated workloads. In this paper, we propose a new cache
management algorithm that handles multi-level buffer caches by forming a unified
cache (uCache), which uses both exclusive caching in L2 storage caches and cooper-
ative client caching. We also propose a new local replacement algorithm, Frequency
Based Eviction-Reference (FBER), based on our study of access patterns in exclusive
caches. Our simulation results show that uCache increases the cumulative cache hit
ratio dramatically. Compared to other popular cache algorithms, such as LRU, the
I/0O response time is improved by up to 46% for low-correlated workloads and 53% for
high-correlated workloads.
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Figure 1: Multi-level buffer cache hierarchy.

1 Introduction

Caching is a common technique for improving the per-
formance of I/O systems. Researchers have developed
many algorithms to manage the buffer cache, such as LRU
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU,
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS (Jiang
and Zhang, 2002), and ARC (Megiddo and Modha, 2003).
These algorithms were designed for local cache replace-
ment because they do not need any information from other
caches. They worked well for a single system. In a dis-
tributed I/O environment, buffer caches are mostly orga-
nized as multi-level cache hierarchies residing on multiple
machines. For example, in a distributed file system, shown
in Fig. 1 (Zhou et al., 2004), the upper level caches re-
side on file servers (storage clients), and the lower level
caches reside on storage servers. We refer to upper level
storage client caches as L1 buffer caches and lower level
storage caches as L2 buffer caches (Zhou et al., 2004).
L1/L2 buffer caches are very different from L1/L2 pro-
cessor caches because L1/L2 buffer caches refer to main-
memory caches distributed in multiple machines. The ac-
cess patterns of L2 caches show weak temporal locality
(Bunt et al., 1993; Froese and Bunt, 1996; Zhou et al.,
2004) after filtering from L1 caches, which implies that a
cache replacement algorithm, such as LRU, may not work
well for L2 caches. Additionally, local management algo-
rithms used in L2 caches are inclusive (Wong and Wilkes,
2002), which try to keep blocks that have been cached by
L1 caches, and waste aggregate cache space. Thus, though
the aggregate cache size of the hierarchy is increasingly
larger, the system may not deliver the expected perfor-
mance commensurate to the aggregate cache size.

Several attempts have been made to improve the cache
performance of multi-level buffer caches for distributed I/O
systems. Recent research (Wong and Wilkes, 2002; Zhou
et al., 2004; Chen et al., 2005; Bairavasundaram et al.,
2004; Jiang and Zhang, 2004) characterizes the behavior of
accesses to L2 caches, and introduces multiple algorithms
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based on the characteristics to improve the L2 cache hit
ratio. Except for multi-queue replacement (Zhou et al.,
2004), all the other algorithms try to achieve exclusive
caching (Wong and Wilkes, 2002) through quick eviction of
duplicated blocks in L2 caches. Implementing aggressive
exclusive caching may get a high hit ratio in the case of a
single storage client, but multiple-client systems introduce
a new complication: the sharing of data among clients. It
may no longer be a good idea to discard a recently read
block from the L2 cache after it has been sent to a client
cache, because the block may be referenced again by other
clients in the near future. Real workloads show behav-
ior between two extremes: disjoint workloads, in which
the clients each issue references for non-overlapping parts
of the aggregate working set, and conjoint workloads, in
which the clients each issue exactly the same references
in the same order at the same time (Wong and Wilkes,
2002). Nearly disjoint workloads are low-correlated work-
loads, and nearly conjoint workloads are high-correlated.
For low-correlated workloads, aggressive exclusive caching
is effective, but for high-correlated workloads, since the
same blocks may be referenced by multiple clients within
a relatively short time period, inclusive caching is more
attractive. For example, the simulation results in Wong
and Wilkes (2002) show that the exclusive caching could
achieve a 1.50 speedup over LRU for low-correlated work-
loads, but suffers a 0.55 slowdown for high-correlated work-
loads. Thus, for a multiple-client system, it is important to
design an algorithm which balances between aggressive ex-
clusive caching and inclusive caching according to workload
characteristics. Wong and Wilkes (2002) propose SLRU
and an adaptive cache insertion policy to decide how to
cache duplicated blocks according to their previous hit ra-
tios. The simulation results show that it could achieve up
to a 1.32 speedup for low-correlated workloads and an ap-
proximate 1.18 speedup for high-correlated workloads over
the LRU algorithm. It trades a hit ratio for low-correlated
workloads for a speedup for high-correlated workloads.

In this paper, we propose a new unified cache manage-
ment algorithm, uwCache, for multi-level I/O systems to
provide high cumulative hit ratios in multiple storage client
cache systems, for both high-correlated and low-correlated
workloads. We use cooperative client caches (Dahlin et al.,
1994) to provide inclusive caching for high frequency block
reuse among multiple L1 caches with high-correlated work-
loads, while implementing exclusive caching in L2 caches
to improve the hit ratio for low-correlated workloads. We
study the access patterns of exclusive caching and find that
LRU and other traditional algorithms are not suitable even
for local replacement in L2 caches. Based on our study,
we propose a new local L2 cache management algorithm,
FBER, for exclusive caching environments. We compare
the uCache algorithm with the traditional LRU and other
typical multi-level cache management algorithms such as
exclusive caching (Wong and Wilkes, 2002; Zhou et al.,
2004), 2Q (Johnson and Shasha, 1995), and SLRU (Wong
and Wilkes, 2002), using simulations under different work-
loads. The results show that compared to LRU, uCache



can dramatically increase the overall cache hit ratio and
improve the average I/O response time by up to 46%
for low-correlated workloads and 53% for high-correlated
workloads.

The rest of the paper is organized as follows. The back-
ground is presented in Section 2. Section 3 discusses access
patterns of L2 caches in exclusive caching environments.
Section 4 describes our idea and design issues in detail.
Section 5 describes our simulation methodology. We com-
pare our work to previous efforts to improve L2 cache per-
formance in Section 6 and examine related work in Section
7. We draw our conclusions in Section 8.

2 Background Review

To improve the hit ratio of buffer caches, researchers
have proposed many management algorithms, such as LRU
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU,
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS (Jiang
and Zhang, 2002), ARC (Megiddo and Modha, 2003), Co-
operative caching (Dahlin et al., 1994; Sarkar and Hart-
man, 1996), and the Exclusive caching algorithm (Wong
and Wilkes, 2002; Zhou et al., 2004). We outline three
typical algorithms related to our design below.

2.1 LRU Cache Algorithm

The Least Recently Used (LRU) policy is one of the most
effective policies for memory caching. Many current im-
plementations of cache management algorithms also use
variants of the LRU policy. The idea of LRU is simple: a
block which is least recently used should be the best can-
didate to be evicted from the cache, if a new block needs
to be inserted. In the LRU policy, a block is tagged with a
priority measure that is equal to the time elapsed since the
block was last accessed. When space needs to be created
in the cache, the oldest block, i.e., the one that has been
accessed least recently, is removed.

2.2 Exclusive Cache Algorithms

Recent studies (Bunt et al., 1993; Zhou et al., 2004) show
that weak temporal locality of L2 cache accesses causes
a low hit ratio for the traditional LRU algorithm. Tradi-
tional L2 cache algorithms are inclusive (Wong and Wilkes,
2002), which means the same blocks are cached by both the
L1 and L2 caches at the same time. Thus duplicated blocks
waste aggregate cache space. In exclusive caching, a block
is discarded from the L2 caches some time after it is sent
back to the L1 caches. If the same block is evicted from the
L1 caches, the L2 caches load it again for the next possible
access. Exclusive caching algorithms achieve higher hit ra-
tios compared to traditional inclusive caching techniques
(i.e., LRU), in single client storage systems, or multiple-
client systems with low-correlated workloads. However,
they suffer performance degradation in multiple-client sys-

tems with high-correlated workloads, because blocks may
be referenced again by other storage clients within a lim-
ited time after they are sent back to individual clients.

2.3 Cooperative Cache Algorithms

Cooperative cache algorithms (Dahlin et al., 1994) are used
to improve the overall cache hit ratio by taking advantage
of cache space in client machines.

When a client request is missed in the storage server
cache, the traditional way to service the request is to access
hard disks. Since the storage server is shared by multiple
clients, there is a high probability that the blocks requested
by one client and missed in the server cache are kept by
other clients. So in cooperative caching, the storage server
tracks the blocks cached in each client, and directs a re-
quest to a client if there is a cache miss in the server and
the corresponding block can be found in that client.

3 Analysis of access patterns of exclusive caching

Exclusive caching is different from current inclusive
caching in several aspects. First, after it is reloaded into
the storage cache, and then referenced by a client, a block is
quickly discarded by the management algorithm, no matter
how many times it has been referenced before, but tradi-
tional algorithms try to keep a block with a recently good
hit history in the cache as long as possible. Second, the ref-
erence sequences of storage caches are totally different from
those of traditional caches. The access sequences of tradi-
tional caches consist of continuous references of blocks, and
researchers use metrics, such as reuse distance (Zhou et al.,
2004), inter-reference gap (Phalke and Gopinath, 1995),
and inter-reference recency (Jiang and Zhang, 2002), to
describe characteristics of workloads, which are then used
to design replacement algorithms to manage buffer caches.
In exclusive caching, access sequences of storage caches
consist of two types of randomly interleaved operations:
evictions, which inform storage systems to reload blocks
that have been replaced by client caches, and references,
such as reads or writes, provided by standard I/O inter-
faces. With these differences, we need to analyze the access
patterns of exclusive caching, and design a replacement al-
gorithm based on those patterns.

3.1 Traces

To study L2 buffer cache access patterns and evaluate
caching algorithms and policies, we use three buffer cache
access traces. These traces are chosen to represent differ-
ent types of workloads: high-correlated and low-correlated.
In our study, we use 4K B as the cache block size for our
access pattern analysis and our experimental evaluation of
various algorithms. We have examined other block sizes,
with similar results. Table 1 shows the characteristics of
the traces.



Table 1: Characteristics of traces

Trace | Clients | IOs (millions) | Volume
Cello92 1 0.5 per day | 10.4GB
HTTPD 7 1.1 0.5GB

DB2 8 3.7 5.2GB

The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 (Ruemmler and Wilkes, 1993). It
captured all L2 disk I/O requests in Cello, a timesharing
system used by a group of researchers to do simulations,
compilation, editing, and e-mail, from April 18 to June 19.
We use the trace collected on April 18 as the workload
for the single client simulation. Cello is an HP 9000/877
server with one 64M Hz CPU, 96 M B memory and 8 disks.
Since requests of the traces collected in different days ac-
cess the same data set, we also use them as workloads
for the multiple-client simulation: each trace file collected
within one day acts as the workload of one client. These
workloads are high-correlated.

The HTTPD workload was generated by a seven-node
IBM SP2 parallel web server (Katz et al., 1994) serving
a 524M B data set. Multiple http servers share the same
files, although they seldom read files at the same time. We
use the HTTPD workload as the high-correlated workloads
for the multiple-client simulation.

The DB2 trace-based workload was generated by
an eight-node IBM SP2 system running an IBM DB2
database application that performed join, set and aggre-
gation operations on a 5.2GB data set. Uysal et al. (1997)
used this trace in their study of I/O on parallel machines.
Each DB2 client accesses disjoint parts of the database.
No blocks are shared among the eight clients. We use
the DB2 workload as the low-correlated workload for the
multiple-client simulation.

Since L1 buffer cache sizes clearly affect an L2 cache’s
performance, we carefully set the L1 buffer cache sizes for
the three traces to achieve a reasonable L1 hit ratio. The
cache size of the HP 9000/877 server is only 10 — 30M B,
which is very small by current standards. The Cello92
trace and the HTTPD trace show high temporal locality,
and a small client cache may achieve a high hit ratio. In
the simulations, we assume the cache size of each client is
16 M B for the Cello92 traces, and 8 M B for the HTTPD
trace, providing an L1 hit ratio of approximately 50%. The
DB2 trace shows very low temporal locality, and a 512M B
client cache just provides a L1 hit ratio of no more than
15%. But if the cache size increases to 600M B, the L1 hit
ratio suddently increases to 75%, because reuse distances
(Zhou et al., 2004) of most blocks are less than 150K.
To reserve enough cache misses for L2 caches, we assume
the cache size of each client for the DB2 trace is 512M B.
Since the number of compulsory cache misses in the DB2
trace is large, we use approximately 10% of the requests to
warmup the cache space.

3.2 Access patterns of exclusive caching

Because of the uniqueness of the reference sequences, the
metrics used before may not correctly describe the charac-
teristics of access patterns for exclusive caching. Thus, we
need to define new metrics to describe the access pattern.
The Eviction-Reference-Gap (ERG) indicates the distance
(the number of distinct evictions) between an eviction of
a block from an L1 cache and the later reference by that
cache. ERG describes how long a block will stay in the
L2 cache space before it is referenced again. The replace-
ment algorithm should keep blocks with small ERG values.
The Ewviction Frequency defines how many times a block
has been evicted from the L1 caches, and hence reloaded
into the storage cache. Not every eviction of a block will
be referenced by an L1 cache again within a reasonable
ERG; some of them are never referenced again, and some
of them are referenced, but with an FRG that is much
larger than a real cache space can provide. These kinds
of evictions are dead evictions. Evictions referenced by L1
caches again within a reasonable ERG are reusable evic-
tions. Obviously, a good replacement algorithm should
discard dead eviction blocks as quickly as possible, and for
reusable eviction blocks, keep those with relatively small
ERGs.

We first study the FEwviction-Reference-Gap of blocks in
storage caches. The data in Fig. 2 shows the distribution
of evictions over ERGs grouped by powers of two!. Signif-
icantly, blocks evicted from L1 caches are not referenced
quickly: most evictions have relatively large ERGs (from
32K to 64K in the Cello92 trace, from 8K to 16K in the
HTTPD trace, and 64K in the DB2 trace). Furthermore,
the curves descend slowly from peak to foot (the largest
ERG even extends to more than 1M), which means it is
difficult for a replacement algorithm to retain most blocks
before they are referenced by clients. A good replacement
algorithm for storage caches should at least retain blocks
that reside in the hill portion of the histogram for a longer
period of time to provide more than a 50% hit ratio. Ob-
viously, the distribution of ERG in Fig. 2 shows that LRU
is not an appropriate local replacement algorithm for ex-
clusive caching in an L2 cache.

Using the same traces, we have also examined the be-
havior of storage buffer cache accesses in terms of eviction
frequency. The data in Fig. 3 shows the distribution of
the percentages of reusable and dead evictions over evic-
tion frequencies grouped by powers of two?. It is obvious
that blocks with high eviction frequencies result in a high
percentage of the reusable evictions and a low percentage
of the dead evictions. The percentage of the dead evic-
tions decreases with the eviction frequency, but the peak
of the reusable evictions does not appear at the point of
the highest eviction frequency (16 in the Cello92 trace,
128 in the HTTPD trace, and 2 in the DB2 trace). That

IERGs that are not powers of two are rounded down to the nearest
power of two.

2Eviction frequencies that are not powers of two are rounded down
to the nearest power of two.
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does not mean that blocks with eviction frequencies higher
than the peak point will reduce the hit ratio, because the
number of dead evictions of those blocks are close to zero,
which means that almost all of those blocks are referenced
later. Since dead evictions absolutely cause cache misses,
caching blocks with high eviction frequencies is helpful for
increasing hit ratios. The DB2 trace shows very low tem-
poral locality, so the highest eviction frequency is only
four. We also studied how the average FRG distribution
changes with the eviction frequency. The data in Fig. 4
shows that the blocks with higher eviction frequencies al-
ways have smaller mean ERGSs, which indicates that those
blocks have high hit probabilities before they are discarded
by the replacement algorithm. From Fig. 3 and Fig. 4, we
conclude that higher eviction frequencies of blocks result
in higher contributions to the total cache hits and lower
contributions to the total cache misses.

Since the percentage of dead evictions and the average
ERGs quickly decrease with the eviction frequency, a good
replacement algorithm could retain blocks with a high evic-
tion frequency as long as possible to achieve a high hit
ratio.

4 Design of uCache

The basic idea of uCache is based on a simple obser-
vation. In a multiple-client system, a higher correlation
of workloads means that it is more likely that a block re-
quested by one client is found in caches of other clients,
because a block used by one client may have been or will
be referenced by other clients within a limited time pe-
riod. From this observation, the uCache algorithm im-
plements exclusive caching in L2 caches for low-correlated
workloads, but tries to utilize client buffer caches to im-
prove cumulative hit ratios for high-correlated workloads.

In wCache, all storage client caches related to a storage
server are organized as cooperative client caches (Dahlin
et al., 1994). A block is discarded by storage caches after
it is sent back to a client, and is loaded again if evicted by
that client. With a miss in the storage cache, a request may
be redirected to an appropriate cooperative client cache
if the block can be found in that client, or a hard disk
action must be issued. Fig. 5 briefly outlines the uCache
algorithm.

uCache is inherently adaptive to both low-correlated and
high-correlated workloads. For low-correlated workloads,
a high hit ratio is expected in the exclusive storage cache.
For high-correlated workloads, similar to previous aggres-
sive exclusive caching, a low hit ratio in the storage cache
is predicted, but cooperative client caches provide consid-
erable additional cache hits, according to our earlier obser-
vation. The final cumulative hit ratio is still higher than
the ratio for traditional inclusive caching, such as LRU.

To implement the uCache algorithm, we consider three
major issues. The first is how clients and storage collab-
orate to achieve exclusive caching; the second is how the
storage system tracks the blocks cached by the coopera-



tive client caches; and the last is how to replace the blocks
in the storage caches. We discuss the first two issues in
Section 4.1 and the last one in Section 4.2.

4.1 Collaboration between clients and the
storage systems

Since the storage caches are exclusive to the client side, the
storage systems need to collaborate with clients to decide
when to reload blocks that have been evicted by client
caches. On the other side, all client caches are coopera-
tive and it is the storage system’s responsibility to redirect
requests to clients, so storage systems also need to track
which blocks are cached by which clients, and to send a
request to an appropriate cooperative client after an ac-
cess miss in the storage cache. Actually, as long as storage
systems know when a block is evicted from a client cache,
they can make correct decisions for both when to reload
blocks and where to redirect requests, because with accu-
rate information of load and evictions of blocks, the stor-
age systems can track the content of client caches without
problems. Thus, for uCache, one of the key design issues
is to choose a mechanism for storage caches to learn when
a block is evicted by L1 caches.

Unfortunately, with traditional I/O interfaces between
clients and storages, only the block loading information
is transparent to storages, but not evictions. The most
intuitive way is to design a new interface between clients
and storage systems to send notifications of block evic-
tions from the L1 to the L2 caches, like the demotion op-
eration (Wong and Wilkes, 2002). Although this mecha-
nism is the most accurate, client software must be modi-
fied, and network overhead between the clients and stor-
age systems increases. Another possible mechanism is to
guess evictions of clients from access sequences and ex-
isting interfaces, without any modification of the L1 soft-
ware. uCache obtains L1 cache replacement information
by maintaining a data structure to track client content,
similar to the idea proposed in Zhou et al. (2004). Chen
et al. (2005) concluded that the performance of the lat-
ter design is very close to the former one if appropriate
local optimizations are applied. Some distributed I/O sys-
tems implement block-level cache consistency algorithms,
in which storage servers track blocks cached by clients.
From those systems, uCache gets enough L1 replacement
information; thus it does not need to implement the col-
laboration mechanism.

4.2 Local Replacement Algorithm

Based on the study of access patterns of exclusive caching
in Section 2.3, we design a new replacement algorithm,
called Frequency Based Eviction-Reference (FBER). The
main idea of this algorithm is to maintain blocks with dif-
ferent access frequencies for different periods of time in a
storage cache. According to Section 2.3, it is important
to retain blocks with high eviction frequencies as long as
possible. In exclusive caching, once referenced by the L1

/* procedure to be invoked upon a reference to
block b */

blockGet (block b)
{
if block b is available {
blockGet (block b); /* call of ASA */
send back to the client;
}
else {
if block b is in a client cache
redirect request to the client;
else
load block b from hard disks;
}
}

/* procedure to be invoked upon a eviction of
block b */

blockPut (block b); /* call of ASA */

Figure 5: uCache algorithm.

/* procedure to be invoked upon a reference to block b */
blockGet(block b)

if b is in cache
remove b from FIFO queue;

check HRF;

if eviction mark of block b was set {
increase reference frequency of block b by one;
clear eviction mark of block b;

}

}

/* procedure to be invoked upon a eviction of block b */
blockPut(block b)
{
if b is not in cache {
check HRF;
if an item is found for block b in HRF
get reference frequency;
else {
add a new item for block b in HRF;
set reference frequency of block b to 0;
}
set eviction mark for block b;
insertintoFIFO (reference frequency, block b);
}
}

insertintoFIFO (reference frequency, block b)
{
insertPoint = log2(reference frequency);
ifinsertPoint>m  // m s the point at tail of the queue
insertPoint = m;
insert block b into FIFO at insertPoint;
}

Figure 6: FBER algorithm.




/* procedure to be invoked upon a reference to block b */

blockGet(block b)
{
if b is in FBER cache {
blockGet (b); /* call of FBER */
increase size of FBER cache by 1;

else if bisin LRU cache {
remove b from LRU cache;
increase size of LRU cache by 1;

}

else
read b from disk;

put b to tail of LRU queue;

}

/* procedure to be invoked upon every 1000 references to
cache */

adjustcache()
{
calculate cumulative hit ratio of real cache and ghost;
if hit ratio of ghost is much larger than real cache
decrease size of LRU by n; // n is a tunable parameter.

}
/* procedure to be invoked upon a eviction of block b */
blockPut(block b)

{
blockPut (b);  /* call of FBER */
put to ghost cache;

}

Figure 7: ASA algorithm.

caches, blocks are discarded from the L2 caches. Thus
FBER maintains a data structure, called the history ref-
erence frequency (HRF') table, to record past reference in-
formation of a block evicted at least once by the L1 caches.
For each following reference to the block, no matter if
it still stays in the cache, FBER increases the reference
frequency of the block in the HRF. Each time a block is
evicted from the clients and reloaded into a storage cache,
FBER checks the HRF according to the block number and
gets the previous reference frequency. Then it inserts the
block into a FIFO queue. The insertion point of a block is
determined by its previous reference frequency: the higher
the frequency, the closer to the tail of the queue; so a
block with high frequency has a longer lifetime than one
with low frequency. To achieve this we set m insertion
points, from Iy to I, 1, for the real queue, where m is a
tunable parameter. I,,,_; is the point at the the tail of the
queue, and blocks inserted at I; have a longer lifetime in
the cache than those inserted at I; (¢ < j). The insertion
point I of a block is a function of the reference frequency,
insertPoint(f). In our current design, insertPoint(f) is
defined as loga(f). Our experiments also show that six in-
sertion points are enough to separate high frequency blocks
from others. Fig. 6 outlines the FBER algorithm.

The highest cumulative hit ratio is provided by totally
exclusive caching, since no blocks exist in both the clients
and the storage caches, but this configuration degrades
the storage hit ratio dramatically for high-correlated work-
loads. A small inclusive cache in storage is very helpful to
increase the local hit ratio, but the size of the small cache
needs to be tuned carefully. uCache uses the Adaptive

Space Allocation algorithm (ASA) to manage the storage
cache and provide optimal inclusive cache space dynam-
ically. The LRU algorithm is used to manage the small
inclusive cache. Blocks referenced by clients recently are
placed into the LRU cache, either from the FBER cache,
or from hard disks because of local misses, to provide cache
hits for future references. The size of the small LRU cache
is determined dynamically by its hit ratio. One hit of the
LRU cache will increase its size by one block, and one
hit of the FBER cache will shrink its size by one block.
Since the highest cumulative hit ratio is provided by total
exclusiveness, a ghost cache which simulates a totally ex-
clusive storage cache is implemented to provide a reference
for each moment of access. If the current cumulative hit
ratio is too low compared to that of the ghost cache, the
LRU cache size will be reduced. The ASA algorithm tries
to maximize the local hit ratio while not sacrificing the
cumulative hit ratio too much. Fig. 7 outlines the ASA
algorithm.

5 Simulation Methodology

We compare cumulative L2 cache hit ratios and average
response times of uCache (implementing FBER and ASA
for storage cache) and other algorithms, including LRU,
2Q, exclusive caching, and SLRU.

We use trace-driven simulation to evaluate cumulative
hit ratios. We have developed a simulator to simulate two-
level buffer cache hierarchies with multiple clients and one
storage system. LRU is used as the replacement algorithm
in the L1 caches, and the aforementioned algorithms are
implemented in the L2 cache. Thus in our simulations,
when we refer to LRU, we talk about LRU-LRU (L1-L2
caches). Since the block size of the machines where the
three traces are collected is 4KB, we also assume a cache
block size in our simulation of 4K B. We have examined
other block sizes, with similar results. The traces we used
for the simulator are described in Section 3.1.

The following formula describes the calculation of the
average response times for the L2 caches.

Tmean =Ts * hg + T x hy. + Ty * miss

Ts and T, are costs of hits in the storage cache and the
remote cooperative client caches, respectively. Ty is the
cost of reading a block from a storage disk. hs; and h,. are
the hit ratios (output by our simulator) of the storage cache
and the remote cooperative client caches, respectively, and
miss =1 — (hs + hy).

We have designed a program to compute the average val-
ues of T, T, and T for a 4K B block. The storage server is
a Dell PowerEdge 2500, with a 1.4GH z Intel Xeon micro-
processor, 1024M B memory, and a Dell PercRaid Raid5
54.5G Disk. The client is a Dell Dimension 4500, with a
2.4GHz Intel Pentium-4 microprocessor, 256/ memory
and a 40G IDE disk. All machines are equipped with a 32
bit PCI 100/1000Mbps network interface card, and con-



Table 2: Access times for different level caches

Storage Cache | Remote Cooperative Client Caches | Storage Disk
Gigabit Ethernet 250us 380us 9,500us
150Mb ATM 1,050us 1,350us 10,500us
10Mb Ethernet 6,900us 7,200us 16,150us
nected through a Dell PowerConnect 5224 Gigabit Ether-
net switch. RedHat 9.1 is installed on each machine, with —e—uCache —A— Exclusive
Linux kernel 2.4.20—8. For each access time, we performed 30.00% —%—2Q —=— LRU
100 experiments and calculated the average value. The re- 1
sults are summarized in Table 2. Actually, the access time . 60.00% -
of remote cooperative client caches includes the check time £ l
of storage caches, the network overhead among storage and ~ 40.00% i
clients, and the service time of the client caches, because g 20.00% A
the requests are still first checked at storage side, and after 1
a cache miss occurs, they are then sent to clients. 0.00% ; ; } }
We designed the ASA and FBER algorithms to improve 32 48 64 926 128
the local hit ratios of uCache, but part of the hit ratio
increase still comes from remote cooperative client caches, Storage Cache Size (MB)
so the final average response time is sensitive to network
latency al'ld host processing speed. To study how the net- Figure 8: 1.2 cache hit ratio of single client.
work environment can influence the final result, we also
provide average values of Ty, T}, and T; in some slower
networks. These data are derived from the original study
on cooperative caching by Dahlin et al. (1994). Although A Fxclusive —e— uCache
these measurements are now a few years old and thus likely —*—SLRU  —¢-2Q
. —a—LRU
to be slow when compared to state-of-art equipment, our 60.00%
purpose is to show how uCache can tolerate severe environ- 50.00% 7 ‘Z’%
ments, since it is obvious that uCache works better in high £ 40.00% -
speed networks. In Table 2, the response time of Gigabit £ 30.00% .
Ethernet comes from our measurements, and others are E 20.00%
derived from Dahlin et al. (1994). The average response 10.00% /
times of the L2 caches for all of the following simulations 0.00% +—m—tf—n—oI } }

are calculated from measurements of the Gigabit Ethernet
environment, except those in Section 6.4, where we inten-
tionally examine the sensitivity of uCache to technology
changes.

6 Simulation Results

6.1 Single Client

We use the Cello92 trace as the workload of a single client
system. Since there is only one client, uCache works the
same as previous exclusive caching algorithms, except that
FBER and ASA are used as the local replacement algo-
rithms in the L2 cache.

Fig. 8 shows that the uCache always provides the best
hit ratio among all the algorithms. It provides about a
25% higher hit ratio in a 64MB cache and 15% in a 128MB
cache, compared to LRU. When the cache size inceases to
128MB, the difference is not obvious, because 128 MB is
large enough to hold most blocks. LRU is the worst one,
because of its inclusiveness. 2Q provides some gain be-
cause it evicts cold blocks as soon as possible. uCache and
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Figure 9: L2 cache hit ratios of 8 clients (DB2 trace).
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Figure 10: L2 cache response time of 8 clients (DB2 trace).



exclusive caching provide the best results, since duplicated
blocks are removed quickly from L2 caches, and the ag-
gregate cache space is utilized efficiently. uCache has an
obvious improvement, even compared to exclusive caching,
because the FBER algorithm prefers to retain blocks with
high eviction frequencies, which contribute most of the
cache hits. The ASA algorithm aggressivelly shrinks the
small LRU cache to provide all the cache space to FBER.

6.2 Low-correlated traces

We use the DB2 trace as a multiple-client low-correlated
workload. Fig. 9 shows that uCache provides the best
hit ratio among all the algorithms. Since no blocks are
shared among the eight clients, the additional hit ratio
for cooperative caching is zero. The temporal locality of
the DB2 workload is very weak, so the LRU and 2Q al-
gorithms provide very low cache hit ratios, even when the
storage cache size increases to 4096 M B. SLRU is much
better than LRU, but still lags behind exclusive caching
and uCache, because it is designed to be compatible with
high-correlated workloads by not completely implement-
ing exclusiveness in the L2 cache. The difference between
uCache and exclusive caching is not obvious, because the
highest eviction frequency of the DB2 trace is only four,
which is not enough for FBER to utilize. The ASA al-
gorithm successfully allocates all storage cache space to
FBER, since almost no blocks are reused among differ-
ent clients. Fig. 10 shows that the average response time
follows the same trend as the hit ratio. The biggest im-
provement from LRU to uCache is 46%, with a 1024M B
storage cache.

6.3 High-correlated traces

We use the Cello92 trace and the HTTPD trace as
multiple-client high-correlated workloads. Fig. 11 shows
the hit ratios of the different algorithms under various con-
figurations. The uCache always provides the best hit ra-
tio among all the algorithms. LRU provides a relatively
high hit ratio because each block in an LRU cache has a
long life before it is discarded, and thus has a high possi-
bility to be referenced again by different clients with high-
correlated workloads. The gain of uCache becomes smaller
as the storage cache grows larger, since a large cache size
retains a block for a long enough time, to be accessed
by most clients. Exclusive caching suffers serious perfor-
mance degradation, even when compared to LRU, because
discarding a block immediately after it is referenced once
causes many cache misses for successive references from
other clients. We notice that even the storage hit ratios of
uCache, which does not count the benefits from the cooper-
ative client caches, are much higher than those of exclusive
caching and are very close to the results of the three in-
clusive cache algorithms. The ASA and FBER algorithms
work perfectly to both increase local hits and maintain
high cumulative hit ratios.

ASA and FBER balance well between the local storage

@ Exclusive Caching @ ASA & FBER
O Cooperative Client

80.00% -
70.00% A
60.00% A
50.00% A
40.00% A
30.00% A
20.00% A
10.00% A
0.00% t t
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Number of Clients
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Figure 14: Cumulative hit ratio of L2 cache (Cello92 trace).

hit ratio and the cumulative hit ratio. Fig. 12 compares
the cumulative and storage hit ratios of LRU, exclusive
caching, and uCache under various configurations. We in-
tentionally change the replacement algorithms for exclusive
caching and LRU to add cooperative client caches and pro-
vide the cumulative hit ratios. We have mentioned before
that entirely exclusive caching in storage with cooperative
client caches provides the maximum cumulative hit ratio,
but very low storage hit ratios in high-correlated work-
loads. When compared with exclusive caching, we find
that the cumulative hit ratio of uCache is almost the same,
while the local storage hit ratio is much higher. We also
find that even with cooperative client caches, LRU cannot
provide satisfactory cumulative cache hits, because most
blocks in the storage cache and cooperative client caches
are the same, and aggregate cache space is wasted. With
the ASA algorithm, uCache provides both satisfactory lo-
cal hit ratios, almost the same as typical inclusive caching,
and high cumulative hit ratios, very close to the maximum
values that totally exclusive caching algorithm can reach.

Fig. 13 shows that the average response time follows the
same trend as the hit ratio. The biggest improvement is
53% from LRU to uCache, with a 32M B storage cache for
the 7-client HTTPD trace.

Fig. 14 uses the Cello92 trace as an example to show
the source of the gain of uCache. The base segments are
the hit ratios that a pure exclusive cache can provide. We
find that ASA and FBER contribute a lot to the increase
of the local hit ratios. Finally, cooperative client caches
provide additional cumulative hits.

6.4 Sensitivity

To study how the performance of uCache is affected by dif-
ferent network technologies with high-correlated workloads
(the gains with single client and low-correlated workloads
are not from remote cooperative caches), we use the pa-
rameters collected in Section 4.2 to calculate the average
response times under various environments with the cache
hit ratios from the previous simulations.

Fig. 15 indicates how the improvement of uCache over
LRU varies with different network technologies. With com-
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cache hit ratio under Cell92/HTTPD traces. Hits from cooperative client caches are not included.
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Figure 12: Cumulative hit ratio comparison under Cello92(128MB storage cache)and HTTPD(64MB storage cache) traces.
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Figure 15: uCache vs. LRU under Cello92 trace.

prehensive comparisons, we find that although uCache pro-
vides smaller response times in all three settings, the gain
decreases when the network speed is slower. uCache on Gi-
gabit Ethernet achieves the highest improvement of up to
40%, while the improvement in 10Mb Ethernet is limited to
under 13%. Although this result indicates that uCache is
sensitive to network speeds, current popular networks are
fast enough for uCache to achieve reasonable speedups.

7 Related Work

L2 caches have poor hit ratios, as demonstrated in
Muntz and Honeyman (1992) and Froese and Bunt (1996).
Further studies show that the poor hit ratio is caused by
both weaker temporal locality (Bunt et al., 1993; Zhou
et al., 2004) and duplicated blocks (Wong and Wilkes,
2002). After studying behavior of NFS servers, Reed
and Long (1996) found that the LRU algorithm may still
exploit temporal locality caused by frequent accesses of
file system metadata. Many new algorithms have been
proposed recently to improve cumulative hit ratios, such
as MQ (Zhou et al., 2004), Demotion-based algorithm
(Wong and Wilkes, 2002), Global L2 buffer cache manage-
ment (Zhou et al., 2004), X-Ray (Bairavasundaram et al.,
2004), and client-controlled cache replacement (Jiang and
Zhang, 2004). Chen et al. (2005) classified all those al-
gorithms into two types: hierarchy-aware caching, and
aggressively-collaborative caching, and compared the per-
formance among typical algorithms belonging to the two
types. Ari et al. (2002) proposed ACME to adaptively
select the best replacement policy for each cache-level to
achieve high cumulative hit ratios. Our work in multi-level
cache hierarchies builds upon but is different from previ-
ous studies because the uCache algorithm is adaptive to
multiple-client systems, with either high-correlated work-
loads or low-correlated workloads.

Researchers have used metrics such as reuse distance
(Zhou et al., 2004), inter-reference gap (Phalke and
Gopinath, 1995), and inter-reference recency (Jiang and
Zhang, 2002) to analyze access patterns of workloads,
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but none of them studies the characteristics of reference
streams of L2 caches in exclusive caching. Our study shows
that the Eviction-Reference Gap is very large and high
eviction frequency blocks contribute most to cache hits in
exclusive caching. Based on our study, we propose a new
algorithm, Frequency Based Eviction-Reference (FBER),
to improve hit ratios for exclusive caching.

Researchers have considered using cooperative client
caching to improve cumulative hit ratios in multi-level
cache hierarchies. Dahlin et al. (1994) proposed four rep-
resentative cooperative caching algorithms and demon-
strated that N-Chance Forwarding can provide the best
performance. GMS (Feeley et al., 1995) is more general
than N-chance in that it is a distributed shared-memory
system, for which cooperative caching is only one possible
use. Sarkar and Hartman (1996) introduced a hint-based
algorithm to reduce overhead of cooperative caches. Our
work is related to but different from those previous algo-
rithms, because we use exclusive caching in storage caches
to improve hit ratios for low-correlated workloads, while
using cooperative client caching to cache blocks reused fre-
quently among clients in high-correlated workloads.

8 Conclusions

In this paper, we propose a new unified buffer cache
management algorithm: uCache, to improve performance
of L2 caches in multi-level cache hierarchies for multiple
clients. uCache combines both exclusive caching in storage
caches to improve hit ratios for low-correlated workloads,
and cooperative client caching to improve hit ratios for
high-correlated workloads.

We have studied the characteristics of reference streams
of exclusive caching. Our results show that the average
Eviction-Reference Gap of exclusive caching with multi-
ple clients is rather large in that it is difficult for a re-
placement algorithm utilizing temporal locality of work-
loads to provide high hit ratios. A frequency based algo-
rithm is highly preferred because high eviction frequency
blocks contribute the most to cache hits but cause the
fewest cache misses in exclusive caching. We propose new
local replacement algorithms, Frequency Based Eviction-
Reference (FBER), and Adaptive Space Allocation algo-
rithm (ASA), to improve the hit ratios of exclusive caching,.

We have evaluated our uCache algorithm and other typi-
cal multi-level caching algorithms using simulations under
both high-correlated and low-correlated workloads. The
results show that uCache dramatically increases cumula-
tive cache hit ratios over LRU and improve the average I/O
response time by up to 46% for low-correlated workloads
and 53% for high-correlated workloads.

In multiple clients with high-correlated workloads, the
speedup of uCache is sensitive to network technologies.
Although slower networks obviously decrease the per-
formance of uCache, current popular networks provide
enough speed for uCache to achieve decent speedups.
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