
A Comprehensive Informative Metric for Analyzing
HPC System Status using the LogSCAN Platform

Yawei Hui∗, Byung Hoon Park†, Christian Engelmann‡
Computer Science and Mathematics Division, Oak Ridge National Laboratory

∗huiy@ornl.gov, †parkbh@ornl.gov, ‡engelmannc@ornl.gov

Abstract—Log processing by Spark and Cassandra-based AN-
alytics (LogSCAN) is a newly developed analytical platform that
provides flexible and scalable data gathering, transformation and
computation. One major challenge is to effectively summarize
the status of a complex computer system, such as the Titan
supercomputer at the Oak Ridge Leadership Computing Facility
(OLCF). Although there is plenty of operational and maintenance
information collected and stored in real time, which may yield
insights about short- and long-term system status, it is difficult to
present this information in a comprehensive form. In this work,
we present system information entropy (SIE), a newly developed
metric that leverages the powers of traditional machine learning
techniques and information theory. By compressing the multi-
variant multi-dimensional event information recorded during the
operation of the targeted system into a single time series of
SIE, we demonstrate that the historical system status can be
sensitively represented concisely and comprehensively. Given a
sharp indicator as SIE, we argue that follow-up analytics based
on SIE will reveal in-depth knowledge about system status using
other sophisticated approaches, such as pattern recognition in
the temporal domain or causality analysis incorporating extra
independent metrics of the system.

Index Terms—Metrics, Cloud computing, Visual analytics

I. INTRODUCTION

Along with the ever increasing sophistication of high perfor-
mance computing (HPC) systems, reliability, availability and
serviceability (RAS) logging systems have been accordingly
designed to record extensively large volumes of system infor-
mation that are stored majorly in log files. These log files hold
data collected from various hardware and software monitoring
components, reflecting system booting records, hardware fail-
ures, memory allocation/usage anomalies, network status, file
system performance, configuration and run-time information
of user applications, and many more aspects. The relative
significance of these informative indicators changes over time
as the HPC system status evolves with independent external
driving forces of various natures. For example, running a
well-tested user application would incur much fewer errors
than running the same application when it is still in its

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

early implementation stage, and the contrast and change in
the system status would correspond accordingly. In many
cases, RAS researchers choose a few well-defined system
variables/features and build analysis around them without a
broader consideration of the full picture from the perspective
of system evolution. In contrast, this paper introduces a
solution to summarize the system information that is immune
to specific selections of representative variables/features and
grasps the evolving system status in a flexible yet comprehen-
sive way.

In order to meet many challenges imposed by the vol-
ume and the complexity of the log files accumulated at the
Oak Ridge Leadership Computing Facility (OLCF) for the
Titan supercomputer, we have developed a big data analytical
platform – Log processing by Spark and Cassandra-based
ANalytics (LogSCAN) – that provides flexible and scalable
data acquisition, transformation and computation on the Titan
log files [1], [2]. Taking in a range of different Titan log files
such as “console” outputs, “consumer” reports and “netwatch”
transcripts, LogSCAN uses several sophisticated log parsers to
pre-process these files and the results are stored in multiple
Cassandra database tables. By allowing multiple users to
access these tables via different computational schemes (e.g.,
Jupyter notebooks and Scala applications), LogSCAN enables
users to manipulate the data in accord with their unique
perspectives and carries out computational workflows with
their preferred analytical platform/packages within the same
programming environment.

Coming with the power of a multi-user platform like
LogSCAN is the diverse representation of data sets that are
exposed to the analytic workflow. We notice that most of the
representations can be abstracted in a general form of a 2D
data table, with each row being a record and each column
a feature. For instance, there are many ways to organize the
event logging information of the Titan supercomputer. One
could use the pristine format of the event records in which
a single entry contains basic information like the time and
location of the event. Or one could transform either the whole
event history or part of it into a refined format in which
every record has a much richer set of features derived from
user-defined filters/algorithms. Since the analytic goals and
specific computational schemes vary among researchers, it is
practically impossible to predict the layout of the data set being
eventually fed into a workflow. With the change of context in



which the analysis is being conducted, one or a few features
for the same set of records may become irrelevant (or relevant).
For example, users might be interested in the investigation of
the system’s temporal evolution (as our work in this paper).
In this case, the relative significance of the included features
will vary over time and users may find it hard to identify a
fixed set of features for their entire analysis.

One goal of LogSCAN is to provide an effective means
to summarize the system status regardless of the way a user
manipulates the original logging information in a specific
workflow. As long as the data set is in compliance with the
general layout of record vs. feature, we show with convincing
examples in this article that there is a universal computing
paradigm for a metric to describe a system’s status. This
metric – system information entropy (SIE) – is designed to
mitigate the problem caused by arbitrary choices of feature
sets while bringing in a comprehensive system status indicator
that leverages the powers of traditional machine learning
techniques and information theory. SIE is easily calculated
and, while highly compressed, sensitively traces the change
of a system.

In the following sections, we first briefly review related
work in Section II. In Section III, we give implementation
details of LogSCAN relevant to this work and describe the
essentials of the SIE definition in Section IV. We continue in
Section V by showing several usage cases of SIE as a system
status metric. An extensive discussion will be given in Sec-
tion VI and a concise summary of our report in Section VII.

II. RELATED WORK

Many recent works [3]–[6] leveraged the increasing power
provided by the innovation in machine learning research.
Being able to define a set of target system properties which
supposedly represent the key characteristics of the system,
researchers have found correlations among these properties
and interpret/predict the system behaviours according to their
implications. For example, Gainaru et al. [5], [7] took a hybrid
approach by combining signal analysis to characterize events
(with three pre-defined types of signals: periodic, noise and
silent) and data-mining algorithms to find patterns between
them. No matter what the start point is (logging informa-
tion [3], [8], resource usage [6], performance characteris-
tics [6], [8], etc.), the first crucial task is to create reliable
indicator(s) representing the overall (or partial) system status.

There has been a continuous effort on quantitatively charac-
terizing the system status based on the analysis of the logging
information. In closely related works [4], [9]–[11] to our
study, many authors applied similar algorithms – principal
component analysis (PCA) and information entropy (IE) –
in their approaches. Depending on the exact target of the
analysis, however, some of the consequences after applying
indiscriminately the dimensionality techniques focused on
reducing the dataset may negatively impact the results by
eliminating critical features in anomaly detection [6], [10].
We provide an easily-computed comprehensive system status
indicator which takes no pre-assumption about the relative

significance of the system properties chosen for investigation.
Such a system indicator, we argue, will facilitate follow-up
analytics and reveal in-depth knowledge about system status
using other sophisticated approaches, such as pattern recogni-
tion in the temporal domain or causality analysis incorporating
extra independent metrics.

III. DATA PREPARATION

Introduced in Section I, LogSCAN is designed to process
the logging information collected from Titan, a HPC at OLCF
manufactured by Cray with 27 petaflops of theoretical peak
performance and consists of 18,688 AMD Opteron 16-core
CPUs, 693.5 TiB total memory and 18,688 NVidia Tesla K20X
GPUs that are spread over 400 hundred cabinets (4 nodes per
blade, 24 blades per cabinet). Many implementation details of
LogSCAN, deployed at the Compute and Data Environment
for Science (CADES) at ORNL, have been presented in a
separate article [2]. Without much redundancy, we provide
here a brief supplementary description of LogSCAN and
demonstrate its typical data wrangling process for the data
manipulation and transformation.

A. Application Platform

LogSCAN consists of an Apache Cassandra cluster with
16 worker nodes and two independent analytic Apache Spark
clusters named “logcat” and “bh-cloud”, respectively. “logcat”
is a 16-node Spark cluster deployed on top of the Cassandra
cluster maximizing data locality, while “bh-cloud” consists of
three “fat” nodes residing in a different subnetwork, which we
designate to run highly customized jobs requiring long execu-
tions. In terms of total computational resources, “logcat” and
“bh-cloud” have comparable amount of cores and memory [2].

In our study, we found that benefits from data locality
provided by “logcat” are significant when interactive jobs
access the Cassandra cluster frequently. On the another hand,
long-time analysis running on “bh-cloud” could safely ignore
the amortized penalty when making few but computationally
intensive queries to the Cassandra cluster at the beginning.
For the rest of the analysis, it simply executes iterative tasks
around one or a few objects stored in memory.

Depending on the actual computing paradigm, users of
LogSCAN may prefer using one cluster over the other when
configurations of hardware platforms and software stacks are
of concern. For example, instead of reading repeatedly small
portions of the data table (which is mostly the case in an
interactive Spark job), one may choose to read the whole
table from the Cassandra cluster and cache it in memory.
This happens more likely as the user submits the application
via a jar which performs iterative computations in order to
best reduce the amortized I/O cost. A caveat associated with
this approach, though, is that it significantly increases the
need for computational resources. For example, it increases
the possibility of running out of memory, as observed on the
“logcat” cluster.



Fig. 1: The total event counts accumulated in calendar year 2015, 2016 and 2017. The resolution in time is by hour, which
means the count number plotted at any given time is the total counts recorded on all Titan nodes within the past hour.

B. Data Reduction

LogSCAN’s parsers take as input several prominent types
of Titan log files and the processed records are transformed
into system events. Each event is stored as a single record in a
specific Cassandra table and uniquely marked, according to its
logging nature, by a combination of event properties. The most
crucial selection of properties considers: 1) event time, i.e.,
when being registered in the logging system (e.g., at “2016-
03-03 10:38:54”); 2) event type, i.e., what is the plausible
cause (e.g., Graphics Engine Error (GEE), or Out of Memory
(OOM)); and 3) event source, i.e., where being registered in

Counts Percentage ID Description
10 0 1 DVS Confusion

2,998,492 2 2 NVRM Xid
5,671,348 4 3 Machine Check Exception (MCE)

1,229 0 4 NVRM DBE
49 0 5 Unknown GPU Error (UGE)

302,969 0.2 6 Graphics Engine Error (GEE)
5,732 0 7 Kernel Panic

782,337 0.5 8 Out of Memory (OOM)
16,938,194 11.6 9 HWERR

1,215,780 0.8 10 Seg. Fault
43,268,141 29.5 11 Lustre
31,498,746 21.5 12 LNet

992,997 0.7 13 LNet Error
42,809,426 29.2 22 Lustre Error

146,485,450 100

TABLE I: The non-zero event types and their occurrences in
Titan’s logs between January 2015 to March 2018.

terms of the physical position in Titan’s architecture (e.g., on
the node “c8-3c1s6n1” – for the nodal naming convention of
the Titan architecture see [2]).

LogSCAN’s parsers have been so far designed to recognize
22 event types (see Table I) and will be extended to include
more in future versions. The total number of unique event
records from the 3-year logging history of Titan stored in the
Cassandra cluster is around 146.5 million, each represented
by a single row in the event table as shown in Table II.
Statistically speaking, from a beginning time at “2015-01-27
06:19:54” to the end of log records at “2018-03-09 09:11:42”,
four event types - “Lustre”, “Lustre Error”, “LNet”, and
“HWERR” - dominate with their total counts (in millions)
of 43.3, 42.8, 31.5, and 16.9, respectively. All other event
types accumulate to numbers of order of magnitudes lower. To
show a panorama view of the whole event data set, we plot in
Figure 1 the total event counts accumulated in calendar year
2015, 2016 and 2017, respectively, with the time resolution of
an hour.

Although the general definition of the SIE (introduced
in the next section) as a system metric can be applied to
any data organized into a 2D table of record vs. feature,
we emphasize that, the focus of this study is to develop a
temporally quantifiable low-dimensional metric in a form of
a time series in order to describe the evolutionary history of
the system. It is obvious that the crude form of the event table
described above is inadequate for this purpose and a properly
justified combination of time-window and time-step is needed



Time Event Type Source

2015-01-28 05:00:42 3 c10-4c2s6n0
2015-01-28 05:52:18 22 c7-2c1s6n0
2016-04-05 13:48:16 12 c20-0c1s4n3
2016-08-24 01:00:35 11 c2-1c0s1n2
2015-12-16 03:19:36 9 c3-5c0s4n2
2017-12-07 10:05:01 11 c18-7c0s2n1

TABLE II: An example of the event table after the data wran-
gling process. In total, the table contains 146.5 million events
logged on all Titan nodes during the period of January 2015 to
March 2018. For any specific translation from a numeric event
type to its literary name (such as “3” representing “Machine
Check Exception” (MCE)), see Table I for definitions.

to guarantee meaningful statistics when calculating SIE in such
a circumstance.

Looking at Table II, one can see there may be several events
of different types registered on different Titan nodes (or “event
source”) at each time stamp recorded in the table. By “piv-
oting” (a Spark dataframe operation that dominates the data
manipulation cost in our analysis) on the event table according
to distinctive event types, we acquire the event history for each
registered event source. Theoretically, the event table at any
time (in a natural unit of a second) can be represented by a
Spark dataframe, where each row is a specific source while
each column a specific event type. In reality, however, it is
computationally infeasible and practically unintuitive to use
a dataframe with such a fine time resolution to inspect long-
term system status. Instead, to reflect the compressed history
of the system status in a time series, we apply a time window
to the event table along the observed temporal dimension and
accumulate events within this window for each combination
of event source and type. Practically, we choose to advance an
hour-wide window by steps of a minute. The resulting event
table is represented as a M × P Spark dataframe with M
event sources and P event types as illustrated as an example
in Table III.

Taking a closer look at Table III, we see that one of the
columns – event source – is actually a composite feature in
a sense that it can be further split to provide more details
about the source. For example, the first record in Table III
shows that all the events registered within the past hour occur
at Titan node “c0-2c2s1n2”, which represents “Cabinet Row
0 by Column 2, Chassis 2, Slot 1 and Node 2” (see [2] for
the nodal naming convention). In fact, as being revealed in
the next section, the calculation of SIE does not dictate any
specifics about how one arranges the data set in the format of
record vs. feature. To demonstrate the generality of SIE as a
system metric, we create a second data layout other than the
original shown in Table III by re-arranging the table in such a
way that the event source is mapped one-on-one to a pair of
X and Y coordinates in a 2-D nodal layout map, mimicking
the floor map of Titan. More specifically, if denoting a
set of grid coordinates [Cabinet Row, Cabinet Column,
Chassis, Slot, Node] which could be explicitly read out from

Source Machine Check
Exception Out of Memory Seg. Fault Lustre

c0-2c2s1n2 1 0 0 0
c10-4c0s0n0 0 0 0 4
c10-4c0s3n0 0 1 0 3
c10-4c1s6n1 0 0 3 1

TABLE III: An example of the time-windowed event table for
one hour starting from “2016 Jan. 27, 05:00:00” and ending
at “2016 Jan. 27, 06:00:00”. For an illustrative purpose, only
4 rows are shown out of a total of 400.

the source name, one way to perform the source-to-coordinate
map is:

X = 12 ∗ Cabinet Row + 4 ∗ Chassis+Node

Y = 8 ∗ Cabinet Column+ Slot
(1)

Here, the choice of mapping scheme is quite arbitrary and can
be replaced with any other scheme deemed suitable. The direct
output of the mapping is the addition of two new properties
– X and Y in the nodal map – for each record in the event
table. Considering all the records in a given event table, such
as Table III, they could be pinned down at [X , Y ] in a new
2D data table with their cell values filled in with the counts
from either a single event type or several types combined.
Any cell at a position where no event has been registered will
simply take a value of zero. As the input to the computation
of SIE, this new 2D layout (referred to as “Nodal Map”) will
possess a dimensionality of [300, 64], as determined by the
mapping scheme in Equation 1. It is quite different from the
original layout (referred to as “Source Type”), as it has a
varying dimensionality. In Figure 2, we illustrate the nodal
layout for five event types and the combined total at the time
of “2015-02-09 01:49:54” in Titan’s logging history.

IV. REPRESENTATIVE MODEL OF SYSTEM STATUS

Given a collection of log files, the information of the system
status could be extracted and stored in a 2D data table as
demonstrated in Section III-B. The general format of these
data tables is record vs. feature. If taking into account a finite
time resolution, the study of the historical evolution of system
status will introduce a third dimension – time. For example, if
considering the layout “Source Type” defined in Section III-B
(also demonstrated in Table III), we have assembled, at any
chosen moment for a pre-defined time window, a 2D data
table with records along the direction of event source (19,200
distinctive nodes) and features of event type (22 distinctive
types). We then advance this process by a fixed time step and
the whole history of system status can be represented as a 3D
data set. It is important to note that the 2D table of record vs.
feature could take a variety of manifestations as, in our cases,
of different layouts – “Source Type” and “Nodal Map”. From
alternative perspectives in how to represent the information of
system status, one should be able to create many new layouts
for this 2D table.



Fig. 2: The nodal layouts for every event type and the combined total for the past hour prior to “2015-02-09 01:49:54“.
Each layout has dimensions of [300, 64] in pixel and each pixel represents a unique Titan node with its coordinates [X , Y ]
translated from its source name via Equation 1. The count numbers are plotted with common color bar with a top taken from
the maximum total counts among all nodes.

Provided such a 3D data set, the key question is how
to come up with a quantifiable low-dimensional metric,
which incorporates as much system information as in a high-
dimensional representation. The solution we propose in our
study is to compress the history of system status along di-
mensions of record and feature in a representative metric (i.e.,
SIE) and put it in a time series. Two widely used algorithms
– Principal Component Analysis (PCA) [12] and Information
Entropy (IE) – have played key roles in our design of the
SIE. The applications of both, PCA and IE, in acquiring SIE
are independent of the structural details of the data table, thus
hold great potential for generalization in other similar system
status analyses.

A. Principal Component Analysis (PCA)

In many cases of PCA applications, the algorithm has been
used to reduce data dimensionality for subsequent analysis. If
a 2D data set is represented in a record vs. feature format,
one can use PCA to find the, so-called, principal components
(PCs) in a (usually) high-dimensional space spanned along the
feature directions of the data set. Mathematically speaking, the
non-zero set of PCs is a linear combination of the original
features and generally considered to best represent the origi-
nals by maximizing the feature variance along the directions
of the identified PCs. Instead of focusing on reducing the
dimensionality of the data set, in our study, we are more inter-
ested in the overall degree of feature correlation which can be
calculated with the relative variances among all PCs. Among
many standard methods to obtain feature variances along PCs,
we choose to factorize the co-variance matrix by certain matrix
decomposition procedure. Since LogSCAN includes a Spark
cluster as its computational framework, we naturally select the
highly optimized Singular Value Decomposition (SVD) in the

Spark MlLib package to compute feature variances along PCs
and define a probability vector out of these PC variances as:

ξi =
σi∑k
1 σi

(2)

where σi (i from 1 to k) is the i-th variance calculated from
k eigenvalues of the SVD decomposition.

Once the variance probability ~ξ is calculated for a certain
2D table of record vs. feature, the original 3D data set is
transformed into a 2D space spanned by time and ~ξ. To store
system status in a more compacted way, we go to our second
procedure of information compression.

B. Information Entropy (IE)

Used as a numeric indicator of the average amount of
non-redundant system information, Information Entropy (aka.
Shannon entropy) was first developed by Shannon in his sem-
inal paper for information theory [13]. In our design of SIE,
we use information entropy as an information compression
algorithm to mathematically quantify the information content
of a random signal with a certain probability distribution.

Given the variance probability vector ~ξ obtained from
Section IV-A, we define the Information Entropy, H , via an
analogy to the Boltzmann’s formula:

H = −
k∑
1

ξilogb(ξi) (3)

Here the definition of IE takes a general form of, so-
called, “b-ary entropy”, while, in our study, the logarithm
with base 10 has been adopted. At any given moment, the
variance probability vector is transformed into a value of H ,
which renders the compressed 2D data set of time vs. ~ξ from
Section IV-A as a time series of H(t). As demonstrated in
the following sections, H(t) sensitively responds to varieties



Fig. 3: A historical panorama of system status plotted with 3 time series. The top panel represents the SIE for the “Source Type”
layout, while the he middle panel represents the SIE for the “Nodal Map” layout (see Section III-B). The bottom panel shows
the total event counts accumulated within a one hour window prior to the given time spot. All three plots share the same
time resolution of one minute and use distinctive color codes, i.e., green for “Source Type”, blue-green for “Nodal Map” and
purple for total counts, which are kept consistently for all plotting in our paper.

of driving forces in the system which shape the general
behavior over time in a comprehensive manner, especially
as the dimensionality of the feature space increases with the
complexity of the system being monitored.

Equipped with H(t), we now define a general metric of the
system status – System Information Entropy:

W (t) = bH(t) (4)

Here b is the specific logarithmic base used in the definition
of H , and it takes the value of 10 in our work. The preference
of using W as SIE over H can be justified with the following
two extreme examples. Suppose there is a distribution of ~ξ
that only a single PC variance dominates all others and H
will be very small with a minimum of H = 0 according to
Equation 3. In this case, the value of W will approach 1, which
simply means all observed features are highly correlated and
could imply they share a single source of driving force (e.g.,
a single user or a large-scale application). On the other hand,
if ~ξ takes an even distribution among all PC variances, H will
approach its maximum value of H = logb(k). Accordingly, W
will be close to k, which strongly indicates that each feature is
driven by an independent source (e.g., multiple users or various
applications utilizing different system resources). In summary,
W is an effective indicator of the number of independent
features the system possesses at a given time.

V. APPLICATION

The Titan log data used in our study was collected from
early 2015 to early 2018. For the purpose of simplicity and
clarity, to demonstrate the SIE (or W ) as a comprehensive
indicator of the system status, we selectively pick a few
snapshots in segmented times. The criterion for our choices
is arbitrary as long as the illustrations showcase exemplary
applications in the chosen time intervals. In the following, we
first show a historical panorama of the system status and then
zoom in to some interesting time intervals to see how the SIE
sheds new lights on interpreting system status in contrast to
what we have learned from simple event counts.

A. Overall Feature Recognition

In Figure 3, we show 3 time series from both SIEs (W )
and total counts (N ). While for a given time spot, the fix-
sized accumulation window determines that N is the same for
either of the event table layout, a dramatic difference exists in
W for the two layouts. For simplicity, we use WST and WNM

respectively to represent the SIEs for the two layouts (where
“ST ” stands for “Source Type” and “NM” for “Nodal Map”).

B. System Information Entropy (SIE)

At a first glance, we could see both WST and WNM respond
accordingly to N at large scale during this period of time from
“2016-01-01 05:14” to “2016-01-09 13:38”, while differences
between either one of them and the total counts are unmis-
takably standing out at many medium to small time scales.
The overall system status started with a few “violent” jumps
showing on all three curves prior to “2016-01-01 15:00”,
where WST and WNM share a similar profile which is much
less extreme comparing to N . Before reaching about “2016-
01-03 09:00”, the system ran in a relatively stable status which
could be seen with both WST and N , while the “activeness”
of WNM reveals the sources of the events recorded in this
period of time were changing quite dramatically. Following
on, we see all three curves took a few jumps before reaching
a common “plateau” which spans one and a half days (from
“2016-01-03 16:00” to “2016-01-05 05:30”, approximately).
Taking a closer look, we can see the two W s respond to N in a
rather different way. For example, around “2016-01-04 01:40”
to “2016-01-04 02:40”, both W s registered a similar dip in
values as did N . However, at between “2016-01-04 08:50”
to “2016-01-04 17:40”, only WST responded significantly to
N while WNM remained docile. By “2016-01-05 19:30”, all
three curves resigned from the relatively stable “plateau” and
entered a long-term oscillating status until reaching the end of
the time interval under investigation.

From the crude observation conducted on the large scale
features presented by both WST and WNM , we see that they
did catch up with N , the original information source regarding
system status. However, as a combined and compressed system



Fig. 4: A series of close-ups from Figure 3 for the layout “Source Type”. On the top panel, we plot the time series of the
information entropy in form of W and the total counts N . The zoom-in takes a time interval from approx. “2016-01-01
06:00” to “2016-01-01 16:00”. On the bottom panel, two plots are drawn for illustrative examples described in the text (see
Section V-C). In addition to the total counts, the event count for each non-zero event type is drawn in these two plots, as
well. The color codes for event types are: “Lustre”, “LNet”, “Machine Check Exception” (in short, “MCE”) “LustreError” and
“HWERR”.

metric, we expect W could provide more information about
system status. To verify this point, we need to take a much
closer look at their temporal behaviors.

C. “Source Type” Layout

We start our scrutiny on detailed SIE by first exploring the
“Source Type” layout. In Figure 4, we take several close-ups
of the same time series shown in Figure 3 at various scales.
The top panel is a zoom-in of Figure 4 with the time interval
around “2016-01-01 06:00” to “2016-01-01 16:00”, where W
and the total counts N contrast in two time locations.

The first happens at around “2016-01-01 07:06” when N
barely has any change while W shows an abrupt jump in its
value. Before this moment, W shows a nearly constant value
around 2.1, which practically indicates there are slightly more
than two independent features representing the system status.
At the moment of the spike, either new features appear in the
system, or existing features become significant, or both. Also
the system status has been altered in an indecisive way because
the value of W changed only by a small fraction. Following
the spike, a drop of W indicates a similar process in the
opposite direction happens, i.e., either features cease to exist
in the system, or a less number of features become dominant,
or both. Referring to the definition of the “Source Type”
layout, the feature is essentially total counts for each event
type accumulated in the time window on Titan nodes. On the
middle panel of Figure 4, the plot shows a further zoom-
in from the plot on the top panel. In different colors, we
plot the total counts for all event types with non-zero values.

Right before the jump, there are three features (i.e., event
types in this case) - “LNet”, “Machine Check Exception” (in
short, “MCE”) and “Lustre Error”. The W , taking a value of
2.1, accurately represents the system status with the fact that
“LNet” and “MCE” dominate “Lustre Error”. Upon the jump,
a new feature (“Lustre”) appears in the system and gives the
W a small boost. For a very short time, all four features exist
in the system until “Lustre Error” disappears. This new change
in the system status manifests in form of a very small drop
in the W which is not surprising given the contribution from
“Lustre Error” is initially quite small.

The second analysis focuses on a time interval from approx-
imately “2016-01-01 12:00” to “2016-01-01 14:00”. As briefly
mentioned in Section V-A, there is a common “plateau” for
both W and N . However, at the end of the “plateau”, N shows
a sharp drop while, in contrast, W takes a big jump followed
by a sharp drop within a small period of time. Taking a closer
look at the time series shown on the bottom panel in Figure 4,
we see there are five features (i.e., “Lustre”, “LNet”, “MCE”
“Lustre Error” and “HWERR”) present before the jump. Since
“Lustre” and “LNet” dominate over others to a great extent,
it’s not surprising that the W does not change much before
the jump. Staring after “2016-01-01 13:10”, both “Lustre”
and “LNet” take a downturn and approach in value the other
features, while “MCE” stays quite constant. The changes of
collective relative significance continue to drive the W to a
higher range until “LNet” disappears abruptly and “Lustre”
takes such a sharp drop in value. Correspondingly, the W
takes a downturn and eventually rests on a number merely



Fig. 5: A close-up for SIE of “Nodal Map” layout is shown for a time interval from “2016-01-05” to “2016-01-06” on the top
panel, while a zoom-in shown on the middle panel focuses on a smaller time span of “12:00” to “16:00”. To distinguish among
different event types when drawing the event count, the color codes used are: “Machine Check Exception” (in short, “MCE”),
“Seg Fault”, “HWERR”, “NVRM Xid”, “Graphics Engine Error” (in short, “GEE”), “Lustre”, and “LNet”. For almost all the
time from “12:10” to “14:14”, the number of event counts for “NVRM Xid” and “GEE” are identical, resulting in the overlap
curves with only “GEE” shown explicitly. On the bottom panel, heat maps are plotted at specific times (chosen and marked
on the zoom-in SIE plot) at “12:05”, “12:25”, “13:20”, “13:50” and “14:20”. In comparison to Figure 2, the color scales vary
dramatically from moment to moment due to the range of the total counts recorded.

above one which reflects the system status is dictated by a
single dominant feature (“MCE”).

From both cases, we see the SIE (W ) faithfully represents
system status in a very comprehensive and sensitive manner.
In the next Section, we demonstrate that the same analysis
approach can be applied to another layout (i.e., “Nodal Map”)
which reveals different aspects of the system’s characteristics.

D. “Nodal Map” Layout

In comparison to the “Source Type” layout, “Nodal Map”
presents the event table in a different perspective. In this
layout, the features are directly associated with the Titan
nodal positions which are mapped to a 2D matrix with

dimensions [300, 64], instead of using a multi-dimensional
grid (to be exact, a 5D grid, which is impractical for any
effective visualization, see Section III-B). Consequently, the
SIE calculated in this layout can behave quite differently, as
briefly discussed in Section V-A. Overall, W in “Nodal Map”
has a much larger dynamic range for its values due to the fact
that there are much more potential independent features in this
layout (64 nodal map columns) comparing to “Source Type”
(theoretically, only 22 event types could be possibly registered
at the same time).

In our close-up study on the “Nodal Map” layout, as shown
in the first plot on the top panel of Figure 5, we choose a



Fig. 6: Two examples of the change rates for the information entropy (RE on the top and middle panels for layouts of
“Source Type” and “Nodal Map”, respectively) and the total counts (RC on the bottom panel).. The relative change rates are
normalized with respect to the maximum values of RE and RC within the time interval, respectively, which explains why there
is only one reading of 1.0 for either of RE or RC . The time interval (from about 2016-01-05 00:00:00 to 2016-01-06 00:00:00)
is chosen to coincide with that used in the detailed discussion on the zoom-in panel shown in Figure 5 (see Section V-D).

small time interval (“2016-01-05” to “2016-01-06”). In most
part of the time series, W follows up with the variation of N .
There is one segment in time (approximately from “12:00” to
“16:00”) raising quite a bit of interest in our investigation. A
further zoom-in is plotted on the middle panel in Figure 5.
Before “12:10”, W essentially “copies” the behavior of N for
an extended amount of time. After this turning point, we see
a substantial increase in the total counts contributed by event
types “NVRM Xid” and “Graphics Engine Error” (in short,
“GEE”). However, the W drops to a value close to 1, which
indicates the system enters a status where a few hot spots
appear (meaning very localized events are recorded along the
time). The trend keeps on for both W and N until at approx.
“13:40”. After that moment, without significant increase of
event counts (actually, it is slightly decreasing instead), the
W shows a steady march for higher and higher values until
it reaches its top number of 30 around “14:15”. This simply
tells us that the localized hot spot(s) disappear and the system
is returning back to a “random state” with a higher entropy.

Since the features in the layout are nodal map columns,
we choose several representative moments marked by vertical
lines in the plot on the middle panel. We then draw, at these
moments, the corresponding heat maps on the bottom panel
for total event counts, meaning all event types combined. The
heat map at “12:05” shows a relatively quiet moment of the
system where no specific location on the nodal map records
events beyond “normal”. In the second heat map at “12:25”,
we see a dramatic change of the system status in which a
single hot spot appears on Titan node “c4-1c0s7n1” with a
dominant total counts of 602. This critical change explains
exactly why the W drops sharply from above 5 to almost

1. Following on to the third heat map in the middle of the
bottom panel, we can see there are other event types entering
the picture at very dispersed nodal positions, while the hot spot
created by “NVRM Xid” and “GEE” is intensified with more
counts registered by these two event types. The net effect on
W is that W keeps almost unaltered. After “13:40”, there is a
new significant change in the total counts which introduces a
new event type “HWERR”. Unlike “NVRM Xid” and “GEE”,
counts from “HWERR” are not localized at all (easily seen
in the fourth heat map), which naturally contributes to the
W jump observed at “13:40”. This trend keeps pushing on
until after “14:15” when the relative dominance of the hot
spot created by “NVRM Xid” and “GEE” totally die out. By
then, the W reaches its local maximum indicating the system
is running quite evenly in terms of nodal distribution and this
description of system status is satisfyingly verified by referring
to the last heat map.

VI. DISCUSSION

As a natural extension in analyzing a time series, we
calculate time derivatives of the SIE (RE) described in the two
applications in Section V. For comparison, we also calculate
the change rate of the total counts (RC). When calculating RE ,
the derivative of the time series of H(t) has been used instead
of W (t). This choice is taken to keep the current gradient
analysis in line with future analysis, such as evolution of
dynamic systems (suggested in the following). Mathematically,
the two choices of computing RE differ by a scale factor of
W .

In Figure 6, we show RE for both layouts of “Source Type”
and “Nodal Map” and RC for total counts. The time interval



is chosen so that it mostly coincides with that used in the
detailed discussion on the middle panel shown in Figure 5
(see Section V-D). The change rates plotted in Figure 6 are
normalized with the maximal values of RE and RC within
the time interval, respectively, which explains why there is
only one reading of value 1 for either of RE and RC . The
first impression from Figure 6 is that RE is much more
sensitive, in comparison to RC , to the outside signals (no
matter what their natures are). When giving definitions of
layouts “Source Type” and “Nodal Map” in Section III-B,
we know “Source Type” possesses a much smaller degree of
freedom (DOF) in the feature space (22 possible event types)
when comparing to “Nodal Map” which has 64 potential
event source positions localized to Titan’s nodal columns.
This discrepancy in DOF may explain the observed higher
sensitivity level in RE for “Source Type” when comparing to
“Nodal Map”. Due to the normalization of the change rates,
we expect the sensitivity levels of RE vs. RC will change with
different time and/or time span. However, overall we observe
a higher sensitivity level in RE than RC .

Zooming into further details on these plots, we identify
a general pattern that we call the “limited window effect”
(LWE). This artificial effect is purely created by the design of
how to represent the evolution history of the system without
substantially harming the statistical meanings of any analysis
output (see Section III-B). In one of the two significant
manifestations of LWE, we see a pair of mirrored features
which is highly anti-symmetric about the base line of value
“0”. This is especially obvious in the RC plot in Figure 6
where, with every significant positive change rate, there is
a counterpart in the negative half space. For example, one
pair of these “mirrored features” on the bottom panel in
Figure 6 appears with the positive RC right before “2016-
01-05 03:00” and the negative counterpart after an hour of
time. Compared to the RC plot, LWE imposes a much lesser
footprint in the plots of RE , which is likely attributed to
the fact that information entropy as a comprehensive status
metric is diversely driven by many system variables other than
dictated by a single source of information.

Besides the “mirrored features”, there is another LWE which
accounts for the smearing of feature details within a fixed time
window due to a prominent event. Looking back at Figure 4
or Figure 5, one can easily identify typical step-like features
with a width of approximately 1 hour (i.e., our chosen size
of time window). As shown with the calculation of RE and
RC , taking the time derivative can efficiently eliminate this
smearing effect of LWE.

VII. CONCLUSION

Without pre-assumption about the relative significances
among system properties, we design a metric which reflects
the system status in a concise form of a time series. It has
been demonstrated that this system metric comprehensively
yet sensitively summarize the overall system characteristics
without compromising on computational efficiency. By adopt-
ing SIE as a robust system status metric, we envision further

applications, such as pattern recognition, causality analysis in
conjunction with other independent system metrics (hardware
health indicators, user job submission patterns, etc.), and
similarity analysis as a dynamic system. Generally speaking,
any analysis approach that takes a time series as its ultimate
input could be applied to SIE, and its application will create
much needed insight into the evolution of HPC system status
over time.

ACKNOWLEDGMENT

This work is supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, program manager Lucy Nowell, under contract
number DE-AC05-00OR22725, and by the Compute and Data
Environment for Science (CADES) facility and the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is managed by UT Battelle, LLC for the
U.S. DOE (under the contract No. DE-AC05-00OR22725).

REFERENCES

[1] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann. “Big
Data Meets HPC Log Analytics: Scalable Approach to Understanding
Systems at Extreme Scale”, IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 758–765.

[2] B. H. Park, Y. Hui, S. Boehm, R. A. Ashraf, C. Layton, and C.
Engelmann. “A Big Data Analytics Framework for HPC Log Data: Three
Case Studies Using the Titan Supercomputer Log”, IEEE International
Conference on Cluster Computing (CLUSTER), 2018, in publication.

[3] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello. “LOGAIDER:
A Tool for Mining Potential Correlations of HPC Log Events”, 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017, pp. 442–451.

[4] A. Goudarzi, D. Arnold, D. Stefanovic, K. B. Ferreira, and G. Feldman.
“A Principled Approach to HPC Event Monitoring”, Proceedings of the
5th Workshop on Fault Tolerance for HPC at eXtreme Scale - FTXS
’15, ACM Press, New York, New York, USA, 2015, pp. 3–10.

[5] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. “Fault prediction under
the microscope: A closer look into HPC systems”, IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, UT, 2012, pp. 1–11.

[6] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M.
Egele, and A. K. Coskun. “Diagnosing Performance Variations in HPC
Applications Using Machine Learning”, ISC 2017: High Performance
Computing, Springer, Cham, 2017, pp. 355–373.

[7] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer. “Event
Log Mining Tool for Large Scale HPC Systems”, 17th International
Conference, Euro-Par 2011 Parallel Processing, E. Jeannot, R. Namyst,
and J. Roman (Eds.), Springer, Berlin, Heidelberg, 2011, pp. 52–64.

[8] W. Yoo, M. Koo, Y. Cao, A. Sim, P. Nugent, and K. Wu. “Performance
Analysis Tool for HPC and Big Data Applications on Scientific Clus-
ters”, Conquering Big Data with High Performance Computing, Springer
International Publishing, R. Arora (Eds.), 2016, chapt. 7, pp. 139–161.
52009,

[9] S. Fu. “Performance Metric Selection for Autonomic Anomaly Detec-
tion on Cloud Computing Systems”, IEEE Global Telecommunications
Conference - GLOBECOM 2011, 2011, pp. 1–5.

[10] Q. Guan, and S. Fu. “Adaptive Anomaly Identification by Exploring
Metric Subspace in Cloud Computing Infrastructures”, IEEE 32nd
International Symposium on Reliable Distributed Systems, 2013, pp.
205–214.

[11] Z. Lan, Z. Zheng, and Y. Li. “Toward Automated Anomaly Identification
in Large-Scale Systems”, IEEE Transactions on Parallel and Distributed
Systems, 2010, vol. 21(2), pp. 174-187.

[12] K. Pearson F.R.S. “LIII. On lines and planes of closest fit to systems
of points in space”, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 1901, vol. 2(11), pp. 559–572.

[13] C. E. Shannon. “A mathematical theory of communication”, The Bell
System Technical Journal, 1948, vol. 27(3), pp. 379–423.


