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Abstract—Supercomputers are complex systems used to sim-
ulate, understand and solve real-world problems. In order to
operate these systems efficiently and for the purpose of their
maintainability, an accurate, concise, and timely determination
of system status is crucial for its users and operators. However,
this determination is challenging due to intricately connected
heterogeneous software and hardware components, and due to
sheer scale of such machines. In this poster, we demonstrate
work-in-progress towards realization of a real-time monitoring
framework for the 18,688-node Titan supercomputer at Oak
Ridge Leadership Computing Facility (OLCF). Toward this end,
we discuss the use of metrics which present a one-dimensional
view of the system generating various types of information from
1000s of components and utilization statistics from 100s of user
applications in near real-time. We demonstrate the efficacy of
these metrics to understand and visualize raw log data generated
by the system which otherwise may compose of 1000s of dimen-
sions. We also demonstrate the architecture of proposed real-
time stream processing framework which integrates, processes,
analyzes, visualizes and stores system log data from an array of
system components.

Index Terms—System Monitoring, Quantification Metrics, Re-
liability, Availability, Serviceability

I. INTRODUCTION

Real-time analysis of system status requires efficient pro-
cessing of streams of data which is often sporadic but bursty,
and is composed of heterogeneous types. With exascale sys-
tems on the horizon, the complexity and the number of compo-
nents and subsystems will continue to grow, generating huge
amounts of log data. In order to meet many challenges imposed
by volume, diversity and complexity of log data accumulated
at OLCF, we have developed a big data analytics platform
– Log processing by Spark and Cassandra-based ANalytics
(LogSCAN) [1] – that provides flexible and scalable data
acquisition, transformation and computation on supercomputer
log data. One of the main goals of LogSCAN is to provide
simple but effective metrics that represent the status of the
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system for users and operators near real-time [2]. Previous
work demonstrates the benefit of a monitoring framework
to improve application performance [3]. Machine learning
has also been utilized to diagnose performance variation
in applications commonly observed in large-scale comput-
ing machines using resource utilization information and data
from performance counters [4]. As an extension to our prior
work [1], we demonstrate the use of LogSCAN for real-time
system monitoring in this work by processing near real time
data streams of various RAS events most of which are recorded
on all nodes in the system and placement information available
for executing applications.

II. SYSTEM STATUS METRICS IN LOGSCAN
Various events parsed by LogSCAN could potentially be

used to monitor the system status as they provide the original
information. However, it’s quite a challenge to inspect the
system status by simple occurrence counts of specific event
types. Figure 1 shows total counts of 22 event types processed
by LogSCAN’s parsers. Although the plot may deliver some
insight regarding the current system, it cannot represent system
status of future systems. What if the dimension of the feature
space (or in terms of event types) increases by ten-fold in the
future?

Fig. 1: Event counts for different event types (in different
colors) during [Jan. 01, 2018 to Jan. 20, 2018].

It is one of the design goals of LogSCAN to find temporally
quantifiable low-dimensional metrics in forms of time series
in order to describe the evolutionary history of the system.
We design and implement two metrics to adequately capture
the state of the supercomputer at any given instant: 1) System
Information Entropy (SIE) metric, which captures the state



Fig. 2: A sketch of the architecture of LogSCAN. Two user facilities at ORNL, the Oak Ridge Leadership Computing Facility
(OLCF) and the Computer and Data Environment for Science (CADES) provide hardware and software support for our work.
Except for the Kafka servers which are hosted at OLCF, all the data portal, analysis and visualization servers are hosted on
CADES through deployments of multiple OpenStack VMs.

of all reliability, availability and serviceability (RAS) events
occurring on all the nodes and in various system components
by leveraging powers of machine learning techniques and
information theory; 2) Application System Impact (ASI) metric,
which captures the state of all applications running on the
system.

The SIE metric is used to make a sensitive diagnostic
regarding whether different features, which are driving the
evolution of the system status, act independently or are highly
correlated. Given a general data layout of RECORD vs.
FEATURE in a 2D table at each time instant, we proceed by
computing the relative variances among all principal compo-
nents [5] of the data table. The resulting variance probability
vector could be further compressed with a Shannon entropy [6]
to obtain the SIE at the given time instant.

For consolidating the impact of user applications on system
state [7], ASI is used to identify instants of time, where
the applications (or users) may be causing RAS events as
compared to instants where issues in the system may be
impacting execution of applications. ASI is based on the
formation of a 1D vector which represents the sum of all
events seen across all different applications executing in a
given time window. The sparsity of this vector is quantified
and is used to distinguish between cases where only few
applications are generating bulk of the events from cases when
most applications are impacted by various events.

III. ARCHITECTURE OF THE REAL-TIME MONITORING
FRAMEWORK

In this work, we extend our log analysis framework as an
end-to-end streaming process pipeline. Depicted in Figure 2,
the pipeline starts with data sources which are provided by
a subscription service to multiple Kafka topics published by
OLCF. The raw log entries retrieved from these topics are
parsed at the LogSCAN portal server and subsequently the
emerged events are either stored in a Cassandra database for
offline analytics or fed directly into various Spark Streaming
Processors which simultaneously compute, according to the
ultimate requirements from end users, the SIE or ASI metrics.
The application interfaces are established through multiple
APIs such as long-term Scala/Java apps or interactive Jupyter
notebooks. And all analysis job submissions are orchestrated
by a Mesos cluster management system. Within the analysis
pipeline, we connect the output from the Spark Streaming
Processors with various hosts of data storage/visualization.
Especially convenient for online analytics and visualization
of time series, we create a service stack around an InfluxDB
database and choose Chronograf as the visualization terminal.

The InfluxDB data model is designed with such a principle
that, as many as possible, categorical meta-data should be
designated in a tag-set instead of a field-set for any ”mea-
sured” point. For example, in the case of SIE, meta-data
which differentiate computations with various Data Layout,



Fig. 3: An illustration of the real-time monitoring dash board for SIEs (in two data layouts) and total event counts. For a
simple illustrative purpose, we only show the historical log data from Titan from January 1st to February 6th, 2018.

Time Window, Time Resolution, and Event Type are stored
as four tags for measurements which contains only two fields,
the Shannon entropy and SIE itself. The advantage of our
choice for the database schema is that all meta-data selected
in the SIE will be implicitly indexed by InfluxDB and will
dramatically accelerate general database queries.

Since all time series is stored in the InfluxDB-compliant
format, we leverage Chronograf (one of the authentic compo-
nents in the TICK Stack) as the visualization backend (shown
with an example in Figure 3) due to its simple integration
with InfluxDB and powerful visualization capability. Serving
as an auxiliary component of the monitoring system, we are
also testing an alarming framework built using the streaming
engine Kapacitor out of the TICK Stack.

IV. CONCLUSIONS AND FUTURE WORK

The metrics and their evaluation in real-time provides the
opportunity to utilize pattern recognition, causality analysis
in conjunction with other independent system metrics, and
similarity analysis as a dynamic system. We believe that the
application of this framework will create much needed insight
into the evolution of HPC system status over time and its use
can be easily extended to other setups which generate time
series data.
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