
Virtualized Environments for the Harness High Performance Computing
Workbench∗

B. Könning1,2, C. Engelmann1,2, S. L. Scott1, and G. A. Geist1
1Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Computer Science

The University of Reading, Reading, RG6 6AH, UK
{koenningb,engelmannc,scottsl,gst}@ornl.gov
{b.koenning,c.engelmann}@reading.ac.uk

Abstract
This paper describes recent accomplishments in pro-
viding a virtualized environment concept and prototype
for scientific application development and deployment
as part of the Harness High-Performance Computing
(HPC) Workbench research effort. The presented work
focuses on tools and mechanisms that simplify scientific
application development and deployment tasks, such
that only minimal adaptation is needed when moving
from one HPC system to another or after HPC system
upgrades. The overall technical approach focuses on
the concept of adapting the HPC system environment
to the actual needs of individual scientific applications
instead of the traditional scheme of adapting scien-
tific applications to individual HPC system environment
properties. The presented prototype implementation is
based on the mature and lightweight chroot virtu-
alization approach for Unix-type systems with a focus
on virtualized file system structure and virtualized shell
environment variables utilizing virtualized environment
configuration descriptions in Extensible Markup Lan-
guage (XML) format. The presented work can be easily
extended to other virtualization technologies, such as
system-level virtualization solutions using hypervisors.

1. Introduction

While hardware, system software, and scientific
applications for high-performance computing (HPC)

∗This research is sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work was per-
formed at the Oak Ridge National Laboratory, which is managed by
UT-Battelle, LLC under Contract No. De-AC05-00OR22725.

continue to rapidly improve in performance and effi-
ciency from current terascale to next-generation petas-
cale machines, scientific application development and
deployment activities performed by application scien-
tists are hampered by frequent HPC system upgrades
and new installations, constantly changing hardware
and software environments, and a significant diversity
in HPC system environments.

HPC system hardware upgrades and new HPC sys-
tem installations have become annual or even semi-
annual events for many HPC centers. Similarly, HPC
system software upgrades have become monthly or even
semi-monthly events. There is a constant need to port,
recompile, and/or retune scientific applications to new
or upgraded systems. Additionally, new scientific ap-
plications are either developed and tested to fit to the
current generation HPC systems and need to be ported
once they go into production, or they are developed for
the next-generation HPC systems without access to re-
spective testbeds.

Annual or semi-annual HPC system upgrades and
new installations incur the highest overhead due to the
significant change in hardware architecture and system
software. Porting, recompiling, and retuning existing
or newly developed scientific applications is still a com-
plex task requiring HPC system and HPC center specific
knowledge, such as:

• Where to deploy scientific application packages
(sources and binaries)?

• Which compiler/linker and compiler/linker flags to
use?

• Does the system perform cross-compilation?
• Which system libraries to link and where to find

them?

• How to find and use dependent software packages?
• Which system-specific workarounds to use?
• What needs to be in the batch job script?

HPC centers typically house multiple different ma-
chines. In addition to the high upgrade/installation fre-
quency of individual systems, there is a significant di-
versity within and between HPC centers in deployed
system architectures, hardware, interconnects, operat-
ing systems, compilers, library versions, runtime envi-
ronments, and debugging and monitoring tools. The de-
ployment of scientific applications involves customiza-
tion not only to various HPC platforms, but also to HPC
center specific environments.

The Harness HPC Workbench [15] project at Oak
Ridge National Laboratory, the University of Ten-
nessee, and Emory University focuses on tools and
mechanisms to simplify scientific application develop-
ment and deployment tasks, such that only minimal
adaptation is needed when moving from one HPC sys-
tem to another or after HPC system upgrades. The ul-
timate goal is to improve the productivity of applica-
tion scientists in order to allow them to focus more on
actual science instead of software development and de-
ployment activities.

This paper describes recent accomplishments at
Oak Ridge National Laboratory in collaboration with
the University of Reading in providing a virtualized en-
vironment concept and prototype for scientific applica-
tion development and deployment as part of the Har-
ness HPC Workbench research effort. We begin with an
illustration of the overall technical approach. We con-
tinue with a presentation of the detailed software design
of the developed prototype and a discussion of obtained
experimental results. We go on with a description of
related past and ongoing work in this area. This pa-
per concludes with a short summary of the presented
research and a brief overview of future work.

2. Technical Approach

In order to provide seamless scientific application
development and deployment across various HPC sys-
tems and HPC centers, our overall technical approach
focuses on the concept of adapting the HPC system en-
vironment to the actual needs of individual scientific ap-
plications instead of the traditional scheme of adapting
scientific applications to individual HPC system envi-
ronment properties. By using virtualization technology,
scientific applications can be developed and deployed
inside a virtualized environment specifically adapted to
their requirements. Virtualized environments can be de-
ployed on a large number of supported HPC systems
at various HPC centers, while providing the same view

to scientific applications. The overall goal of this ap-
proach is to provide portable virtualized environments
for scientific applications using efficient adaptation to
physical HPC system environments.

The Harness HPC Workbench effort initially fo-
cuses on mature, lightweight virtualization technolo-
gies for Unix-type systems with an emphasis on vir-
tualized file system structure and virtualized shell en-
vironment variables. This limitation ensures obtaining
production-type experience from scientific application
developers and system administrators without dealing
with the software stability issues resulting from an im-
maturity of the virtualization layer, the performance im-
pact caused by a more than insignificant runtime over-
head of the virtualization layer, and the workarounds
needed for lightweight operating systems that deal with
unsupported functionality.

The virtualization approach for the file system
structure is based on the well-known chroot com-
mand, which is available on Unix-type systems and pro-
vides support for a virtualized file system structure by
changing the root directory of a given process into a
different given directory. Since a significant part of
the configuration of a Unix-type system depends on its
root file system structure, individual adaptation to sci-
entific application needs can be achieved by providing
customized root file system structures for scientific ap-
plication processes. The chroot virtualization tech-
nology is known for its negligible to minimal runtime
performance overhead for applications running inside
the virtualized environment.

The virtualization approach for the shell envi-
ronment variables is based on creation and modifica-
tion of shell environment variables after executing the
chroot command, before executing the actual scien-
tific application.

In order to provide for portability across various
HPC systems and HPC centers, virtualized environment
configurations are described in Extensible Markup Lan-
guage (XML) format. These XML virtualized envi-
ronment configuration descriptions contain all neces-
sary information about virtualized file system structure
and virtualized shell environment variables. Each vir-
tualized environment configuration description includes
adaptation information for a targeted HPC system and
a specific scientific application, while a hierarchical in-
heritance scheme allows system administrators to pro-
vide standardized XML virtualized environment con-
figurations for common use cases that can be extended
with application specific requirements.

In the Harness HPC Workbench virtualization ap-
proach, a scientific application is implemented on a de-
velopment platform and deployed to a different HPC

Figure 1. Architecture and Workflow of the
Virtualized Environment Approach for the Har-
ness High Performance Computing Workbench

system by providing a virtualized environment config-
uration description and by executing respective com-
mands for virtualized environment installation and sci-
entific application execution inside an installed virtual-
ized environment (see Figure 1). The virtualized envi-
ronment commands are part of the Harness HPC Work-
bench and operate using intermediate implementation-
specific configuration files in order to separate XML
parsing from virtualized environment operations. This
permits operation without requiring an XML parser
for each particular HPC system and without a repeti-
tive XML parsing performance overhead. The trans-
lation from XML to intermediate configuration files is
only performed once for each specific virtualized en-
vironment configuration description and may be per-
formed on a different system, such as the scientific ap-
plication development system, using implementation-
specific Extensible Stylesheet Language Family Trans-
formation (XSLT) definitions.

When moving a scientific application from one
HPC system to another or after an HPC system up-
grade, a different or modified XML virtualized envi-
ronment configuration description is needed with HPC
system specific adaptation information. This adaptation
method assures that particular HPC system properties
are considered for the adaptation to scientific applica-
tion needs, thus avoiding coarse-grain HPC system ab-
straction and profiting from HPC system specific advan-
tages, such as tuned numeric libraries.

In order to minimize the overhead of providing dif-
ferent XML virtualized environment configuration de-
scriptions for each scientific application and for each
HPC system, the hierarchical inheritance scheme may
be used to modify existing XML virtualized environ-

ment configuration descriptions for common use cases
provided by system administrators. These XML virtu-
alized environment configuration templates may con-
tain HPC system and HPC center specific knowledge
and may be automatically updated by system admin-
istrators after HPC system upgrades. They may also
enforce HPC system and HPC center specific policies
within virtualized environments.

3. Detailed Design

The implemented prototype consists of an XML
schema, an XSLT definition, and two separate Unix-
shell commands, veCreator and veStarter.
The provided XML schema allows the validation of
XML virtualized environment configuration descrip-
tions, while the XSLT definition permits the transla-
tion of XML virtualized environment configuration de-
scriptions into a Unix-shell format. The virtualized en-
vironment management commands, veCreator and
veStarter, use the Unix-shell virtualized environ-
ment configuration description to, respectively, create a
virtualized environment, i.e., to prepare its file structure,
and to start an application inside the virtualized environ-
ment, i.e., to chroot into the prepared file structure
and to create/modify shell variables.

3.1. Virtualized Environment Creation

Based on the the virtualized environment config-
uration description, the veCreator command pre-
pares the file structure of a virtualized environment
into a ”chroot-able” file structure, i.e., into a virtu-
alized root directory structure containing parts of the
original HPC system root directory structure and addi-
tional modifications that perform the actual adaptation
to specific scientific application needs, such as addi-
tional/renamed libraries or modified configuration files.
The virtualized root directory structure modifications
are at the file and directory level. Modifications at the
software package level and support for operating system
distribution images may be added at a later stage.

The current virtualized environment prototype sup-
ports three methods for incorporating files and directo-
ries into the virtualized root directory structure of a vir-
tualized environment: copy, link, and UnionFS.

The copy method represents the easiest way to in-
corporate files and directories into the virtualized root
directory structure of a virtualized environment. A file
or an entire directory is copied from its original location
to the target location inside the virtualized root directory
structure. The copy method protects the original file or
directory from operations inside the virtualized environ-

ment. This sandbox characteristic applies to most use
cases for virtualized environments. However, copying
large parts of the original HPC system root directory
structure into every virtualized root directory structure
incurs a high performance overhead for virtualized en-
vironment creation and results in a significant usage of
file system storage resources.

As a lightweight alternative, the link method uses
symbolic links instead of copying files and directo-
ries. While this method significantly reduces the per-
formance overhead for virtualized environment creation
and substantially saves file system storage resources,
its disadvantage lies in the direct connection between
source and target files and directories. The properties
of an incorporated file or directory, such as its owner-
ship and permissions, cannot be changed independently
from the source. Furthermore, modifications of the tar-
get are reflected in the source, thus eliminating the sand-
box characteristic. However, partially eliminating the
sandbox characteristic may be useful to reflect existing
HPC system and HPC center specific policies, such as
existing user accounts and access rights, within virtual-
ized environments.

Due to the fact that the file system virtualiza-
tion approach is based on chroot, symbolically
linking target files and directories to sources out-
side a ”chroot-ed” file structure requires to mount
the original root directory structure within the vir-
tualized root directory structure, such that a direc-
tory /home/peter /env1/.osroot is the origi-
nal root directory structure within the virtualized envi-
ronment env1 of peter using the mount --bind
/ home/peter/env1/.osroot command line
within the veCreator command. This necessary
workaround for the link method further eliminates the
virtualized environment sandbox characteristic as the
entire original root file system is made visible within
a virtualized environment as the /.osroot directory.

The third supported method for incorporating files
and directories into the virtualized root directory struc-
ture of a virtualized environment utilizes recent ad-
vances in stackable file systems. UnionFS [24, 22] is
a file system driver for Unix-type systems, which al-
lows the unification of several directories into one vir-
tual directory by combining their content. The content
of a union are the merged files and subdirectories of its
branches. For a user, a union looks like a normal direc-
tory. Even branches from different file systems can be
merged into one union. UnionFS also supports copy-
on-write, hide-on-delete, and configurable access limi-
tations. However, UnionFS has also certain limitations,
such as the missing mmap support and runtime perfor-
mance impact. Furthermore, UnionFS is still in de-

velopment and considered an immature software prod-
uct by many HPC centers and therefore not widely de-
ployed in HPC systems.

Source Connection Target Method
rw static rw Copy or UnionFS

with Copy-on-Write
rw static ro Copy
ro static rw Copy or UnionFS

with Copy-on-Write
ro static ro Copy
rw dynamic rw Link
rw dynamic ro UnionFS with

Read-Only
ro dynamic rw Not Supported
ro dynamic ro Not Supported

Table 1. Comparison of Methods for Incorpo-
rating Files and Directories into the Virtualized
Root Directory Structure with Respect to Con-
nection and Permissions

The comparison of methods for incorporating files
and directories into the virtualized root directory struc-
ture with respect to connection and permissions in Ta-
ble 1 shows the various possible combinations and use
cases. All described methods refer to sources located
in the local original root directory structure. Support
for remote sources exists for the copy method by us-
ing Uniform Resource Locators (URLs) and respective
access methods, such as scp or wget.

Since software package managers typically do
not allow multiple versions of the same software to
be installed simultaneously, a common technique
that has been adapted by many HPC centers [13]
uses a unified naming scheme for software instal-
lations on a shared networked file system, such as
/apps/<package>/<version>/<machine>.
Integrating these software packages into the virtual
file system structure can be easily performed using
XML virtualized environment configuration templates
supplied by the HPC center. Multiple templates can
be combined through the include feature of the vir-
tualized environment configuration schema, such that
the XML virtualized environment configuration for an
application just includes the templates of its dependent
software packages. This approach is quite similar to
the Modules approach used to date (see Sec. 5), while
it adds the virtualized file system capability.

3.2. Virtualized Environment Invocation

Based on the the Unix-shell virtualized environ-
ment configuration description, the veStarter com-
mand ”chroot-s” into the prepared virtualized root di-
rectory structure, creates and modifies shell variables
accordingly, and starts the given scientific application.
Upon termination of the scientific application process,
the veStarter command terminates as well.

HPC systems typically use a parallel start mech-
anism to spawn the scientific application processes
on compute nodes in a single program multiple data
(SPMD) fashion. Instead of directly executing the
scientific application, the veStarter command is
executed on the compute nodes by the parallel start
mechanism, such that the veStarter wraps the sci-
entific application including its command line argu-
ments. This wrapping can be easily integrated with
batch job management solutions for HPC systems,
such that the invocation of MPI [17] via mpirun
-np program [options...] is automatically
wrapped into mpirun -np veStarter config
program [options...], where config identi-
fies the virtualized environment configuration descrip-
tion file that may be retrieved from a shell environment
variable during job submission.

3.3. System Security Aspects

Since the execution of the mount and chroot
commands requires super-user rights, the well-known
and secure sudo mechanism is used to give the
veCreator and veStarter commands permission
to execute, respectively, mount and chroot with
super-user rights, while continuing to deny direct ac-
cess to these commands to normal users. In or-
der to securely execute a scientific application, the
veStarter command changes back to the original
user context after executing chroot by executing su
$ORIGINAL USER.

Certain system security vulnerabilities exist related
to the properties of a virtualized environment, such that
original system configuration files, like passwords, can
be compromised by extending read or even write access
within the virtualized environment. Furthermore, origi-
nal system configuration files may be replaced entirely
in the virtualized environment. In the first case, relaxed
sandbox characteristics allow leaking of original system
configuration files to the virtualized environment with-
out appropriate protection, while strong sandbox char-
acteristics fail to enforce the existing system configura-
tion in the second case. A careful balance between re-
laxed and strong sandbox characteristics is required for

optimal system security and virtualized environment us-
ability. Templates for virtualized environment descrip-
tions are able to assist system administrators and help
enforcing HPC system and center policies by providing
preconfigured virtualized environment descriptions.

Additional system security aspects arise from the
fact that virtualized environments typically need to fol-
low the same cyber security rules like real environ-
ments. System administrators may be reluctant to sup-
port virtualized environments if they cannot assure that
existing policies are not circumvented. A verification
(or even certification) of the presented prototype tools
and of specific virtualized environment configuration
descriptions is needed for production-type deployment
with cyber security policies.

4. Experimental Results

Based on the developed prototype implementa-
tion, numerous functional and several performance tests
were conducted in order to check for errors and effi-
ciency. Both, the veCreator and veStarter com-
mands provided correct functionality based on various
XML virtualized environment descriptions that were
validated against the XML schema and with the help
of the XSLT definition translated into Unix-shell virtu-
alized environment descriptions.

Two separate performance test series were con-
ducted, one for virtualized environment creation using
veCreator and one for virtualized environment invo-
cation using veStarter. Both test series focused on
the different methods for incorporating files and direc-
tories into the virtualized root directory structure with
respect to creation and runtime overhead.

The virtualized environment creation tests in Ta-
ble 2 involved 32935 files out of the directories /bin
/lib, /sbin and /etc of a Fedora Core 6 Linux
installation. The virtualized environment creation was
performed in 65 seconds using the copy method and 5-6
seconds for the link and UnionFS methods.

Method Creation Access Read/Write
Copy 65s 95% 100%
Link 5-6s 94% 100%
UnionFS 5-6s 94% 60-99%

Dual Pentium D 3.4 GHz, 4GB RAM, Western Digital
WD2500JS, Linux 2.6.15, ext3, UnionFS 1.3

Table 2. Comparison of Methods for Incorpo-
rating 32935 Files and Directories into the Vir-
tualized Root Directory Structure with Respect
to Virtualized Environment Creation Time and
File Access/Read/Write Runtime Performance

The virtualized environment invocation tests in Ta-
ble 2 involved various file system access benchmarks,
such as a small benchmark script that opens a number
of files, Iozone, Postmark, and kernel source compila-
tion. The tests revealed a 6-7% performance hit just for
being in a ”chroot-ed” environment for all methods
for rapid file access, such as opening a large number
of files. However, this performance hit is negligeble
as the time spend for opening files is typically signif-
icantly smaller in comparison to the time spend reading
and writing files. There was virtually no runtime per-
formance difference between the copy and link meth-
ods with the exception of a caching effect of 1%. There
was also no noticable read/write performance difference
for the copy and link methods. As expected, there was
a read/write performance difference for the UnionFS
method. Using the I/O-intensive Postmark benchmark,
the introduced overhead can be as big as 70%. How-
ever, using the CPU-intensive kernel source compila-
tion benchmark, the overhead was as small as 1%.

These tests were performed on a single compute
node using the local file system in order to measure the
maximum performance impact of the virtualized envi-
ronment. More details and an analysis about the per-
formed functional and performance tests are available
in the Master thesis documenting this research and de-
velopment effort [10].

5. Related Work

The Modules software package [18] allows to dy-
namically modify a user environment by using mod-
ule configuration files. Each module configuration file
contains the information needed to configure the shell
for an application. After the Modules software pack-
age is initialized, the environment can be modified on
a per-module basis using the module command, which
interprets module configuration files. Typically, these
configuration files instruct the module command to al-
ter or set shell environment variables such as PATH,
MANPATH, and others.

While the Modules software package is heavily
used in HPC environments [14, 12], its approach fo-
cuses on a virtualized shell environment only. The ap-
proach presented in this paper extends the Modules con-
cept to a virtualized file system directory structure.

The recent interest in virtualization technologies
was a direct result of advances in lightweight type-I hy-
pervisor solutions, such as Xen.

Xen [1, 23] is an open source virtual machine mon-
itor (VMM) for IA-32, x86-64, IA-64, and PowerPC ar-
chitectures. Its type-I system-level virtualization allows
one to run several virtual machines (VMs) in an unpriv-

ileged domain (DomU) on top of the VMM on the same
computer hardware at the same time using a host OS
running in a privileged domain (Dom0) for VM man-
agement and hardware drivers. Several modified OSs,
such as FreeBSD, Linux, NetBSD, and Plan 9, may be
employed as guest systems using paravirtualization, i.e.,
by modifying the guest OS for adaptation to the VMM
interface. Using hardware support for virtualization in
processors, such as Intel VT and AMD-V, the most re-
cent release of Xen is able to run unmodified guest OSs
inside VMs.

The presented work can be easily extended to other
virtualization technologies, such as system-level vir-
tualization solutions using hypervisors. An ongoing
project at Oak Ridge National Laboratory targets the
development of virtualized system environment (VSE)
support for scientific computing using system-level vir-
tualization. While the presented virtualized environ-
ment concept allows specifying the runtime environ-
ment (RTE) requirements of a scientific application in
form of a XML configuration file, the VSE approach is
extending this idea to the entire software suite installed
on a HPC system, including OS (kernel, libraries, and
services), RTE(s) (libraries and services), and access
policies for external resources, e.g., for a parallel file
system. A recent paper [4], proposes the VSE con-
cept, explains its technical approach, and evaluates re-
lated research. We refer the reader to this paper for a
more extensive description of related work in the area
of system-level virtualization.

The Open Source Cluster Application Resources
(OSCAR) toolkit is used to build and maintain HPC
clusters [11]. The toolkit has been recently extended
to support system-level virtualization technology, e.g.,
Xen and QEMU. This virtualization-enhanced version,
OSCAR-V [21], includes additional tools to create and
manage VMs atop a standard OSCAR cluster. The
OSCAR-V solution combines existing OSCAR facili-
ties with a new VM Management (V2M) tool that pro-
vides a high-level abstraction for the interaction with
underlying VM implementations. The OSCAR-V en-
hancements were developed recently by our team at
Oak Ridge National Laboratory to help exploring vir-
tualization technology in HPC environments, and as a
first step toward a VSE configuration and system man-
agement suite.

Our ongoing work focuses on integrating the file-
level configuration approach for virtualized environ-
ments presented in this paper with package-level VM
configuration tools, like OSCAR-V.

The Virtual Workspaces project [8, 19] is an ef-
fort to exploit virtualization technology for the Grid [9].
The goal is to capture the requirements for an exe-

cution environment in the Grid in form of a virtual
workspace definition, and then use automated tools to
find, configure, and provide an environment best match-
ing those requirements. Virtualization technology, such
as Xen, is being used in conjunction with the Globus
Toolkit for dynamic provisioning of customized and
controllable remote execution environments. The Vir-
tual Workspaces effort focuses on a resource oriented
aspect in small-scale distributed cooperative computing
environments.

The presented work also relates to past and ongoing
research and development efforts in simplifying soft-
ware development and deployment.

The GNU Autotools [5, 6, 7] are part of an open
source suite designed to assist in providing portability
to source code packages for many Unix-like systems.
The GNU Autotools are a collection of automated ap-
proaches to detect system properties for correctly com-
piling and installing applications. They support the
detection of various shell environments, tools, and li-
braries for a wide variety of target systems. In addition,
cross-compiling, i.e., compilation for a target system on
a different system, is supported.

NetBuild [20] is a suite of tools designed to aid in
using computational software libraries that are stored on
the network, without the need to have them preinstalled
on a system. Instead, NetBuild will determine which
libraries are not installed, identify suitable versions that
are accessible from the network, and download and link
them with the application. NetBuild is developed by
the ICL Team at the University of Tennessee and runs
on most UNIX-type platforms and also on Windows.

The Eclipse Integrated Development Environment
(IDE) and its Parallel Tools Platform (PTP) [2, 3] are
an open source solution for parallel application de-
velopment and debugging. Eclipse offers many fea-
tures expected from a commercial quality IDE, such as
syntax-highlighting editor, source-level debugger, revi-
sion control, code refactoring, and support for multiple
languages, including C, C++, and Fortran. PTP allows
application developers to use Eclipse as a portable IDE
across a wide range of parallel systems. PTP also in-
cludes a scalable parallel debugger, and tools for devel-
opment of parallel programs. Eclipse already supports
XML configurations for different workspaces.

Ongoing work in the Harness HPC Workbench
project focuses on integrating the presented solution
with Eclipse and PTP to add virtualized environment
support to Eclipse workspaces in scientific application
development scenarios.

Further recent and ongoing work in the Harness
HPC Workbench project targets the porting process of
applications in scientific HPC environments, especially

in the context of legacy applications that have been de-
veloped over a number of years or even decades. In con-
trast to the approach presented in this paper, which al-
lows adapting HPC system properties to scientific appli-
cation needs using virtualization, this complementary
effort aims at adapting scientific applications to HPC
system properties using source code level porting trans-
formations [16].

6. Conclusions and Future Work

This paper describes recent research and develop-
ment efforts at Oak Ridge National Laboratory in col-
laboration with the University of Reading in providing a
virtualized environment concept and prototype for sci-
entific application development and deployment as part
of the Harness HPC Workbench research effort. The
main motivation is to offer tools and mechanisms to
simplify scientific application development and deploy-
ment tasks, such that the overall productivity of appli-
cation scientists increases.

The technical approach focuses on the concept of
adapting the HPC system environment to the actual
needs of individual scientific applications instead of the
traditional scheme of adapting scientific applications to
individual HPC system environment properties. It uti-
lizes chroot virtualization in combination with shell
environment wrapping in Unix-type environments to
provide for virtualized file system structure and virtu-
alized shell environment variables. Virtualized environ-
ment configurations in XML format assure portability
across various HPC systems and HPC centers by con-
taining adaptation information for a targeted HPC sys-
tem and a specific scientific application. A hierarchical
inheritance scheme allows for XML virtualized envi-
ronment configuration templates for common use cases
and for enforcing site specific policies. The following
HPC system and HPC center specific knowledge can be
described in XML virtualized environment configura-
tion templates using virtual file and directory paths:

• Where to deploy scientific application packages
(sources and binaries)?

• Where to find system libraries?
• Where to find dependent software packages?

Since virtual file and directory paths are used, the
impact of upgrading system libraries and dependent
software packages can be configured such that (1) an
upgrade is immediately visible in the virtualized envi-
ronment, (2) an upgrade is not visible at all, and (3) an
upgrade is only visible through a different virtual file or
directory path.

The performance results show that the developed
prototype is ready for testing in the field with the ex-
ception of the UnionFS method for incorporating files
and directories into the virtualized root directory struc-
ture of a virtualized environment. However, we expect
this issue to disappear in the future with increasing ma-
turity of the UnionFS stackable file system driver.

Ongoing efforts focus on obtaining production-
type experience from scientific application developers
and system administrators with respect to the usability
of the developed prototype and related system security
issues and policies.

Future work will target the integration with devel-
opment and runtime environments for scientific com-
puting, such as Eclipse and PTP, and the continuation
of the expansion to system-level virtualization using the
VSE approach.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings of
the 19th ACM Symposium on Operating Systems Princi-
ples (SOSP) 2003, pages 164–177, Bolton Landing, NY,
USA, 2003.

[2] Eclipse Foundation Inc. Eclipse Integrated Development
Environment, 2007. Available at http://www.eclipse.
org/.

[3] Eclipse Foundation Inc. Eclipse Parallel Tools Platform,
2007. Available at http://www.eclipse.org/ptp/.

[4] C. Engelmann, S. L. Scott, H. Ong, G. Vallée, and
T. Naughton. Configurable virtualized system environ-
ments for high performance computing. In Proceedings
of the 1st Workshop on System-level Virtualization for
High Performance Computing (HPCVirt) 2007, in con-
junction with the 2nd ACM SIGOPS European Confer-
ence on Computer Systems (EuroSys) 2007, Lisbon, Por-
tugal, Mar. 20, 2007.

[5] Free Software Foundation, Inc. GNU Autoconf
Project. Available at http://www.gnu.org/software/
autoconf/, 2007.

[6] Free Software Foundation, Inc. GNU Automake
Project. Available at http://www.gnu.org/software/
automake/, 2007.

[7] Free Software Foundation, Inc. GNU Libtool Project.
Available at http://www.gnu.org/software/libtool/, 2007.

[8] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of
life on the Grid. Scientific Programming, 13(4):265–
276, 2005.

[9] C. Kesselman and I. Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA, 1998.

[10] B. Könning. Virtualized environments for the Harness
Workbench. Master’s thesis, Department of Computer

Science, University of Reading, UK, Mar. 14, 2007.
[11] J. Mugler, T. Naughton, S. L. Scott, B. Barrett, A. Lums-

daine, J. M. Squyres, B. des Ligneris, F. Giraldeau, and
C. Leangsuksun. OSCAR clusters. In Proceedings of 5th

Annual Ottawa Linux Symposium (OLS) 2003, Ottawa,
Canada, July 23-26, 2003.

[12] National Center for Computational Sciences, Oak
Ridge, TN, USA. Modules Software Package Descrip-
tion. Available at http://info.nccs.gov/resources/general/
software/modules/, 2007.

[13] National Center for Computational Sciences, Oak
Ridge, TN, USA. Software Package Naming
Scheme. Available at http://info.nccs.gov/resources/
general/software/, 2007.

[14] National Energy Research Scientific Computing Center,
Berkeley, CA, USA. Modules Approach to Software
Management. Available at http://www.nersc.gov/nusers/
resources/software/os/modules.html, 2007.

[15] Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Harness Workbench Project. Available at http://www.
csm.ornl.gov/harness/, 2007.

[16] J. Sławiński, M. Sławińska, and V. Sunderam. Port-
ing transformations for HPC applications. In ISCA 20th

International Conference on Parallel and Distributed
Computing Systems (PDCS) 2007, Las Vegas, NV, USA,
Sept. 24-26, 2007.

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference. MIT Press,
Cambridge, MA, USA, 1996.

[18] Sourceforge. Modules Software Package. Available at
http://modules.sourceforge.net/, 2007.

[19] The Globus Alliance. Virtual Workspaces Project, 2007.
Available at http://workspace.globus.org/.

[20] University of Tennessee, Knoxville, TN, USA. Net-
Build Project, 2007. Available at http://icl.cs.utk.edu/
netbuild/.

[21] G. Vallée, T. Naughton, and S. L. Scott. System manage-
ment software for virtual environments. In Proceedings
of ACM International Conference on Computing Fron-
tiers (CF) 2007, pages 153–160, Ischia, Italy, May 7-9,
2007.

[22] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility and
unix semantics in namespace unification. ACM Trans-
actions on Storage (TOS), 2(1):1–32, Feb. 2006.

[23] XenSource, Inc., Palo Alto, CA, USA. Open Source
Xen Hypervisor Technology. Available at http://www.
xensource.com, 2007.

[24] E. Zadok et al. UnionFS: A Stackable Unification
File System. Available at http://www.am-utils.org/
project-unionfs.html, 2007.

