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Many-cores are driving HPC  
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There is a need for redesigning the HPC software stack 
to  benefit from increasing number of cores 
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Can’t  apps simply use more cores?  
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Simply assigning more cores to applications 
does not scale. 
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Growing computation-I/O gap  
degrades performance 
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Research question: 
Can the underutilized cores  be leveraged  

to bridge the Compute-I/O gap? 
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Observation: All workflow activities (not 
just compute) affect overall performance 
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Our Contribution:  
Functional Partitioning (FP) of Cores 

•  Idea: Partition the app core allocation 
•  Dedicate partitions to different app activities 

•  Compute, checkpoint, format transformation, etc.  

•  Bring app support services into the compute node 
•  Transforms the compute node into a scalable unit for service composition 

•  A generalized FP-based I/O runtime environment 
•  SSD-based checkpointing  
•  Adaptive checkpoint draining 
•  Deduplication 
•  Format transformation 

•  A thorough evaluation of FP using a160-core testbed 
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Functional Partitioning (FP) 
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Agenda 

•  Motivation 
•  Functional Partitioning (FP) 
•  FP Case Studies 
•  Evaluation 
•  Conclusion 
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Challenges in FP design 

•  How to co-execute the support services with the app? 
•  How to assign cores for the support activities? 
•  How to share data between compute and support activities? 

•  How to make the FP runtime transparent? 

•  How to have a flexible API for different support activities? 

•  How to do adapt support partitions based on progress? 

•  How to minimize the overhead of FP runtime? 
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FP runtime design 

•  Uses app-specific instances setup as part of job startup 

•  Uses interpositioning strategy for data management: 
•  Initiates after core allocation by the scheduler and before 

application startup (mpirun) 
•  Pins the admin software to a core 
•  Sets up a fuse-based mount point for data sharing between 

compute and support services 

•  Initiates the support services and the application’s main 
compute to use the shared mount space 
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Aux-apps:  
Capturing support activities 
•  Provide an API for writing code for support activities 
•  Describe actions to take when data is accessed 

Adavantages: 
•  Decouple application design from support activity design 
•  Provide a flexible, reusable interface 
•  Support recycling of common activities across apps 

•  Reduce application development time  
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int dedup_write (void * output_buffer, int size){ 
  int result=SUCCESS; 
  //process output in chunks 
  while((chunk=get_chunk(&out_buffer,size))!=null){ 
    // compute hash on output_buffer chunks 
    char* hash=sha1(chunk); 

    //write the new chunk 
    if(!hashtable_get(hash))  
      result=data_write(chunk);   

    // update de-dup hash-table  
    hashtable_update(&result,chunk,hash); 
  } 
  return result; 
} 
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Assigning cores to aux-apps 

•  Per-activity partition: dedicate a core to each aux-app 
•  Intra-Node: Dedicated cores are co-located with the main app 
•  Inter-Node: Dedicated cores are on specialized nodes 

•  Shared partition: multiple cores for multiple aux-apps 
•  One service runs on multiple cores 
•  One core runs multiple services 
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Key FP runtime components for 
managing aux-apps 
•  Benefactor: Software that runs on each node 

•  Manages a node’s contributions, SSD, memory, core 
•  Serves as a basic management unit in the system 
•  Provides services and communication layer between nodes 
•  Uses FUSE to provide a special transparent mount point 

•  Manager: Software that runs on a dedicated node 
•  Manages and coordinates benefactors  
•  Schedules aux-apps and orchestrates data transfers 

•  Manager and benefactors are application specific 
and utilize cores from the application’s allotment 
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Minimizing FP overhead 

•  Minimize main memory consumption 
•  Use non-volatile memory, e.g. SSD, instead of DRAM 

•  Minimize cache contention 
•  Schedule aux-apps based on socket boundaries 

•  Minimize interconnection bandwidth consumption 
•  Coordinate the application and FP aux-apps 
•  Extend the ioclt call to the runtime to define blackout periods 
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Agenda 

•  Motivation 
•  Functional Partitioning(FP) 
•  FP Case Studies 
•  Evaluation 
•  Conclusion 
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SSD-based checkpointing 

•  FP can help compose a scalable service out of node-
local checkpointing 

•  Why SSD checkpointing: More efficient than memory-
checkpointing 
•  Does not compete with app main-memory demands 
•  Provide fault tolerance 
•  Cost less 

•  How: Aggregate SSD on multiple nodes as an aggregate buffer 
•  Provide faster transfer of checkpoint data to Parallel FS 
•  Utilize dedicated core memory for I/O speed matching 
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SSD-based checkpointing aux-app 
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Deduplication of checkpoint data 

•  FP cores can be used to perform compute-intensive 
de-duplication, in-situ, on the node 

•  Why: Reduce the data written and improve I/O throughput 

•  How: Identify similar data across checkpoints 
•  If data is duplicate, update only the metadata 
•  Co-located with ssd-checkpointing app on the same core 
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Deduplication aux-app 
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Agenda 

•  Motivation 
•  Functional Partitioning(FP) 
•  FP Case Studies 
•  Evaluation 
•  Conclusion 
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Evaluation objectives 

•  How effective is functional partitioning? 

•  How efficient is the SSD-checkpointing aux-app? 
•  Real world workload 
•  Synthetic workload 

•  How efficient is the deduplication aux-app? 
•  Synthetic workload 
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Experimentation methodology 

•  Testbed: 
•  20 nodes, 160 cores, 8G memory/node, Linux 2.6.27.10 
•  HDD model: WD3200AAJS SATAII 320GB, 85MB/s 
•  SSD model: Intel X25-E Extreme, sequential read 250MB/s, 

sequential write 175MB/s,  capacity 32G 

•  Workloads: 
•  FLASH: Real-world astrophysics simulation application 
•  Synthetic benchmark: A checkpoint application that generates 

250MB/process every barrier step 

•  FP(x,y) -> dedicate x out of y cores on each node to aux-apps 
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Impact of SSD-checkpointing using 
real-world workload 
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SSD-checkpointing I/O throughput  
using synthetic workload 
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SSD checkpointing provides sustained high throughput 
vs. an in-memory approach without memory overhead 
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Varying the number of benefactors 
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A small number of benefactors can significantly improve performance 
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Varying the number of compute cores 
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Efficiency of De-duplication Aux-app 
Using FP(2,8) 
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60% 

For compute intensive tasks such as deduplication  
assigning more cores to the aux-app improve end-to-end performance 
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Impact on end-to-end performance 
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Agenda 

•  Motivation 
•  Functional Partition(FP) 
•  Sample core services 
•  Evaluation 
•  Conclusion 
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Conclusion 
•  Created a novel FP run-time for many-cores systems 

•  Transparent to applications 
•  Easy-to-use, flexible, and support recyclable aux-apps 

•   Implemented several sample FP support services 
•  SSD-based checkpointing 
•  Deduplication 
•  Format transformation 
•  Adaptive checkpoint data draining 

•  Showed that FP can improve end-to-end application 
performance by reducing support activity time with 
minimal overhead to compute 
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Future work 

•  Explore dynamic functional partitioning 
•  Implement more FP-based services 
•  Utilize FP for non-I/O-based activities 

•  Contact information 
Viginia Tech: Min Li, Ali R. Butt  --  limin@cs.vt.edu, butta@cs.vt.edu 
ORNL: Sudharshan S. Vazhkudai – vazhkudaiss@ornl.gov 
NCSU: Xiaosong Ma – ma@cs.ncsu.edu 
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Backup slides 

32 



OAK RIDGE NATIONAL LABORATORY 
U. S. DEPARTMENT OF ENERGY NC State University 

Adaptive checkpoint data draining 

•  Why: Data cannot be stored in the SSD buffer  forever 

•  How: Lazily draining the data to PFS every k checkpoints 
•  Periodically update the manager with free space status 
•  The manager uses this info to determine when to drain 
•  Dedicated cores can be used to facilitate the draining and 

support tasks 
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Adaptive checkpoint data draining 
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Removed 
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Deduplication aux-app 

36 

Application 

Fuse:/ 

M

Application 

Fuse:/ 

M

Application 

Fuse:/ 

M

Manager 

MetaInfo 

M

… 

… 

Parallel File system 

Compute Nodes/Benefactors 

Checkpointing  
Deduplication core 

Aggregate SSD Store 

Launch 
Application 

Draining core 



OAK RIDGE NATIONAL LABORATORY 
U. S. DEPARTMENT OF ENERGY NC State University 

Efficiency of de-duplication aux-app 
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Using a core to support a deduplciation aux-app improves I/O throughput  
and in turn improve end-to-end application performance 


