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Extreme-Scale High-Performance Computing
Systems for Computational Science

top500.0rg processor count:

About three years ago the

entire 500 list broke the million
processor mark

Now the top 7 add up to overa
million

! World's Most Poweriul Computer —

Oak Ridge Natlonal Laboratory

=1

.

“Worid's Mosat Powerful Academic Computer™ University of Tennessee #3

haraged by UT-EBattelle
for the Departmert of Buergy




#1: Jaguar at Oak Ridge National Laboratory

Processor =6 Cores
2 memory modules

Node = 2 Processors
6 cores per processor

Blade = 4 Nodes
8 processors

48 cores

4 interconnect chips
16 (4 GB) memory modules =64 GB
6 voltage converters

1 interconnect chip
4 x (4 GB) memory modules =16 GB

Cabinet = 24 Blades
1152 cores

96 interconnect chips
384 memory modules (1.5 TB)

144 voltage converters

+ power supply, liquid cooling, etc.
Power 480V, ~40,000 Watt per cabinet

Managed by UT-Battelle
for the Department of Energy

Nationul Laboratory



Motivation

* Large-scale PFlop/s systems have arrived
- #1 ORNL Jaguar XT5: 1.759 PFlop/s LINPACK, 224,162 cores
— #2 LANL Roadrunner: 1.042 PFlop/s LINPACK, 122,400 cores

Other large-scale systems exist
- #3 NICS Kraken XT5: 0.831 PFlop/s LINPACK, 98,928 cores
- #4 Juelich JUGENE: 0.825 PFlop/s LINPACK, 294,912 cores

* The trend is toward larger-scale systems
— Exascale (1,000 PFlop/s) system with 100M-1B cores by 2018

Significant increase in component count and complexity
* Expected matching increase in failure frequency

* Checkpoint/restart is becoming less and less efficient
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The Road to Exa-Scale: Challenges Ahead

System peak
Power

System memory
Node performance
Node memory BW
Node concurrency

Total Node Interconnect BW

System size (nodes)

Total concurrency
Storage
10

MTTI

Difference
Today & 2018
2 Pflop/s 1 Eflop/s 0(1000
6 MW ~20 MW
0.3 PB @ [ .03 Bytes/Flop ] 0(100)

125 GF 1,2 or 15TF 0(10) - 0(100)

25 GB/s 2 - 4TB/s [ .002 Bytes/Flop ] 0(100)
12 O(1k) or 10k 0(100) - O(1000)
3.5GB/s 200-400GB/s 0(100)
(1:4 or 1:8 from memory BW)

18,700 0(100,000) or O(1M) 0(10) - 0(100)

225,000 (billion) [0(10) to O(100) for 0(10,00
_“_y hidingL
15 PB 500-1000 PB (>10x system 0(10) - 0(100)
memory is min)
0.27TB 60 TB/s (how long to drain the 0(100)
machine)

days <0(1 day) - 0(10)
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Parallel File System Checkpoint/Restart
Efficiency Study (2006 @ LANL)

J. T. Daly. ADTSC Nuclear Weapons Highlights: Facilitating High-Throughput ASC Calculations.
Technical Report LALP-07-041, Los Alamos National Laboratory, June 2007.
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Parallel File System Checkpoint/Restart
Efficiency Model

J. T. Daly. Methodology and metrics for quantifying application throughput. In Proceedings of the Nuclear
Explosives Code Developers Conference (NECDC) 2006, Los Alamos, NM, USA, Oct. 23-27, 2006.
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Reactive vs. Proactive Fault Tolerance

e Reactive fault tolerance

— Keeps parallel applications alive through recovery from
experienced failures

- Employed mechanisms react to failures
- Examples: Checkpoint/restart, message logging/replay

* Proactive fault tolerance

- Keeps parallel applications alive by avoiding failures through
preventative measures

- Employed mechanisms anticipate failures
- Example: Preemptive migration
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Proactive Fault Tolerance using Preemptive
Migration

* Relies on a feedback-loop control mechanism
— Application health is constantly monitored and analyzed
— Application is reallocated to improve its health and avoid failures
— Closed-loop control similar to dynamic load balancing

* Real-time control problem
- Need to act in time to avoid imminent failures

* No 100% coverage
— Not all failures can be anticipated, such as random bit flips

Application Resource Manager/ Application -
Reallocation Runtime Environment Allocation
Application

Monitor/Filter/Analysis

Health
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Type 1 Feedback-Loop Control Architecture

* Alert-driven coverage
— Basic failures

* No evaluation of application
health history or context

— Prone to false positives
- Prone to false negatives

— Prone to miss real-time
window

— Prone to decrease application
heath through migration

— No correlation of health
context or history
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Type 2 Feedback-Loop Control Architecture

* Trend-driven coverage
— Basic failures
- Less false positives/negatives

 No evaluation of application S
reliability 5ls 3¢
- Prone to miss real-time 2 v T
Window Evict Resource | Migrate R!mtime A,;;:)cation >
) ] Node(s) Manager |Process Environment
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9th IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN), Innsbruck, Austria, Feb. 16-18, 2010 1"



Type 3 Feedback-Loop Control Architecture

* Reliability-driven coverage
- Basic and correlated failures
- Less false positives/negatives

— Able to maintain real-time
window

— Does not decrease application
heath through migration

— Correlation of short-term
health context and history

* No correlation of long-term
health context or history

- Unable to match system and
application reliability patterns
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Type 4 Feedback-Loop Control Architecture

* Reliability-driven coverage of
failures and anomalies

— Basic and correlated failures,
anomaly detection

— Less prone to false positives
- Less prone to false negatives

— Able to maintain real-time
window

— Does not decrease application
heath through migration

— Correlation of short and long-
term health context & history
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Existing Work

* Environmental monitoring * Proactive FT Frameworks
— OpenlPMI, Ganglia, OVIS 2 - Type 1 based on Xen & Ganglia
- HPC vendor RAS systems - Type 1 based on BLCR & Ganglia
] _ - Type 1 to investigate interfaces,
* Event logging and analysis coordination and protocols

— USENIX Computer Failure
Data Repository

- System log analysis efforts

* Fault tolerance policies

- Simulation framework to evaluate
trade-off for combining migration
with checkpoint/restart

Job and resource monitoring
- Torque, Moab, SGE, ...

Migration mechanisms
- Process-level using BLCR
— VM-level using Xen
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Holistic Fault Tolerance Framework

Individual
Compute Nodes

Application, Run Time Environment, OS and/or Micro OS

Customization
and Guidance

Virtualization Scope:

Detection

Status Probes

Local Policy-
Based Analysis

Recovery and

Prevention

Fault Tolerance

Mechanisms

=

Communication_‘

SystemJ

Policy Configuration,
Decision Guidance

Fault, Error and
Trend Notification

Fault Tolerance
Mechanism Invocation

Multiple, Fully
Redundant
Service Nodes

=~

~ =

Coordinated Global Policy-Based
Analysis and Decision Making

=)

Users, Administrator,
System Services

Event
Distribution

=

~_

Local Policy-Based Analysis

Remote Node Status Probes

Highly Available RAS Engine
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Holistic Fault Tolerance Framework:
Reactive Fault Tolerance

Individual
Compute Nodes

Application, Run Time Environment and OS

Virtualization Scope:

Customization Detection
and Guidance
MPI Monitor*
— Local Policy-
gpplicationigy T Based Analysis

Recovery and

Prevention
* Monitors the MPI Run Time

Environment, such as LAM-MPI

Process-Level
C/R*

" Checkpoint and Restart of
Virtualized Processes
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Holistic Fault Tolerance Framework:
Proactive Fault Tolerance

Individual
Compute Nodes

Virtualization Scope:

Application, Run Time Environment and Micro OS

Customization
and Guidance

Application

Detection Recovery and
Prevention
IPMI Monitor
Local Policy- VM-Level
Based Analysis Migration*®
=~
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SystemJ

Policy Configuration,
Decision Guidance
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Highly Available RAS Engine

System Services
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Framework Implementation

* Focus on proactive FT approach

* Central MySQL database for data
logging and analysis

* Environmental monitoring
— OpenlIPMI and Ganglia

* Event logging and analysis

- Syslog (node-local logging and
forwarding to central server)

* Job and resource monitoring
— Torque (epilogue/prologue)

* Migration mechanisms
— Process-level using BLCR

Data
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Results

* Deployed on XTORC @ ORNL

— 64-node Intel-based Linux cluster

« MySQL, Gangila, Torque, Syslog,
LAM-MPI+BLCR with migration

* Experiment #1:
- Fully deployed on 64 nodes
— 30 second data collection interval

— Collection of 20 metrics resulted in
over 20GB of data in 27 days
(~33MB/hour or ~275kbl/interval)

— Basic temperature threshold triggers

for migration resulted in migration
when covering up air intake holes

* Experiment #2:

- Fully deployed on 32 nodes

— Collection of 40 metrics

— 30 second data collection interval

— No measurable impact on NAS
benchmarks (see Figure below)

Class C NPB on 32 nodes CG | BT | LU
Average time in seconds 264235261
Average time under load in seconds | 264 | 236|260

Table 2. NPB test results (averages over 10 runs)
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Conclusions

* Developed a proactive FT framework that performs
- Environmental monitoring
- Event logging
— Parallel job monitoring
— Resource monitoring
— Online and offline HPC system reliability analysis

* |t permits fault avoidance through process migration

* Deployed on a 64-node system to gain hands-on
experience and to investigate the challenges ahead
— The biggest challenge is the amount of stored data

— Optimal pre-processing, scalable data aggregation and
combined (all sources, in-flight) data analysis is needed
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