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Problem Statement
! Trend in HPC: high end systems with thousands of processors

� Increased probability of a node failure: MTBF becomes shorter
� CPU/memory/IO failures System # CPUs MTBF/I, see [20]

ASCI Q 8192 6.5hrs
ASCI WHITE 8192 5/40 hrs
PSC Lemieux 3016 9.7hrs

Google 15000 20 reboots/day! MPI widely used for scientific apps
� Problem with MPI: no recovery from faults in the standard

! Currently FT exist but�
� mostly reactive: process checkpoint/restart [3 DOE labs use this approach]
� must restart entire job " inefficient if only one/few node(s) fail
� overhead: re-execute some of prior work
� issues: checkpoint at what frequency?
� 100 hr job requires add�l 150 hrs for checkpointing

on a petaflop machine (w/o failure) [Philp, 2005]
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Our Solution

! Proactive FT
� anticipates node failure
� takes preventive action (instead of �reacting� to a failure)

�migrate entire OS (to a healthy node)
�transparent to app (and to OS)

# avoids high overhead compared to reactive scheme
�overhead of our scheme: much smaller

# Complements reactive FT " less frequent checkpoints!
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Design space

! 1. Mechanism to predict/anticipate node failures
� OpenIPMI
� lm_sensors (specific to x86 Linux)

! 2. Mechanism to identify best target node
� Centralized approaches " don�t scale / unreliable
� Scalable distributed approach " based on Ganglia

! 3. Mechanism for preventive action: relocation of running app
� Preserve apps state
� Small overhead on app
� Xen Virtualization w/ live migration [Clark et al., NSDI�05]

� Open source
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Mechanisms (1): Health Monitoring

Health Monitoring w/ OpenIPMI:
! Baseboard Mgmt Controller (BMC)

� w/ sensors to monitor temperature, fan speed, voltage, etc.
! IPMI (Intelligent Platform Management Interface)

� increasingly common in HPC
� std. message-based interface to monitor H/W
� raw messaging harder to use and debug

! OpenIPMI: open source, higher level abstraction from raw IPMI 
message-response system to communicate w/ BMC

� read sensors portably/simple API
# OpenIPMI used to gather health information of nodes 
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Mechanisms (2): Distributed Monitoring

Distributed Monitoring with Ganglia:
! widely used, scalable distributed load monitoring tool 
! All nodes in cluster run ganglia daemon

� each node has a approximate view of entire cluster 
! UDP to transfer messages
! Measures 

� CPU / memory / network utilization (by default)
# identify least loaded node " migration target

! Ganglia protocol also extended to distribute IPMI sensor data



7

H/w

Mechanisms (3): Virtualization

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
Task

Fault Tolerance w/ Xen:
! para-virtualized environment 

� OS modified
� app unchanged

! Privileged VM & guest VM
run on Xen hypervisor/VMM

! Guest VMs can live migrate to other hosts " little overhead
� State of VM preserved
� VM halted for insignificant period of time
� Migration phases: 

� phase 1: send guest image " dst node, app running
� phase 2: repeated diffs " dst node, app still running
� phase 3: commit final diffs " dst node, OS/app frozen
� phase 4: activate guest on dst, app running again
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Overall set-up

! Stand-by Xen host, no guest
(spare node)
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! Deteriorating health "
migrate guest (w/ MPI app) 
to spare node

H/w BMC H/w BMC

H/w BMC H/w BMC

BMC Baseboard Management Contoller
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Overall set-up

! Stand-by Xen host, no guest
(spare node)

! Deteriorating health "
migrate guest (w/ MPI app) 
to spare node

! Destination host generates 
unsolicited ARP reply

� indicates Guest VM IP 
has moved to new location

� ARP tells peers to resend 
packets to new host

BMC Baseboard Management Contoller
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PFTd: Proactive Fault-Tolerance Daemon

! Runs on privileged VM (host)
! Initialize

! Read safe threshold from config file
! <Sensor name> <Low Thr> <Hi Thr>
! CPU temperature, fan speeds
! extensible (corrupt sectors, 

network, voltage fluctuations, �)
! Init connection w/ IPMI BMC using 

authentication parameters & hostname

! Obtains set of available sensors in 
system, validates it against out list

InitializeInitialize
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PFTd: Proactive Fault-Tolerance Daemon

! Health Monitoring
! interacts w/ IPMI BMC (via OpenIPMI) to read sensors 
! Periodic sampling of data 
! threshold exceeded " control handed over to load balancing

! PFTd determines migration target by contacting Ganglia
� Load-based selection (lowest load)
� Load obtained by /proc file system
� Invokes Xen live migration for guest VM

! Xen user-land tools (at VM/host)
� command line interface for live migration
� PFTd initiates migration for guest VM
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Experimental Framework

! Cluster of 16 nodes (dual core, dual Opteron 265, 1 Gbps Ether)
! Xen-3.0.2-3 VMM
! Privileged and guest VM run Linux kernel version 2.6.16
! Guest VM:

� Same configuration as privileged VM
� 1GB RAM
� Booted on VMM w/ PXE netboot via NFS
� Has access to NFS (same as privileged VM)

! Ganglia on Privileged VM (and also Guest VM) on all nodes
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Experimental Framework

! NAS Parallel Benchmarks run on Guest VMs
! MPICH-2 w/ MPD ring on n GuestVMs (no job-pause required!)
! Experiment-aid process on privileged&guest domain:

� monitors MPI task runs (on guest)
� issues migration command (NFS used for synchronization)

! Measured:
� wall clock time with and w/o migration
� actual downtime + migration overhead (modified Xen migration)

� with (a) live and (b) stop&copy migration 
! benchmarks run 10 times, results report avg. (" small std dev.)
! NPB V3.2.1: BT, CG, EP, LU and SP benchmarks

� IS run is too short
� FT, MG requires > 1GB for class C (guest VM RAM limit)
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Results: Node Failures

1. Single node failure
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2. Double node failure

NPB Class B / 4 nodesNPB Class C / 16 nodes

! Single node failure: 0.5-5% add�l cost over total wall clock time
! Double node failure: 2-8% add�l cost over total wall clock time
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Results: Problem Scaling

! Only overhead depicted

! Downtime: VM halted

! Overhead: migration delay
(diff operation, etc.)

! Increasing problem size (B " C): 
overhead increases (expected)

! SP outlier: migration may have 
coincided w/ global sync. point
" network contention (fixable)
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Results: Task Scaling

NPB Class C

! expect decreased 
overhead for increasing # 
of nodes
# see BT, EP, LU, SP

! CG: add�l msg overhead & 
smaller data sets/node
# atypical

! Overall, indicates 
potential of our approach
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Results: Total Migration Duration

! Live vs. Stop&Copy
! min. 13secs: Xfer 1GB VM

(w/o any active processes)
! Vary problem size: class B & C

# Live: 14-24 secs (class B & C)
# Stop&Copy: 13-14 secs

! Vary # nodes: 4, 8/9, 16
# Live: Duration decreases / 

remains const. for > # nodes: 
40�14 secs

# Stop&copy: 13-14 secs

NPB 16 nodes

0

5

10

15

20

25

30

35

40

45

BT
(Live)

BT  
(SC)

CG
(Live)

CG  
(SC)

EP
(Live)

EP  
(SC)

LU
(Live)

LU  
(SC)

SP
(Live)

SP  
(SC)

Se
co

nd
s

4 Nodes 8/9 Nodes 16 Nodes

0

5

10

15

20

25

30

BT CG EP LU SP

Se
co

nd
s

Class B Inputs (Live) Class B Inputs (Stop&Copy)
Class C Inputs (Live) Class C Inputs (Stop&Copy)



18

Results: Overall Execution Time

NPB 16 nodes

! Live migrations: takes longer
but application is not stopped!

! Stop&copy: faster but app. 
stopped

! compare runtime for both 
modes

! Overall: T(Live) < T(Stop&copy)

! Migration duration  important metric: should be minimized
! How much advance warning? health degrades " actual failure

# little to no prior work in this area
! Our solution could benefit from learning techniques

!identifying false warnings, feedback-based learning
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Results: Task Scaling vs. Total Exec. Time 

NPB Class C

! Speedup of benchmarks not 
affected (up to 16 nodes)

! Wanted: large-scale cluster 
to run customized Xen
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Related Work
! FT � Reactive approaches more common

! Automatic
! Checkpoint/restart (e.g., BLCR)
[Sankaran et al., LACSI �03], [G.Stellner, IPPS � 96]
! Log based (Log msg + temporal ordering) [G. Bosilica, SC�02]

! Non-automatic
! Explicit invocation of checkpoint routines
[Aulwes et al., IPDPS�04], [Fagg/Dongarra,Ero PVM/MPI�00]

! Virtualization in HPC: little/no overhead  [Huang et al., ICS �06]
! VMM-bypass for I/O " MPI w/ virtualization competitive

[Liu et al.,  USENIX�06]
! Optimize network virtualization [Menon et al., USENIX�06]
! Job pause under LAM/MPI+BLCR [C.Wang, IPDPS �06, our Group]
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Conclusion

! Novel, proactive FT scheme w/ virtualization
! Provides transparent & automatic FT for arbitrary MPI apps 
! Less overhead than reactive
! still, complements reactive " lower checkpoint frequency

! Need studies on potential to detect health deterioration
! Currently pursuing further opportunities to reduce overhead�
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Backup Slides

! How much time before failure?
! The upper threshold is the memory limit (1GB for a vm). So a 1 

minute warning suffices, which is possible in case of disk and 
fan failures..


