
Arun Babu Nagarajan, Frank Mueller

Christian Engelmann, Stephen L. Scott

Oak Ridge National Laboratory

Proactive Fault Tolerance for HPC
using Xen Virtualization

2

Problem Statement
! Trend in HPC: high end systems with thousands of processors

� Increased probability of a node failure: MTBF becomes shorter
� CPU/memory/IO failures System # CPUs MTBF/I, see [20]

ASCI Q 8192 6.5hrs
ASCI WHITE 8192 5/40 hrs
PSC Lemieux 3016 9.7hrs

Google 15000 20 reboots/day! MPI widely used for scientific apps
� Problem with MPI: no recovery from faults in the standard

! Currently FT exist but�
� mostly reactive: process checkpoint/restart [3 DOE labs use this approach]
� must restart entire job " inefficient if only one/few node(s) fail
� overhead: re-execute some of prior work
� issues: checkpoint at what frequency?
� 100 hr job requires add�l 150 hrs for checkpointing

on a petaflop machine (w/o failure) [Philp, 2005]

3

Our Solution

! Proactive FT
� anticipates node failure
� takes preventive action (instead of �reacting� to a failure)

�migrate entire OS (to a healthy node)
�transparent to app (and to OS)

avoids high overhead compared to reactive scheme
�overhead of our scheme: much smaller

Complements reactive FT " less frequent checkpoints!

H/w

OSOS

Appli
-cation
Appli
-cation

H/w

Migrate

Failing Node Spare/Healthy Node

4

Design space

! 1. Mechanism to predict/anticipate node failures
� OpenIPMI
� lm_sensors (specific to x86 Linux)

! 2. Mechanism to identify best target node
� Centralized approaches " don�t scale / unreliable
� Scalable distributed approach " based on Ganglia

! 3. Mechanism for preventive action: relocation of running app
� Preserve apps state
� Small overhead on app
� Xen Virtualization w/ live migration [Clark et al., NSDI�05]

� Open source

5

Mechanisms (1): Health Monitoring

Health Monitoring w/ OpenIPMI:
! Baseboard Mgmt Controller (BMC)

� w/ sensors to monitor temperature, fan speed, voltage, etc.
! IPMI (Intelligent Platform Management Interface)

� increasingly common in HPC
� std. message-based interface to monitor H/W
� raw messaging harder to use and debug

! OpenIPMI: open source, higher level abstraction from raw IPMI
message-response system to communicate w/ BMC

� read sensors portably/simple API
OpenIPMI used to gather health information of nodes

6

Mechanisms (2): Distributed Monitoring

Distributed Monitoring with Ganglia:
! widely used, scalable distributed load monitoring tool
! All nodes in cluster run ganglia daemon

� each node has a approximate view of entire cluster
! UDP to transfer messages
! Measures

� CPU / memory / network utilization (by default)
identify least loaded node " migration target

! Ganglia protocol also extended to distribute IPMI sensor data

7

H/w

Mechanisms (3): Virtualization

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
Task

Fault Tolerance w/ Xen:
! para-virtualized environment

� OS modified
� app unchanged

! Privileged VM & guest VM
run on Xen hypervisor/VMM

! Guest VMs can live migrate to other hosts " little overhead
� State of VM preserved
� VM halted for insignificant period of time
� Migration phases:

� phase 1: send guest image " dst node, app running
� phase 2: repeated diffs " dst node, app still running
� phase 3: commit final diffs " dst node, OS/app frozen
� phase 4: activate guest on dst, app running again

8

Overall set-up

! Stand-by Xen host, no guest
(spare node)

Xen VMMXen VMM

GangliaGanglia

Privileged VMPrivileged VM

Xen VMMXen VMM

Privileged VMPrivileged VM

GangliaGanglia

PFT
Daemon

PFT
Daemon

Guest VMGuest VM

MPI
Task
MPI
Task

PFT
Daemon

PFT
Daemon

Migrate

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
TaskGangliaGanglia

PFT
Daemon

PFT
Daemon

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
TaskGangliaGanglia

PFT
Daemon

PFT
Daemon

! Deteriorating health "
migrate guest (w/ MPI app)
to spare node

H/w BMC H/w BMC

H/w BMC H/w BMC

BMC Baseboard Management Contoller

9

Overall set-up

! Stand-by Xen host, no guest
(spare node)

! Deteriorating health "
migrate guest (w/ MPI app)
to spare node

! Destination host generates
unsolicited ARP reply

� indicates Guest VM IP
has moved to new location

� ARP tells peers to resend
packets to new host

BMC Baseboard Management Contoller

Xen VMMXen VMM

GangliaGanglia

Privileged VMPrivileged VM

Xen VMMXen VMM

Privileged VMPrivileged VM

GangliaGanglia

PFT
Daemon

PFT
Daemon

Guest VMGuest VM

MPI
Task
MPI
Task

PFT
Daemon

PFT
Daemon

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
TaskGangliaGanglia

PFT
Daemon

PFT
Daemon

Xen VMMXen VMM

Privileged VMPrivileged VM Guest VMGuest VM

MPI
Task
MPI
TaskGangliaGanglia

PFT
Daemon

PFT
Daemon

H/w BMC H/w BMC

H/w BMC H/w BMC

10

PFTd: Proactive Fault-Tolerance Daemon

! Runs on privileged VM (host)
! Initialize

! Read safe threshold from config file
! <Sensor name> <Low Thr> <Hi Thr>
! CPU temperature, fan speeds
! extensible (corrupt sectors,

network, voltage fluctuations, �)
! Init connection w/ IPMI BMC using

authentication parameters & hostname

! Obtains set of available sensors in
system, validates it against out list

InitializeInitialize

Health MonitorHealth Monitor

IPMI
Baseboard Mgmt

Controller

IPMI
Baseboard Mgmt

Controller

Threshold
Breach?

Threshold
Breach?

Load BalanceLoad BalanceGangliaGanglia

N

Y

PFT Daemon

Raise Alarm /
Maintenance of

the system

11

PFTd: Proactive Fault-Tolerance Daemon

! Health Monitoring
! interacts w/ IPMI BMC (via OpenIPMI) to read sensors
! Periodic sampling of data
! threshold exceeded " control handed over to load balancing

! PFTd determines migration target by contacting Ganglia
� Load-based selection (lowest load)
� Load obtained by /proc file system
� Invokes Xen live migration for guest VM

! Xen user-land tools (at VM/host)
� command line interface for live migration
� PFTd initiates migration for guest VM

InitializeInitialize

Health MonitorHealth Monitor

IPMI
Baseboard Mgmt

Controller

IPMI
Baseboard Mgmt

Controller

Threshold
Breach?

Threshold
Breach?

Load BalanceLoad BalanceGangliaGanglia

N

Y

Raise Alarm /
Maintenance of

the system

12

Experimental Framework

! Cluster of 16 nodes (dual core, dual Opteron 265, 1 Gbps Ether)
! Xen-3.0.2-3 VMM
! Privileged and guest VM run Linux kernel version 2.6.16
! Guest VM:

� Same configuration as privileged VM
� 1GB RAM
� Booted on VMM w/ PXE netboot via NFS
� Has access to NFS (same as privileged VM)

! Ganglia on Privileged VM (and also Guest VM) on all nodes

13

Experimental Framework

! NAS Parallel Benchmarks run on Guest VMs
! MPICH-2 w/ MPD ring on n GuestVMs (no job-pause required!)
! Experiment-aid process on privileged&guest domain:

� monitors MPI task runs (on guest)
� issues migration command (NFS used for synchronization)

! Measured:
� wall clock time with and w/o migration
� actual downtime + migration overhead (modified Xen migration)

� with (a) live and (b) stop© migration
! benchmarks run 10 times, results report avg. (" small std dev.)
! NPB V3.2.1: BT, CG, EP, LU and SP benchmarks

� IS run is too short
� FT, MG requires > 1GB for class C (guest VM RAM limit)

14

Results: Node Failures

1. Single node failure

0

50

100

150

200

250

300

BT CG EP LU SP

Se
co

nd
s

W /o Migration
1 Migration
2 Migration

2. Double node failure

NPB Class B / 4 nodesNPB Class C / 16 nodes

! Single node failure: 0.5-5% add�l cost over total wall clock time
! Double node failure: 2-8% add�l cost over total wall clock time

0

50

100

150

200

250

300

350

400

450

500

BT CG EP LU SP

Se
co

nd
s

W /o Migration 1 Migration

15

Results: Problem Scaling

! Only overhead depicted

! Downtime: VM halted

! Overhead: migration delay
(diff operation, etc.)

! Increasing problem size (B " C):
overhead increases (expected)

! SP outlier: migration may have
coincided w/ global sync. point
" network contention (fixable)

NPB 16 nodes

0

2

4

6

8

10

12

14

16

BT CG EP LU SP

Se
co

nd
s

B C B C B C B C B C
Class

Actual Downtime
Overhead

16

Results: Task Scaling

NPB Class C

! expect decreased
overhead for increasing #
of nodes
see BT, EP, LU, SP

! CG: add�l msg overhead &
smaller data sets/node
atypical

! Overall, indicates
potential of our approach

0

5

10

15

20

25

30

BT CG EP LU SP

Se
co

nd
s

4 8 16 4 9 16 4 9 16 4 9 16 4 8 16

No. of Nodes

Actual Downtime
Overhead

17

Results: Total Migration Duration

! Live vs. Stop&Copy
! min. 13secs: Xfer 1GB VM

(w/o any active processes)
! Vary problem size: class B & C

Live: 14-24 secs (class B & C)
Stop&Copy: 13-14 secs

! Vary # nodes: 4, 8/9, 16
Live: Duration decreases /

remains const. for > # nodes:
40�14 secs

Stop©: 13-14 secs

NPB 16 nodes

0

5

10

15

20

25

30

35

40

45

BT
(Live)

BT
(SC)

CG
(Live)

CG
(SC)

EP
(Live)

EP
(SC)

LU
(Live)

LU
(SC)

SP
(Live)

SP
(SC)

Se
co

nd
s

4 Nodes 8/9 Nodes 16 Nodes

0

5

10

15

20

25

30

BT CG EP LU SP

Se
co

nd
s

Class B Inputs (Live) Class B Inputs (Stop&Copy)
Class C Inputs (Live) Class C Inputs (Stop&Copy)

18

Results: Overall Execution Time

NPB 16 nodes

! Live migrations: takes longer
but application is not stopped!

! Stop©: faster but app.
stopped

! compare runtime for both
modes

! Overall: T(Live) < T(Stop©)

! Migration duration important metric: should be minimized
! How much advance warning? health degrades " actual failure

little to no prior work in this area
! Our solution could benefit from learning techniques

!identifying false warnings, feedback-based learning

0

100

200

300

400

500

BT CG EP LU SP

Se
co

nd
s

Class B Inputs (Live) Class B Inputs (Stop&Copy)
Class C Inputs (Live) Class C Inputs (Stop&Copy)

19

Results: Task Scaling vs. Total Exec. Time

NPB Class C

! Speedup of benchmarks not
affected (up to 16 nodes)

! Wanted: large-scale cluster
to run customized Xen

0.5

1

1.5

2

2.5

3

3.5

4

BT CG EP LU SP

Sp
ee

du
p

4 8 16 4 9 16 4 9 16 4 9 16 4 8 16

Loss in speedup

No. of Nodes

20

Related Work
! FT � Reactive approaches more common

! Automatic
! Checkpoint/restart (e.g., BLCR)
[Sankaran et al., LACSI �03], [G.Stellner, IPPS � 96]
! Log based (Log msg + temporal ordering) [G. Bosilica, SC�02]

! Non-automatic
! Explicit invocation of checkpoint routines
[Aulwes et al., IPDPS�04], [Fagg/Dongarra,Ero PVM/MPI�00]

! Virtualization in HPC: little/no overhead [Huang et al., ICS �06]
! VMM-bypass for I/O " MPI w/ virtualization competitive

[Liu et al., USENIX�06]
! Optimize network virtualization [Menon et al., USENIX�06]
! Job pause under LAM/MPI+BLCR [C.Wang, IPDPS �06, our Group]

21

Conclusion

! Novel, proactive FT scheme w/ virtualization
! Provides transparent & automatic FT for arbitrary MPI apps
! Less overhead than reactive
! still, complements reactive " lower checkpoint frequency

! Need studies on potential to detect health deterioration
! Currently pursuing further opportunities to reduce overhead�

22

Backup Slides

! How much time before failure?
! The upper threshold is the memory limit (1GB for a vm). So a 1

minute warning suffices, which is possible in case of disk and
fan failures..

