
A Case for Virtual Machine Based Fault Injection
in a High-Performance Computing Environment�

Thomas Naughton, Geoffroy Vallée, Christian Engelmann, and Stephen L. Scott

Oak Ridge National Laboratory,
Computer Science and Mathematics Division,

Oak Ridge, TN 37831, USA

Abstract. Large-scale computing platforms provide tremendous capabilities for
scientific discovery. As applications and system software scale up to multi-
petaflops and beyond to exascale platforms, the occurrence of failure will be
much more common. This has given rise to a push in fault-tolerance and resilience
research for high-performance computing (HPC) systems. This includes work on
log analysis to identify types of failures, enhancements to the Message Passing
Interface (MPI) to incorporate fault awareness, and a variety of fault tolerance
mechanisms that span redundant computation, algorithm based fault tolerance,
and advanced checkpoint/restart techniques.

While there is much work to be done on the FT/Resilience mechanisms for
such large-scale systems, there is also a profound gap in the tools for experimen-
tation. This gap is compounded by the fact that HPC environments have strin-
gent performance requirements and are often highly customized. The tool chain
for these systems are often tailored for the platform and the operating environ-
ments typically contain many site/machine specific enhancements. Therefore, it
is desirable to maintain a consistent execution environment to minimize end-user
(scientist) interruption.

The work on system-level virtualization for HPC system offers a unique op-
portunity to maintain a consistent execution environment via a virtual machine
(VM). Recent work on virtualization for HPC has shown that low-overhead, high
performance systems can be realized [7,15]. Virtualization also provides a clean
abstraction for building experimental tools for investigation into the effects of
failures in HPC and the related research on FT/Resilience mechanisms and poli-
cies. In this paper we discuss the motivation for tools to perform fault injection in
an HPC context. We also present the design of a new fault injection framework
that can leverage virtualization.

1 Introduction

Large-scale computing platforms provide tremendous capabilities for scientific discov-
ery. These systems have hundreds of thousands of compute cores, hundreds of terabytes
of memory, and enormous high-performance interconnection networks. As these plat-
forms increase in size to accommodate the performance demands of the computational

� ORNL’s work was supported by the U.S. Department of Energy, under Contract DE-AC05-
00OR22725.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 234–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Case for Virtual Machine Based Fault Injection in a HPC Environment 235

science community, their component counts and overall system complexity increase.
These massive node/component counts also yield increased occurrence of failure. As
such, fault tolerance/resilience (FT/R) are key factors for effective utilization of high-
performance computing (HPC) systems.

Going forward, failures will become something that developers and scientific users
of these HPC platforms will be forced to manage in their applications as they move
toward multi-petaflop and exascale systems. There is already active work on this topic,
to include log analysis for identification of failure types/modes, enhancements to the
Message Passing Interface (MPI) to incorporate fault awareness, and a variety of fault
tolerance mechanisms that span redundant computation, algorithm based fault toler-
ance, and advanced checkpoint/restart techniques.

However, there are few tools to aid in the evaluation and experimentation of HPC
failures. The methodical investigation of failure in these systems is hampered by their
scale, and a lack of tools for controlled experiments. The area of system-level virtu-
alization offers a promising basis to support such experimentation. Virtualization has
received much attention in recent years, which was primarily driven by commercial
efforts (e.g., server consolidation), such that vendors are including hardware support
for virtual machines. This trend and wide-scale industry adoption is likely to lead to
virtualization as a standard capability of modern hardware/operating systems.

As the importance of fault tolerance increases, methods for experimentation into
new mechanisms and policies is critical. The widespread availability of virtualization,
combined with its strong isolation and user-customizable/adaptable execution environ-
ments, makes it an interesting platform for fault-tolerance testbeds. The virtual machine
allows various operating systems, middleware, and applications to run unmodified in a
controlled environment, where dependability can be evaluated at a very generic level,
e.g., via virtual machine based fault injection.

Motivated by work in FT/R for HPC and current efforts in virtualization, we argue
that tools for FT/R experimentation are needed and that system-level virtualization pro-
vides an interesting basis to develop such tools. We highlight prior work into the use of
fault-injection for FT/R evaluation. We also discuss some of the unique requirements
that emerge when working in an HPC environment.

The remainder of the document is organized as follows: Section 2 presents existing
solutions for fault injection that are representative of the current state of the art, as well
as a classification of these different solutions; Section 3 motivates the work presented
in this document and Section 4 presents the specifics of the HPC context. Section 5
proposes a new framework architecture for fault injection in the context of HPC, and
Section 6 concludes.

2 Background

Fault injection is the purposeful introduction of faults (or errors) into a target [5]. It has
been used extensively for testing and experimentation of fault-tolerance mechanisms.
These injections may be via specialized hardware or through software implemented
fault injection (SWIFI). The software based approach offers more flexibility in terms
of how to implement and detect the faults, but are limited in scope to areas accessible



236 T. Naughton et al.

via software [5]. For example, radiation induced memory “soft errors” can be injected
via hardware/environmental approaches but can only be emulated through software by
techniques like bit-wise operations to force memory bit-flip(s).

The past work has included testing for distributed environments (NFTAPE) [12],
which involved some experiments with MPI applications. In their MPI tests, they made
minor modifications to the target application to accommodate the cluster based launch
mechanism. In more recent work, FAult Injection Language (FAIL), provides a user
the ability to express fault injection scenarios in a high-level language for distributed
systems [4]. The language includes a compiler and execution context for performing the
distributed fault-injection campaigns. The initial FAIL framework used the FCI (FAIL
Cluster Implementation) to perform remote startup. In later work [3], they extended the
tool to support dependability benchmarking of a fault-tolerant implementation of MPI.

Earlier studies have looked at the effects of faults on parallel applications running on
a 4 node Parsytec PowerXplorer Transputer based machine [11]. This work leveraged
hardware capabilities, e.g., performance counters and debug registers, to create low-
overhead fault injection mechanisms (Xception) [6]. This provided a method to inject
faults into any process, to include system software.

In systems that support dynamic loading of shared libraries, a common approach is to
use the LD_PRELOAD mechanism to interpose on library calls and introduce faults, e.g.,
library level fault injection (LFI) [9]. This is a generic approach that does not require
source code modifications of the target, and allows for runtime additions via the shared
library wrapper routines.

Virtual machines have been used to aid in application robustness testing. In “FastFI
with VMs” [13], they used virtual machines to aid in fault injection, specifically to re-
duce the complexity in capturing state associated with an application under test. They
inject faults within the VM (e.g., API robustness for system calls from application),
and export the post-fault analysis results and experimental state to the host before a VM
rollback. Their focus is on using this efficient shapshot/rollback to reduce the overall
runtime for extensive fault-injection campaigns. They mention the challenges with cap-
turing state for fast rollback when working without VMs (their prior work employed
fork()) and how some experiments would result in residual effects from the FI post-
rollback, which was avoided with the isolation/encapsulation of the VM. They mention
that distributed applications can be tested by using VM’s, and virtualizing the network
by running all on a single host. However, it appears they restrict their use of VM’s and
FI to a single physical machine, even in the case of testing distributed applications. Ad-
ditionally, their work was focused on software error handling using fault injection at the
API level.

The FAUmachine [10] project has produced a hardware simulation platform that
provides fine grained fault injection capabilities. They use VHDL to model the hard-
ware and leverage this detail to create more realistic SWIFI scenarios. They report that
running unmodified operating systems and applications on the virtual CPU of FAU-
machine, with its just-in-time compiler, results in a 5-20% reduction in performance
in comparison to native execution. Their system supports a variety of faults, to in-
clude [10]: CPU, IDE controller, network adapter, serial terminal, monitor, power, and
keyboard/mouse (input) errors.

LD_PRELOAD


A Case for Virtual Machine Based Fault Injection in a HPC Environment 237

A stated goal of the FAUmachine project is to maintain the fidelity of the hardware,
as opposed to other virtualization efforts which seek increased performance in spite
of true execution behavior. Restated, FAUmachine attempts to keep the hardware de-
tails consistent with real actions, whereas other virtual machine based system seek to
improve performance and may adjust execution to achieve this goal.

In [8] the advantages and challenges associated with using virtualization for SWIFI
are discussed. They cite the ability to isolate the system under test and avoid cumber-
some situations when injecting into system running directly on the physical machine
(e.g., self-crashes, log corruption). The challenge when working with VMs are to main-
tain sufficient fidelity with standard (bare machine) execution when performing injec-
tions, i.e., inject into proper context and avoid indirect virtualization related side effects.
They use their tool, Gigan, to perform fault injection from within the VM (guest kernel)
and from the VMM, for both para-virtualized and fully virtualized VMs. They tested
a non-virtualized instance (where guest would normally run on physical machine) and
virtualized case (to test resilience of VM and VMM platform itself).

Table 1. The projects discussed in this background section fall into three groups: (i) tools for dis-
tributed systems, (ii) mechanisms that leverage hardware/software features, and (iii) FI systems
that employ virtualization

Distributed Systems Leverage HW/SW Features Virtualization
FAIL-FCI/-MPI LFI FAUmachine
NFTAPE Xception FastFI-VM

Gigan

3 Motivation

Testing and experimentation are fundamental components of computer research and
development. As systems increase in size this process becomes increasing difficult due
to factors like distributed resources and concurrent execution. Additionally, it is be-
coming increasingly apparent that large-scale computing platforms must cope with an
increased occurrence of failures. While this aspect has been embraced in purely dis-
tributed environments, it has been less common in high-performance computing (HPC)
due to a more optimistic view on failures for these tightly coupled platforms. This leads
to a growing recognition that failures are an unavoidable reality in large-scale high-
performance computing (HPC) systems. Therefore, the system software that underpins
these HPC systems must evolve to provide better fault tolerance (FT). Additionally, the
applications themselves must also cope with failures and make effective use of any/all
available FT mechanisms. An apparent indication of this merger of FT and HPC is the
recent message passing interface (MPI) v3 working group on fault tolerance, MPI3-FT.
Another indication that current and future large-scale systems must find new methods
to cope with these interruptions is high-lighted in the recent DoE Exascale workshops
and associated proposal calls. The objective being to design and implement the next
generation software stack for future exascale computing platforms.



238 T. Naughton et al.

As fault-tolerance continues to push the research and development in HPC system
software, the tools and techniques to properly test proposed solutions becomes more
critical. Therefore, a systematic method for experimentation into fault-tolerance is nec-
essary to help in the development of future HPC systems. The focus of our work is to
provide such tools and create experimental environments for continued research and de-
velopment. To that end, we discuss requirements and challenges associated with build-
ings failure testbeds supported by system-level virtualization. The use of virtualization
provides two key benefits: (i) leverages modern hypervisor technology to reduce the
overhead of running a guest testing domain, and (ii) provides a consistent execution
environment for the target software stack, which is isolated from the native/physical
platform. This enables the fault-tolerance efforts to develop as needed, while maintain-
ing a consistent base testing/experimentation platform.

4 HPC Environments

There are several constraints associated with tools for HPC systems. In this section we
highlight some significant aspects involved in building tools for those environments,
with the purpose being to indicate properties that may affect fault injection tools for
HPC environments. Also, in Table 2 we provide a brief contrasting of the prior work
mentioned in Section 2 with the HPC oriented properties discussed in this section.

4.1 Batch Allocation Systems

These large systems are generally run using some form of job management system
where applications (jobs) are submitted to a batch scheduling system, e.g., PBS/Torque,
SLURM. In batch scheduled environments the job is allocated a dedicated set of re-
sources for a given period of time. However, access to those resources may be highly
restricted. For example, process startup may be limited to a remote invocation inter-
face with no direct (interactive) access granted to the compute resources. That is to say
the user may only be able to startup a task, but may not actually have a local shell to
each processing element (node). This requires the tool chain to support these remote
execution interfaces. This may also have ramifications on how the actual fault-injection
experiments are carried out or detection is performed on the remote processes.

4.2 Executable Linkage

The compute node execution environments on HPC systems may be highly specialized.
There may not be a local hard drive on the node, and there may be a minimalistic
runtime environment. This often constraints how the executable binary is compiled. In
many instances, there are no shared libraries on the compute nodes or dynamic shared
library loading support is disabled entirely. This may limit the applicability of existing
fault injection frameworks for practical use in an HPC environment. For example, the
compiled binaries may require static linkage for execution on the compute nodes. This
precludes the direct use of many fault-injection techniques that leverage shared libraries
to interpose on application execution, e.g., LD_PRELOAD.

LD_PRELOAD


A Case for Virtual Machine Based Fault Injection in a HPC Environment 239

4.3 Performance Sensitive

The tool chain must be as low-overhead as possible. This has noticeable effects on in-
frastructure that must scale to support large numbers of processes. The tools may be
forces to avoid centralized approaches due to added load on the network communi-
cation links, which could affect the performance of the application. In the context of
fault-injection, this may manifest as constraints on monitoring frequency and volume
of reporting information. Additionally, the concept of “performability” may be relevant,
where performance and availability are criteria in the evaluation of the given applica-
tion. Since fault-tolerance and performance often share many parallels, these aspects
are likely to be relevant in the fault-injection infrastructure driving FT/R experiments.

4.4 Exotic Hardware

The hardware for these systems may be rather “exotic”, and therefore require additional
insights for its use. This may be in the form of additional software interfaces or device
drivers. This is often the case in the interconnection network of HPC systems, which
may influence the communication API provided to the tools. The software infrastructure
may also have to accommodate idiosyncrasies in the hardware.

Note, the difference in HPC hardware may also influence the ways faults occur, i.e.,
“fault types”. This is very important when defining fault-injection experiments. The
mapping of applications to the system resources will also influence how the system
behaves in the presence of faults. For example, the HPC interconnection network has
greater bandwidth along one axis. Then failures in this direction could generate con-
gestion, which could result in clients failing in their writes to the parallel file system.
The point being that these errors were influenced by characteristics of the hardware and
expectations on system balance, which can lead to complex failure scenarios that are
unique to these platforms.

Table 2. Summary of HPC oriented properties supported by FI projects from Section 2
a The distributed MPI test cases with NFTAPE required modification to the source to cope with cluster launch

HPC Oriented Properties FA
IL

-F
CI

NFTAPE

LFI
Xce

ptio
n

FA
Um

ac
hin

e

Fas
tF

I-V
M

Giga
n

Target Source Modifications N Ya N N N N N
Distributed Environment Y Y N Y N N N
Full Execution Environment N N N Y Y Y Y
HPC System Interfaces Y N N N N N N
Require Dynamic Linkage N N Y N N N N



240 T. Naughton et al.

5 Design

Our approach is to leverage existing work in HPC system software to build a framework
for testing the effects of failure. By leveraging existing HPC infrastructure we can better
manage some of the issues outlined earlier in Section 4. The major components of the
system can be broken down into the following areas: (i) front-end and distributed con-
trol, (ii) experiment setup/management, (iii) monitoring and event logging, and (iv) fault
injection mechanisms. The user interacts with the framework via the front-end to drive
an experiment to test the effects of failure on a target application. The basic structure
of the system is shown in Figure 1. The remainder of this section describes the aspects
of these areas, to include what parts of the existing system software will be leveraged
and/or extended.

(a) Target is Application running in VM (b) Target is stand-alone Application 

Fig. 1. Basic structure for the tool

5.1 Front-End and Distributed Control

The interface provided to users of HPC systems is generally in the form of a launcher
that the user invokes, which in turn invokes platform interfaces for remote task startup
and control. This runtime environment (RTE) provides a basic communication and dis-
tributed control layer that applications may use to interact. The message passing inter-
face (MPI) programming model is a common example that will be familiar to most users
of HPC systems. The RTE provides MPI applications a way to bootstrap tasks and their
communication handles. This is the same kind of functionality that is needed to startup
and manage our fault injection experiments. Therefore, we leverage the RTE code base
of the Scalable Tools and Communication Infrastructure (STCI) project [1]. This is a
component-based RTE platform being developed at Oak Ridge National Laboratory.



A Case for Virtual Machine Based Fault Injection in a HPC Environment 241

In Figure 1 the STCI related parts are delimited by the blue boxes. This includes
a Frontend and Controller that provide the interface between the user and system re-
spectively. A customized agent is created called a “Target Manager”. This provides the
interface between the control runtime and the actual experiment “Target”. The Fron-
tend, Controller and Target Manager share a common communication space provided
by STCI. The Target Manager is responsible for the bootstrap and control of the “Tar-
get”, which will be discussed in more detail below.

5.2 Experiment Setup/Management

A fault injection experiment includes a configuration that defines what events (faults)
should be introduced and how the experiment should be carried out. The steps to carry
out this experiment are managed by the testing framework. The system under test (SUT),
or “Target”, is the entity upon which the experiment is focused. The Target is paired
with a Target Manager. This allows for a clean separation of the SUT from the infras-
tructure used to manage the experiment. In the context of our framework, the Target
could be an application binary or a virtual machine with the application running in-
side the VM. This has an effect on what injectors and faults may be employed for the
experiment, but these details should be hidden from the end-user as much as possible.

In the case where the Target involves virtualization, the Target Manager is respon-
sible for VM bootstrapping and management. This VM interface leverages prior work
for Virtual System Environments [14], specifically the LibV3M abstraction layer. This
library provides a VM management interface that the Target Manager uses to start, stop
and monitor the VM based experiment.

5.3 Monitoring and Event Logging

While experiments are taking place, the system should be monitored using existing tools
like Ganglia, syslog analyzers, etc. Additionally, a specific event notification channel
is established so faults may be published as they are injected and used to correlate
with actual failures detected throughout the system. The STCI runtime provides basic
monitoring and failure detectors that could be useful for experiment monitoring. The
publish/subscribe services in STCI and CiFTS Fault Tolerant Backplane (FTB) [2] are
also good candidates for implementing these event notification channels.

5.4 Fault Injection Mechanisms

The controlled injection of synthetic faults, i.e., fault-injection (FI), requires that the
system under test be sufficiently isolated. The strong isolation capabilities of virtual
machines provide a sound platform for this requirement. It is beneficial to keep as much,
if not all, of the FI infrastructure outside of the VM in order to maintain these isolation
properties. Therefore extending the VM interface to support FI capabilities allows for
access from the host operating system, and avoids complications when performing the
injections in the same execution environment as the FI infrastructure.



242 T. Naughton et al.

There are a number of approaches to implement fault injection mechanisms. Two
key characteristics of the mechanisms are: (a) how they are invoked, and (b) where the
fault should be introduced.

The invocation may be based on a timer or some other external trigger (i.e., user
input). It could also be based upon access to some resource, i.e., read from a given
memory address. This leads to the second facet, fault location. In the case of VM-based
injectors, the VMM/VM have full access to the resources and have full control to inter-
pose on their access. However, to make the experiments more meaningful, often details
about the application running in the VM must be exported to improve context for fault
placement. This is a significant part of the experiment procedure, and something that
will require careful consideration during experiment design. The current work in the
V3VEE project has added initial support to Palacios for generating exceptions (faults)
for specific memory locations at the VM-level, which are then serviced by the guest
operating system. The FI framework would provide a way to configure tests that could
leverage this to perform injections over a set of machines.

6 Conclusion

As HPC systems increase in size, concerns about failures and application resilience
also increase. There is a growing effort to explore techniques to provide improved fault-
tolerance/resilience (FT/R) for HPC platforms. This includes research and development
at both the system and applications levels of the software stack. However, there is a
significant gap in the set of tools available to assist in experimentation for FT/R mech-
anisms and policies. In this paper we have provided motivation for tools to address this
gap and comments as to why existing tools for fault-injection experiments may face
challenges for reuse in an HPC context. We also described an initial architecture for a
new fault injection framework, which is based on existing HPC system software and
tools, to help overcome this gap. We also argue that current work in system-level virtu-
alization provides a good basis for developing fault-injection tools for HPC due to its
strong isolation capabilities and complete access to resources used by the application
(via virtual machine abstraction).

References

1. Buntinas, D., Bosilica, G., Graham, R.L., Vallée, G., Watson, G.R.: A Scalable Tools Com-
munication Infrastructure. In: Proceedings of the 22nd International High Performance
Computing Symposium (HPCS 2008), June 9-11, session track: 6th Annual Symposium
on OSCAR and HPC Cluster Systems (OSCAR 2008). IEEE Computer Society (2008),
http://www.csm.ornl.gov/oscar08/

2. Gupta, R., Beckman, P., Park, B.H., Lusk, E., Hargrove, P., Geist, A., Lumsdaine, A.,
Dongarra, J.: Cifts: A coordinated infrastructure for fault-tolerant systems. In: International
Conference on Parallel Processing, ICPP (2009)

3. Hoarau, W., Lemarinier, P., Herault, T., Rodriguez, E., Tixeuil, S., Cappello, F.: Fail-mpi:
How fault-tolerant is fault-tolerant mpi? In: IEEE International Conference on Cluster
Computing, pp. 1–10 (September 2006)

http://www.csm.ornl.gov/oscar08/


A Case for Virtual Machine Based Fault Injection in a HPC Environment 243

4. Hoarau, W., Tixeuil, S., Vauchelles, F.: Fail-fci: Versatile fault injection. Future Generation
Computer Systems 23(7), 913–919 (2007), http://www.sciencedirect.com/
science/article/pii/S0167739X07000209

5. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer 30(4),
75–82 (1997)

6. Carreira, J., Madeira, H., Silva, J.G.: Xception: A Technique for the Experimental Evaluation
of Dependability in Modern Computers. IEEE Transactions on Software Engineering 24(2)
(February 1998), http://www.xception.org/files/IEEETSE98.pdf

7. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Ja-
conette, S., Levenhagen, M., Brightwell, R., Widener, P.: Palacios and Kitten:
High Performance Operating Systems For Scalable Virtualized and Native Super-
computing. Tech. Rep. NWU-EECS-09-14, Northwestern University, July 20 (2009),
http://v3vee.org/papers/NWU-EECS-09-14.pdf

8. Le, M., Gallagher, A., Tamir, Y.: Challenges and Opportunities with Fault Injection in Vir-
tualized Systems. In: First International Workshop on Virtualization Performance: Analysis,
Characterization, and Tools, Austin, Texas, USA (April 2008),
http://www.cs.ucla.edu/˜tamir/papers/vpact08.pdf

9. Marinescu, P.D., Candea, G.: LFI: A Practical and General Library-Level Fault In-
jector. In: Proceedings of the 39th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2009), June 29 - July 2. IEEE (2009),
http://dslab.epfl.ch/pubs/lfi/index.html

10. Potyra, S., Sieh, V., Cin, M.D.: Evaluating fault-tolerant system designs using FAUmachine.
In: Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems (EFTS 2007),
p. 9. ACM, New York (2007)

11. Silva, J.G., Carreira, J., Madeira, H., Costa, D., Moreira, F.: Experimental assessment of
parallel systems. In: Proceedings of the 26th Annual International Symposium on Fault-
Tolerant Computing (FTCS 1996), June 25-27, pp. 415–424 (1996)

12. Stott, D.T., Floering, B., Burke, D., Kalbarczyk, Z., Iyer, R.K.: NFTAPE: A framework for
assessing dependability in distributed systems with lightweight fault inectors. In: Proceed-
ings of the 4th IEEE International Computer Performance and Dependability Symposium
(IPDS), pp. 91–100. IEEE (March 2000)

13. Süßkraut, M., Creutz, S., Fetzer, C.: Fast fault injection with virtual machines (fast abstract).
In: Supplement of the 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN2007) (June 2007), http://wwwse.inf.tu-dresden.de/
papers/preprint-suesskraut2007DSNb.pdf

14. Vallée, G., Naughton, T., Scott, S.L.: System Management Software for Virtual Environ-
ments. In: Proceedings of the ACM International Conference on Computing Frontiers (CF
2007), Ischia, Italy, May 7-9 (2007)

15. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravirtual-
ized memory hierarchy on linear algebra computational kernels and software. In: Proceed-
ings of the 17th International Symposium on High Performance Distributed Computing
(HPDC 2008), pp. 141–152. ACM, New York (2008)

http://www.sciencedirect.com/science/article/pii/S0167739X07000209
http://www.sciencedirect.com/science/article/pii/S0167739X07000209
http://www.xception.org/files/IEEETSE98.pdf
http://v3vee.org/papers/NWU-EECS-09-14.pdf
http://www.cs.ucla.edu/~tamir/papers/vpact08.pdf
http://dslab.epfl.ch/pubs/lfi/index.html
http://wwwse.inf.tu-dresden.de/papers/preprint-suesskraut2007DSNb.pdf
http://wwwse.inf.tu-dresden.de/papers/preprint-suesskraut2007DSNb.pdf

	A Case for Virtual Machine Based Fault Injection 
in a High-Performance Computing Environment
	Introduction
	Background
	Motivation
	HPC Environments
	Batch Allocation Systems
	Executable Linkage
	Performance Sensitive
	Exotic Hardware

	Design
	Front-End and Distributed Control
	Experiment Setup/Management
	Monitoring and Event Logging
	Fault Injection Mechanisms

	Conclusion
	References





