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HPC machines are large systems 

“Jaguar” – Cray XT5 at ORNL 

Resource  Size 

Compute Nodes   18,688 

Compute Cores  224,256  

Total Memory  300TB 

Interconnect Peak 
Bandwidth 
(SeaStar2+) 

57.6GB/s 

Peak Performance  2.3 pflops/s 

* Image courtesy of the National Center for Computational Sciences, Oak Ridge National Laboratory. 



Scalability challenges 

•  Large-scale system raise many challenges 
–  Performance of applications & system software 
–  Complex resource usage/interaction patterns 
–  Growing failure rates due to huge component counts 

Screen capture from “Raven” log analysis tool 
Contact: Hoony Park (ORNL) 



Failures at Scale 

•  Failures in current petascale and future exascale 
–  Occurrence of failure is much more common 

•  “Failure rates vary widely across systems … and depend 
mostly on system size and less on the type of hardware.”  
 Schroeder & Gibson [DSN2006] 

•  “In some cases, the overall system mean time between failure 
(SMTBF) is under two hours.” 

•  Previous work similarly suggests a system mean time to failure 
(SMTTF) constraint of 5‐6 hours, or 4 failures per day, for 
current HEC systems [TaeratHAPCW2008].”  
 Whitepaper by DeBardeleben et al. [2009] 



HPC Fault-Tolerance/Resilience 

•  Scalability driving new research in FT/R 
–  Log analysis to identify types/modes of failure 
–  Fault & recovery coordination frameworks (e.g., CIFTS) 
–  Enhancements to MPI (e.g., MPI3-FT WG) 

•  New mechanisms for HPC applications 
–  Algorithm based FT (e.g., FTLA) 
–  Advanced checkpoint/restart techniques (e.g., stdchk) 
–  Modular redundant MPI (e.g., MrMPI, rMPI) 



Miles to go before we sleep… 

•  Applications to use available FT/R capabilities 
–  Still preliminary and much work to be done 

•  Infrastructure to provide FT/R capabilities 
–  Still lots of work to cope with failures at scale 

•  Tools for experimentation 
–  Need tools to support this development & testing 



Introduction 

•  Large-scale computing platforms 
–  Increased size & performance 
–  Increased complexity 

•  Usability: More work & effort to use system (scientist & admin) 
•  Resilience: More failures 

•  Dealing with complexity 
–  System-level virtualization – assist users & admins 
–  Fault-tolerance/Resilience – cope with failures 



Motivation for Tools 

•  Study failures in large-scale systems 
–  Identify faults (origins of failure) 
–  Controlled environments for experimentation (testbed) 

•  Explore ways to deal with failure 
–  Which technique? (mechanism) 
–  How to use mechanisms? (policy) 
–  What level of the software stack? (effectiveness) 



Fault Injection Tools 

•  Provide tools to support FT/R experimentation 
–  Monitoring & logging 
–  Distributed task control 
–  Fault injectors, etc. 

•  Provide environment for controlled tests 
–  Experiment config/setup 
–  Startup and execution 



General: Constraints on Tools 

•  Operate in HPC environments 
–  Low-overhead (high-performance) requirements 
–  Resource managers and batch allocation systems 

•  Highly specialized platforms 
–  Customized execution environment 
–  Tool chain tailored for platform (even if it is “Linux”) 
–  Specialized hardware (and software) 

•  Result 
–  This limits use of some existing FI tools 



Terminology 
•  Fault Injection (FI) 

–  Purposeful introduction of faults (errors) into target 
–  SWIFI:  Software Implemented Fault Injection 
–  SUT:  System Under Test    (“target”) 

•  Fault, Error & Failure [Laprie Taxonomy, DSC’04] 
–  Fault:  defect in a service, may be “active” or “dormant” 
–  Error:  an “active fault” in a service 
–  Failure:  unsuppressed error, visible outside the service 

•  Virtualization 
–  VMM:  virtual machine monitor (aka hypervisor) 
–  VM:  virtual machine 
–  HostOS:  operating system run on physical machine 
–  GuestOS: operating system run in virtual machine 



Fault Injection 

•  Existing work 
–  Techniques: Environmental, Hardware, Software 
–  Widely used to test FT mechanisms 
–  Lots published, few general/publicly available tools 

•  Important points 
–  Representative failures 
–  Representative system (e.g., hardware vs. model-based) 
–  Transparency & (low) overhead 
–  Detector / Injector pairing 
–  Placement & triggering 



Where to inject? 

•  Key challenge for FI experiments 
–  Identify “good” target locations 
–  Source code driven 
–  Runtime usage driven 
–  Random 
–  Isolate target to avoid mistaken outcomes 

•  Clobber FI infrastructure (“self”) 
•  Application code vs. linked library (MD vs. libmpi)  

•  Accounting 
–  Record where/when injection took place 
–  Record injection events in non-volitile (safe) region 



Virtualization 

•  Virtual Machines 
–  Commonly used in testing/development 
–  Offer consistent execution environment 
–  Provide strong isolation capabilities 

•  Virtualization for HPC 
–  Prior work on Virtual System Environments (VSE) 
–  Embeddable hypervisor for HPC (V3VEE/Palacios) 



Virtualization: Advantages for FI 

•  Customizable 
–  User can build application as appropriate in VM 
–  VMM has access to virtualized hardware of VM 

•  Full access to memory & other resources used by VM 

•  Isolation 
–  Separation of SUT and FI infrastructure 

•  General 
–  VM pause/resume, “snap shots” 
–  Can over-subscribe resources to simulate more nodes 
–  VM offers good system representativeness 



Virtualization: Advantages for FI (2) 

•  Experiment management & packaging 
–  VM aids in creating reproducible experiments, and 

configuration archiving 
–  Reuse VM image with FT/R support for different apps 

•  Other: Future 
–  Emulate hardware not available on local/current machine  
–  Record/replay VM capabilities for repeatable exp. 



Example FI: User-space approach 

•  Developed memory corruptor 
–  Injector based on ptrace() 
–  Random address in dynamic memory (heap) region 

•  Target application 
–  LAMMPS molecular dynamics code 
–  Inject bit-flips into memory of single MPI rank 

•  Comments 
–  Focus of experiment was on application self-monitoring 
–  Con:  less representative of bit-flips in real system (e.g., 

ECC) and not usable for OS-level injections 



Ex.: Changes for a VM approach 
•  Change memory corruptor 

–  Injector based on memory access (trigger inject) 
–  Target random address in dynamic memory (heap) 
–  Could also target recently used memory locations 

•  Easier to access this information from system level approach 

•  Target application (same) 
–  LAMMPS molecular dynamics code 
–  Inject bit-flips into memory of single MPI rank 

•  Comments 
–  Pro:  more representative of bit-flips in real system (ECC) 



Moving Forward 

•  Develop fault injection framework for HPC context 
–  Tools to simplify failure experiments 

•  Leverage prior & current work 
–  CIFTS:  Event pub/sub & log analysis tools 
–  STCI:  Distributed runtime control & basic communication 
–  XVirt:  Hypervisor for HPC 
–  VSE:  VM management tools & user environment 



Structure for Experiments 

•  Two parts to an experiment Target 
–  Target Manager:  local experiment setup/control 
–  Target:   Victim “application” 

•  Experiment Event  
–  Type 

•  Ex. Memory bit-flip 

–  Trigger Mode 
•  Ex. Trigger on command, on timer, upon access 



Basic Structure 

Controller 

Target‐Mgr  Target‐Mgr Target‐Mgr 

Target  Target  Target 

FrontEnd 

Virtual 
Machine 

ApplicaTon 
Target 

Target‐Mgr 

ApplicaTon Target 

Target‐Mgr 

Events  & 
System Logs 

(a) Target is Application running in VM (b) Target is stand-alone Application 



Evaluation 

•  Gather basic statistics 
–  Target crash, hang 
–  Number of injections 
–  Number of detections 

•  Generate summary reports 
–  MTTF for given target/experiment 

•  Dependability Benchmarking  
–  Look to projects like DBench, AMBER, etc. 



Some Open Questions 

•  What is right representation for experiments? 
–  Express different types of faults/errors for HPC 

•  How to provide intuitive “target location info”  
–  Usable by end-user and sufficient for backend 
–  Also relevant when providing feedback to user and 

doing post-mortem analysis (mapping) 



Related Work 
•  Xception 

–  Leveraged hardware debug/perf. monitoring capabilities 

•  FIG 
–  Errors via shared library interposition (LD_PRELOAD) 

•  NFTAPE 
–  Component-based SWIFI for distributed environments 

•  Linux-FI 
–  In Linux kernel >= v2.6.20 
–  For select areas of memory & IO subsystems 



Related Work (cont.) 
•  FAUmachine 

–  Simulated faults in a user-space process (like UML) 
–  Experiments included HDL perspective 

•  FI-QEMU 
–  Patch to QEMU process emulator for ARM architecture 

•  Gigan 
–  Additions to Xen for virtual machine fault injection 
–  Focus was not on HPC 
–  Simulating distributed environments on single node 



Summary 

•  Large-scale HPC systems 
–  Increased complexity  
–  Many resilience challenges 
–  Driving research in Fault-Tolerance/Resilience 

•  Tools for FT/R Experimentation 
–  Clear need for ways to test & evaluate techniques 
–  Fault injection is widely used to test FT mechanisms 
–  Provide fault injection tools for HPC environments 
–  Leverage work in HPC virtualization for FI tools 



Questions? 

•  Thank you, and enjoy the conference 

ORNL's work was supported by the U.S. Department of Energy,  
under Contract DE-AC05-00OR22725. 


