
A case for Virtual Machine based
Fault Injection in a High-Performance

Computing Environment

Thomas Naughton, Geoffroy Vallée,
Christian Engelmann and Stephen L. Scott

Oak Ridge National Laboratory
Computer Science and Mathematics Division

Oak Ridge, Tennessee, USA

HPCVirt 2011 Bordeaux, France August 29, 2011

HPC machines are large systems

“Jaguar” – Cray XT5 at ORNL

Resource  Size 

Compute Nodes   18,688 

Compute Cores  224,256  

Total Memory  300TB 

Interconnect Peak 
Bandwidth 
(SeaStar2+) 

57.6GB/s 

Peak Performance  2.3 pflops/s 

* Image courtesy of the National Center for Computational Sciences, Oak Ridge National Laboratory.

Scalability challenges

•  Large-scale system raise many challenges
–  Performance of applications & system software
–  Complex resource usage/interaction patterns
–  Growing failure rates due to huge component counts

Screen capture from “Raven” log analysis tool
Contact: Hoony Park (ORNL)

Failures at Scale

•  Failures in current petascale and future exascale
–  Occurrence of failure is much more common

•  “Failure rates vary widely across systems … and depend
mostly on system size and less on the type of hardware.”
 Schroeder & Gibson [DSN2006]

•  “In some cases, the overall system mean time between failure
(SMTBF) is under two hours.”

•  Previous work similarly suggests a system mean time to failure
(SMTTF) constraint of 5‐6 hours, or 4 failures per day, for
current HEC systems [TaeratHAPCW2008].”
 Whitepaper by DeBardeleben et al. [2009]

HPC Fault-Tolerance/Resilience

•  Scalability driving new research in FT/R
–  Log analysis to identify types/modes of failure
–  Fault & recovery coordination frameworks (e.g., CIFTS)
–  Enhancements to MPI (e.g., MPI3-FT WG)

•  New mechanisms for HPC applications
–  Algorithm based FT (e.g., FTLA)
–  Advanced checkpoint/restart techniques (e.g., stdchk)
–  Modular redundant MPI (e.g., MrMPI, rMPI)

Miles to go before we sleep…

•  Applications to use available FT/R capabilities
–  Still preliminary and much work to be done

•  Infrastructure to provide FT/R capabilities
–  Still lots of work to cope with failures at scale

•  Tools for experimentation
–  Need tools to support this development & testing

Introduction

•  Large-scale computing platforms
–  Increased size & performance
–  Increased complexity

•  Usability: More work & effort to use system (scientist & admin)
•  Resilience: More failures

•  Dealing with complexity
–  System-level virtualization – assist users & admins
–  Fault-tolerance/Resilience – cope with failures

Motivation for Tools

•  Study failures in large-scale systems
–  Identify faults (origins of failure)
–  Controlled environments for experimentation (testbed)

•  Explore ways to deal with failure
–  Which technique? (mechanism)
–  How to use mechanisms? (policy)
–  What level of the software stack? (effectiveness)

Fault Injection Tools

•  Provide tools to support FT/R experimentation
–  Monitoring & logging
–  Distributed task control
–  Fault injectors, etc.

•  Provide environment for controlled tests
–  Experiment config/setup
–  Startup and execution

General: Constraints on Tools

•  Operate in HPC environments
–  Low-overhead (high-performance) requirements
–  Resource managers and batch allocation systems

•  Highly specialized platforms
–  Customized execution environment
–  Tool chain tailored for platform (even if it is “Linux”)
–  Specialized hardware (and software)

•  Result
–  This limits use of some existing FI tools

Terminology
•  Fault Injection (FI)

–  Purposeful introduction of faults (errors) into target
–  SWIFI: Software Implemented Fault Injection
–  SUT: System Under Test (“target”)

•  Fault, Error & Failure [Laprie Taxonomy, DSC’04]
–  Fault: defect in a service, may be “active” or “dormant”
–  Error: an “active fault” in a service
–  Failure: unsuppressed error, visible outside the service

•  Virtualization
–  VMM: virtual machine monitor (aka hypervisor)
–  VM: virtual machine
–  HostOS: operating system run on physical machine
–  GuestOS: operating system run in virtual machine

Fault Injection

•  Existing work
–  Techniques: Environmental, Hardware, Software
–  Widely used to test FT mechanisms
–  Lots published, few general/publicly available tools

•  Important points
–  Representative failures
–  Representative system (e.g., hardware vs. model-based)
–  Transparency & (low) overhead
–  Detector / Injector pairing
–  Placement & triggering

Where to inject?

•  Key challenge for FI experiments
–  Identify “good” target locations
–  Source code driven
–  Runtime usage driven
–  Random
–  Isolate target to avoid mistaken outcomes

•  Clobber FI infrastructure (“self”)
•  Application code vs. linked library (MD vs. libmpi)

•  Accounting
–  Record where/when injection took place
–  Record injection events in non-volitile (safe) region

Virtualization

•  Virtual Machines
–  Commonly used in testing/development
–  Offer consistent execution environment
–  Provide strong isolation capabilities

•  Virtualization for HPC
–  Prior work on Virtual System Environments (VSE)
–  Embeddable hypervisor for HPC (V3VEE/Palacios)

Virtualization: Advantages for FI

•  Customizable
–  User can build application as appropriate in VM
–  VMM has access to virtualized hardware of VM

•  Full access to memory & other resources used by VM

•  Isolation
–  Separation of SUT and FI infrastructure

•  General
–  VM pause/resume, “snap shots”
–  Can over-subscribe resources to simulate more nodes
–  VM offers good system representativeness

Virtualization: Advantages for FI (2)

•  Experiment management & packaging
–  VM aids in creating reproducible experiments, and

configuration archiving
–  Reuse VM image with FT/R support for different apps

•  Other: Future
–  Emulate hardware not available on local/current machine
–  Record/replay VM capabilities for repeatable exp.

Example FI: User-space approach

•  Developed memory corruptor
–  Injector based on ptrace()
–  Random address in dynamic memory (heap) region

•  Target application
–  LAMMPS molecular dynamics code
–  Inject bit-flips into memory of single MPI rank

•  Comments
–  Focus of experiment was on application self-monitoring
–  Con: less representative of bit-flips in real system (e.g.,

ECC) and not usable for OS-level injections

Ex.: Changes for a VM approach
•  Change memory corruptor

–  Injector based on memory access (trigger inject)
–  Target random address in dynamic memory (heap)
–  Could also target recently used memory locations

•  Easier to access this information from system level approach

•  Target application (same)
–  LAMMPS molecular dynamics code
–  Inject bit-flips into memory of single MPI rank

•  Comments
–  Pro: more representative of bit-flips in real system (ECC)

Moving Forward

•  Develop fault injection framework for HPC context
–  Tools to simplify failure experiments

•  Leverage prior & current work
–  CIFTS: Event pub/sub & log analysis tools
–  STCI: Distributed runtime control & basic communication
–  XVirt: Hypervisor for HPC
–  VSE: VM management tools & user environment

Structure for Experiments

•  Two parts to an experiment Target
–  Target Manager: local experiment setup/control
–  Target: Victim “application”

•  Experiment Event
–  Type

•  Ex. Memory bit-flip

–  Trigger Mode
•  Ex. Trigger on command, on timer, upon access

Basic Structure

Controller 

Target‐Mgr  Target‐Mgr Target‐Mgr 

Target  Target  Target 

FrontEnd 

Virtual 
Machine 

ApplicaTon 
Target 

Target‐Mgr 

ApplicaTon Target 

Target‐Mgr 

Events  & 
System Logs 

(a) Target is Application running in VM (b) Target is stand-alone Application

Evaluation

•  Gather basic statistics
–  Target crash, hang
–  Number of injections
–  Number of detections

•  Generate summary reports
–  MTTF for given target/experiment

•  Dependability Benchmarking
–  Look to projects like DBench, AMBER, etc.

Some Open Questions

•  What is right representation for experiments?
–  Express different types of faults/errors for HPC

•  How to provide intuitive “target location info”
–  Usable by end-user and sufficient for backend
–  Also relevant when providing feedback to user and

doing post-mortem analysis (mapping)

Related Work
•  Xception

–  Leveraged hardware debug/perf. monitoring capabilities

•  FIG
–  Errors via shared library interposition (LD_PRELOAD)

•  NFTAPE
–  Component-based SWIFI for distributed environments

•  Linux-FI
–  In Linux kernel >= v2.6.20
–  For select areas of memory & IO subsystems

Related Work (cont.)
•  FAUmachine

–  Simulated faults in a user-space process (like UML)
–  Experiments included HDL perspective

•  FI-QEMU
–  Patch to QEMU process emulator for ARM architecture

•  Gigan
–  Additions to Xen for virtual machine fault injection
–  Focus was not on HPC
–  Simulating distributed environments on single node

Summary

•  Large-scale HPC systems
–  Increased complexity
–  Many resilience challenges
–  Driving research in Fault-Tolerance/Resilience

•  Tools for FT/R Experimentation
–  Clear need for ways to test & evaluate techniques
–  Fault injection is widely used to test FT mechanisms
–  Provide fault injection tools for HPC environments
–  Leverage work in HPC virtualization for FI tools

Questions?

•  Thank you, and enjoy the conference

ORNL's work was supported by the U.S. Department of Energy,
under Contract DE-AC05-00OR22725.

