
Using Performance Tools to Support
Experiments in HPC Resilience

Thomas Naughton1,2, Swen Böhm1, Christian Engelmann1 & Geoffroy Vallée1

1 Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN, USA.

{naughtont,bohms,engelmannc,valleegr}@ornl.gov

2 School of Systems Engineering
The University of Reading, Reading, UK.

2 Resilience 2013 – Aachen, Germany

Motivation

• Motivation for this work
–  Research on HPC Resilience for large-scale systems
–  Tools to help developers of Fault Tolerance & Resilience

•  Leverage “performance tools” to aid resilience community
–  Gather execution data
–  Diagnose problems

3 Resilience 2013 – Aachen, Germany

Performance Tools

• Performance tools are common in HPC environments
–  Trace tools, Profilers, etc.
–  Care taken for efficiency/scalability
–  Integrate with standard tool-chain

• Benefits in context of resilience
–  Performance + Resilience (costs of FT/R)
–  Global Context for fault injection experiments

• Challenges and considerations
–  Control experiments to ensure data written to stable storage
–  Example: Failed MPI process ensure trace buffers flushed

4 Resilience 2013 – Aachen, Germany

Overview

• Background
–  MPI-FTWG / ULFM
–  MPI Trace library

• Experiments
–  ULFM enhanced application
–  ULFM enhanced trace library
–  Trace data usage examples

5 Resilience 2013 – Aachen, Germany

Background: MPI

• MPI Fault Tolerance
–  MPI Fault Tolerance Working Group (MPI-FTWG)
–  Proposed changes to MPI specification to define necessary set of

enhancements for supporting fault-tolerance with MPI
–  “ULFM” – User Level Failure Mitigation proposal

•  Full specification at MPI-FTWG Trac & http://www.fault-tolerance.org

•  Failure model
–  Currently limited to MPI process failures (fail-stop / fail-recover)

•  We generally just refer to as “failures”.
–  Logical processes as defined by MPI, regardless of implementation

6 Resilience 2013 – Aachen, Germany

ULFM API: Errors & Setup

• Specification defines two new MPI error classes
–  MPI_ERR_PROC_FAILED
–  MPI_ERR_REVOKED

•  For “any source receives”
–  Potential sender failures raise MPI_ERR_PENDING

• Use existing MPI error handlers to take advantage of ULFM
–  By default, set to MPI_ERRORS_ARE_FATAL
–  Must change communicator’s handler to MPI_ERRORS_RETURN
–  Will be notified upon process failures & can address appropriately

7 Resilience 2013 – Aachen, Germany

ULFM API: Failure Acknowledgement

• Method to “recognize” failures as known & quell future
notifications that would occur with MPI_ANY_SOURCE receives

• Also can query for previously “recognized” failures
• Entirely local operation

 MPI_COMM_FAILURE_ACK(comm)
 IN comm communicator (handle)

 MPI_COMM_FAILURE_GET_ACKED(comm, failedgrp)
 IN comm communicator (handle)
 OUT failedgrp group of failed process (handle)

8 Resilience 2013 – Aachen, Germany

ULFM API: Communicator Shrink

• Method create a new communicator with failed ranks removed
• Analogous to MPI_Comm_split() with “live” ranks in newcomm
• Collective operation that removes any failed ranks during call,

and returns consistent “new” communicator at all sites
• Must call MPI_Comm_revoke() first*

–  Revoke requirement may be removed in final ULFM spec

 MPI_COMM_SHRINK(comm, newcomm)
 IN comm communicator (handle)
 OUT newcomm communicator (handle)

9 Resilience 2013 – Aachen, Germany

ULFM API: Communicator Revocation

• Method for revoking a communicator & propagate failure notices
• Deadlock avoidance to interrupt collectives
• Must call MPI_Comm_shrink() to obtain usable communicator

 MPI_COMM_REVOKE(comm)
 IN comm communicator (handle)

NOTE: Not required to call revoke upon process failure if not need collective
communication (i.e., pt-2-pt still usable until revoke communicator).

10 Resilience 2013 – Aachen, Germany

ULFM API: Agreement

• Method for consensus about a given value
• Collective call with “logical and” for in/out flag

 MPI_COMM_AGREE(comm, flag)
 IN comm communicator (handle)
 INOUT flag boolean flag

 MPI_COMM_IAGREE(comm, flag, req)
 IN comm communicator (handle)
 INOUT flag boolean flag
 OUT req request (handle)

11 Resilience 2013 – Aachen, Germany

ULFM API: Quick Summary

• Use MPI error handlers
–  MPI_ERRORS_RETURN

• MPI Error classes
–  MPI_ERR_PROC_FAILED
–  MPI_ERR_REVOKED
–  MPI_ERR_PENDING

•  (for “any source”)

• New MPI functions
–  MPI_COMM_FAILURE_ACK
–  MPI_COMM_FAILURE_GET_ACKED
–  MPI_COMM_SHRINK
–  MPI_COMM_REVOKE
–  MPI_COMM_AGREE
–  MPI_COMM_IAGREE

12 Resilience 2013 – Aachen, Germany

MPI Trace Tool

• DUMPI
–  MPI tracing library to record application execution (function calls)
–  Implemented as PMPI interposition library
–  Developed at Sandia as part of SST project

• Overview
–  Supports individual functions, performance counters (e.g. PAPI)
–  Records function input arguments and (some*) return values
–  Traces recorded as binary files w/ utilities to convert to text
–  Tools to convert to OTF* for visualization in tools like Vampir

* Note: Not sure about current status/support for retvals and OTF converter.

13 Resilience 2013 – Aachen, Germany

Modification for experiments

• Enhanced DUMPI library to recognize ULFM API
–  Trace library & text converter tools

• Extended demo application to support ULFM
–  “simpleMD” – molecular dynamic application with app checkpt/restart
1.  Change all MPI_COMM_WORLD to “smd_comm” handle
2.  Change error handler to MPI_ERRORS_RETURN
3.  Modify main simulation loop to recognize process failures

(MPI_ERR_PROC_FAILED / MPI_ERR_REVOKED)
4.  On error, all call MPI_Comm_revoke() & MPI_Comm_shrink()
5.  Replace “smd_comm” handle with newcomm from shrink
6.  Roll back to previous iteration & continue from previous checkpoint

14 Resilience 2013 – Aachen, Germany

Test Setup

•  Testing platform
–  Single desktop
–  Linux cluster

• Software
–  MPI-FTWG’s Open-MPI

based prototype of ULFM
–  DUMPI (19mar2013) cloned

Mercurial repo w/ ULFM
support

• Simulated rank failure
–  If environment variable set, a

rank will terminate
–  Application calls exit() to

simulate abnormal MPI failure,
 i.e., not call MPI_Finalize()!
–  This also allows DUMPI library

to fire exit handler to write data

15 Resilience 2013 – Aachen, Germany

Test#1 Performance+Resilience

• Gathered “simpleMD” traces on cluster with & without failures
–  Confirmed that no ULFM functions used in non-fail case
–  Noticed duplicate (extra) calls to MPI_Comm_revoke() in failure case

•  Only 1 required but had 2 that were called in app
–  Time for MPI_Comm_shrink() on 32-node cluster was small (< 0.5 sec)
–  But time in two MPI_Comm_revokes (1 plus, extraneous) was 2-5 secs

•  Approx 1-2% of job walltime w/ single induced failure

•  This trace data was useful for seeing overhead of resilience
mechanism in our application. We can also see that cost for
restart is much higher with this application than the cost for
ULFM notificaion & communicator recovery

16 Resilience 2013 – Aachen, Germany

Global Context for Fault Injection

•  Trace data provides diagnostic information
–  Check status if application hangs
–  Gain insights into overall job status during FI experiments

•  Beyond just the single target “victim”
•  Example: what other apps were waiting for that victim, will enter ULFM

functions (would be good to have return codes for this)
–  Help to understand detection/notification problems

17 Resilience 2013 – Aachen, Germany

Example #1 – steps for test

•  Test of simpleMD+ulfm+libdumpi and induce a failure
•  The steps for the test are:

1.  Set an environment variable to signal a failure at runtime.
2.  Start application with 3 ranks
3.  Application runs for 1000 timesteps
4.  At timestep=500, & victim-rank = 1, simulate a failure w/ exit()
5.  Ranks 0 and 2 detect process failure via ULFM return codes, call

revoke and shrink to get newcomm, re-initialize data & restart from
saved checkpoint

6.  Program finishes & see same result for last timestep non-failure case.

18 Resilience 2013 – Aachen, Germany

Example #1 (cont.)

• After test we noticed something in output & trace files
–  The final result matched non-failure value Expected
–  Rank 0 – finish with MPI_Finalize() Expected
–  Rank 1 – (force-failed) had shorter trace Expected
–  Rank 2 – had truncated trace & no finalize Un-expected

• We reviewed ULFM changes to application (ok)
•  Then noticed error in our fault-inject logic when used with ULFM

19 Resilience 2013 – Aachen, Germany

Example #1 - corrected steps for test

• Corrected steps shown in blue
•  The steps for the test are:

1.  Set an environment variable to signal a failure at runtime.
2.  Start application with 3 ranks
3.  Application runs for 1000 timesteps
4.  At timestep=500, & victim-rank = mcw_size - 1, simulate a failure w/

exit()
5.  Ranks 0 and 2 detect process failure via ULFM return codes, call

revoke and shrink to get newcomm, re-initialize data & restart from
saved checkpoint

6.  Program finishes & see same result for last timestep non-failure case.

20 Resilience 2013 – Aachen, Germany

Example #2 – detection

• Our initial tests were done on single machine (see example#1)
• When moved to cluster encountered unexpected hangs when

forced failure using same steps as before
• After review of trace data, two observations:

1.  All ranks were few steps beyond failed rank (based on trace timesteps)
and all live ranks were at the same timestep in blocking collective

2.  We could see that none of the expected ULFM routines for
communicator revocation or shrink had occurred.

•  The absense of ULFM revokes explained hangs in collective.
• Realized failure notification wasn’t be propagated

–  Change: FI from exit() MPI_Abort(MPI_COMM_SELF, -1)

21 Resilience 2013 – Aachen, Germany

Comments

•  Trace data helped to provide global context

• Postmortem data helped highlight simple error, but not
noticeable by output values due to FT mechanisms doing what
they should!

• Possibly could use communication patterns from trace info to
automate site selection in FI experiments

22 Resilience 2013 – Aachen, Germany

Related Work

• BIFIT
–  HPC application “soft errors”

Fault injection tool based on
PIN binary rewriting utilty

–  Leveraged memory profiling
in performance tools to
identify candidate FI sites

• AutomaDeD
–  Combines sampling &

classification /clustering
methods to identify
abnormalities, possible fault
signatures (bugs)

–  Aid debugging parallel apps

• SST/Macro
–  Performance simulator
–  Study hardware

characteristics on application
performance

–  DUMPI

•  xSim
–  Performance investigation tool
–  Extended to support resilience

experiments (fault inject,
ULFM, etc.)

23 Resilience 2013 – Aachen, Germany

Summary

• Many tools for performance evaluation & experiments in HPC
–  Can be used to help develop “resilience tools”

• Described:
–  MPI-FTWG “ULFM” & DUMPI-ulfm trace library
–  Extended application for resilience tests

•  Trace data was useful for postmortem info for resilience tests
•  Future: plan to add tracing support to xSim

–  More control over app timing, failure scheduling and I/O buffering.
–  Possibly see if trace files could be useful for “replay” (study interleaving)

24 Resilience 2013 – Aachen, Germany

•  This work was supported by the U.S. Department of Energy,
under Contract DE-AC05- 00OR22725.

•  This work was supported by ORNL National Center for
Computational Sciences (NCCS).

Thank you & enjoy the conference

