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Abstract. The use of virtualization in high-performance computing (HPC) has
been suggested as a means to provide tailored services and added functional-
ity that many users expect from full-featured Linux cluster environments. While
the use of virtual machines in HPC can offer several benefits, maintaining per-
formance is a crucial factor. In some instances performance criteria are placed
above isolation properties and selective relaxation of isolation for performance
is an important characteristic when considering resilience for HPC environments
employing virtualization.
In this paper we consider some of the factors associated with balancing perfor-
mance and isolation in configurations that employ virtual machines. In this con-
text, we propose a classification of errors based on the concept of “error zones”, as
well as a detailed analysis of the trade-offs between resilience and performance
based on the level of isolation provided by virtualization solutions. Finally, the
results from a set of experiments are presented, that use different virtualization
solutions, and in doing so allow further elucidation of the topic.

1 Introduction

As high-performance computing (HPC) systems increase in size and complexity, the
associated system software faces new challenges to balance performance, usability and
robustness. The use of virtualization in HPC has gained attention in recent years [4,
9, 13, 15, 20, 21, 23, 24, 6], mainly for enabling isolation, customization and resilience
abilities. The benefit of having a user-customized execution environment is one ad-
vantage [5, 21, 23]. Also, the ability to provide increased functionality without having
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to require this in all instances is another use case [4, 20]. For example, microkernels
have been used on several supercomputers to achieve minimal system-level interfer-
ence [20], i.e., “the OS should stay out of the way”. Adding the ability to load virtual
machines (VMs) that run more feature rich operating system (OS) environments is one
way to balance usability and performance, while maintaining the ability to run natively
on the microkernel to achieve the full performance potential [20]. In the context of sys-
tem resilience, virtualization enables both advanced reactive and pro-active policies by
providing capabilities such as VM migration and checkpoint/restart [22]. Furthermore,
virtualization has been leveraged for the design and implementation of fault injection
techniques in order to study the impact of failures on the execution of scientific simula-
tions [17, 16]. These capabilities usually rely on isolation characteristics of virtualiza-
tion solutions, i.e., isolation decouples the management of resources exposed within the
VM from the physical resources, making the VMs independent from the host on which
they run.

The HPC community recently introduced the concept of enclave as an operating and
runtime system design characteristic for addressing current scalability, resilience and
performance limitations at extreme scale. For instance, the Hobbes project, which aims
at designing operating system/runtime (OS/R) interfaces for extreme-scale systems [4],
defines an enclave as “a partition of the system allocated to a single application or ser-
vice” and has proposed a design based on system-level virtualization. Figure 1 shows a
diagram of the proposed Hobbes software architecture. The project is focused on tech-
niques to support composition primitives to aid applications and leverages system-level
virtualization to provide flexible support for additional OS/R functionality. Resilience
is one of the cross-cutting concerns the Hobbes project is seeking to address. This in-
cludes work on developing resilience building blocks as well as work to experiment
with error management in system software. As new OS/R interfaces are developed, the
robustness of the overall system will be probed to identify areas for improvement.

Fig. 1. Hobbes software components for Extreme-Scale OS/R [4]. The component API interac-
tions are reflected by vertical arrows and data exchanges via horizontal arrows; research targets
are shown in bold.



As HPC software stacks begin to leverage virtualization, questions emerge about
what degree of isolation should be maintained to keep applications running efficiently
without overly sacrificing fault management primitives (i.e., isolation mechanisms).
Since virtualization is an important component of the OS/R research for next gener-
ation system software, we consider the trade-offs and perspectives for balancing per-
formance and isolation in this context.

The primary contributions of this paper are to study the balance for performance
and isolation in the context of HPC resilience. The examination contributes to the more
general topic of error models in HPC. The paper discusses: (i) a classification of errors
in the context of HPC resilience and HPC virtualization; (ii) an analysis of the trade-
offs between performance and isolation for HPC workloads and its impact on system
resilience, especially in the context of the Hobbes project; and (iii) experiments that
demonstrate variations in the effects of synthetic errors in virtualized environments.

The remainder of the paper is organized as follows, in Section 2 we review related
work and provide background information on the topic of virtualization in HPC. In
Section 3 we analyze the problem of balancing performance and isolation with VM-
based HPC environments, followed by an evaluation of an example error scenario using
different virtualization solutions in Section 4. Finally we conclude in Section 5.

2 Background

The Palacios virtual machine monitor (VMM) was developed from scratch by North-
western University (NU) and University of New Mexico (UNM), in cooperation with
Sandia National Laboratories (SNL) [18, 13]. The Palacios VMM can be run on the
Kitten microkernel [11, 13] and as a loadable kernel module on Linux based systems.
The VMM requires the hardware to support virtualization extensions, e.g., AMD-V and
Intel VT. Palacios runs on standard x86 commodity clusters and Cray XT 4/5 & XK6/7
supercomputers. Palacios guest VMs can run either 32-bit or 64-bit OS kernels.

The QEMU tool is a machine emulator [3], which is distinct from a type-II VMM
proper [7] because it may emulate non-native architectures to the guest. For example,
the native host architecture might be x86 but the guest virtual machine (VM) could see
an ARM or MIPS architecture in the emulated environment. However, the distinction
between emulator and virtualization as defined by Goldberg [7] is less important for
the the current context. QEMU provides a rich set of features for interfacing with the
machine monitor and an embedded debugger. These capabilities make it a common
component in OS development environments. QEMU can be combined with the Linux
Kernel-based Virtual Machine (KVM) to accelerate the virtual machine execution [14].
This removes the emulation capabilities of QEMU and requires the VM and host ar-
chitectures match. It does however provide the rich frontend and debugger capabilities
of QEMU for use with the kernel-implemented KVM backend. KVM runs on x86 ma-
chines and requires hardware supported virtualization extensions, e.g., AMD-V and
Intel VT. The widespread use of Linux has led to KVM being widely used for type-II
virtualization due to its seamless integration with the OS distributions.

The presence of virtualization in HPC be limited and virtual machines may not be
supported on all systems. However, virtualization is becoming more widely available



and is slowly becoming just another system software feature, especially for environ-
ments that use Linux as their base operating system. The Palacios VMM was specif-
ically developed with HPC environments as a target and is under active development
for use on Cray supercomputers, e.g., Cray XK7. The KVM VMM is a standard com-
ponent in modern Linux distributions. Additionally, the QEMU environment can be
run entirely in user-space without the need for advanced permissions (i.e., does not re-
quire root privileges), albeit at a lower performance level if acceleration like KVM or
kqemu is not used.

3 Analysis

Virtualization The management of unprivileged user-space and privileged kernel-
space is a standard approach for OS protection. For example, on x86-based systems
the hardware offers protection domains, or “rings” (Figure 2), that can be used to en-
force this user/kernel separation [10]. System-level virtualization extends the protection
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Fig. 2. Intel Architecture (IA-32) hardware supported protection mechanisms provide four privi-
lege levels: high (Level 0) e.g., OS, low (Level 3) e.g., Applications [10].

layers by adjusting the protection domains to have the virtual machine monitor run at
the highest protection level in order to marshal access to physical resources [19]. The re-
sult is a guest/host (virtual/native) separation, which places the standard OS user/kernel
within a virtual region, i.e., a guest VM. The guest VM runs the OS and the VMM pro-
vides a software layer between the guest OS and the physical resources. While overly
simplified, this description captures the divisions used to provide stronger isolation be-
tween the guest environment (virtual) from the host environment (native).

As mentioned previously, the OS/R marshals access to hardware resources, e.g.,
CPU, main memory, network interfaces and I/O (storage) devices. The overhead for
providing protection is often governed by whether the isolation mechanism is hardware
or software based. For example, the cost for unprivileged CPU instructions is equivalent
for guest/user and host/user. When managing memory, if there is no hardware-level
support (e.g., nested page tables), then shadow pages must be managed in software.
The CPU and memory resources are fairly well supported at this stage with hardware



level protection mechanisms. In contrast, the multiplexing of network and I/O devices
for virtualized environment often requires software based methods. New technology
like Single Root I/O Virtualization (SR-IOV) and IOMMU should help decrease this
overhead as they become more widely available.

Resilience Resilience is an important aspect for HPC systems and is a cross-cutting
topic in the Hobbes project. To be clear, we begin by briefly reviewing a bit of resilience
terminology from Laprie et al. [1]. A fault is a defect that exists and may be “active”
or “dormant”, and an “active fault” is an error. An error that is not contained, e.g.,
resulting in service interruption, creates a failure. There are numerous potential faults,
which can originate at different phases: design, implementation, operation, etc. An error
model provides an abstraction of the potential faults that may occur and offers structure
to help understand and reason about erroneous behavior in a system [8].

Virtualization and Resilience The kernel/user and guest/host structure described pre-
viously provides different error zones (“E-Zones”) as shown in Figure 3. For example,
in a non-virtualized setting, errors in E-Zone#1 (host/kernel) are often considered fatal,
and can result in the entire system being compromised or crashing. In contrast, errors in
E-Zone#2 (host/user) may be fatal but would (generally) only affect the victim process
and should never crash the full system.
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Fig. 3. Error zones for standard and virtualized systems.

Adding virtualization to the system offers additional error zones, where the ker-
nel/user separation is enhanced by incorporating an additional layer for protection (i.e.,
guest/host). This enables additional isolation to be introduced for what would normally
be privileged execution (i.e., guest kernel). In Figure 3, errors in E-Zone#4 (guest/user)
are generally assumed to be equivalent to those of E-Zone#2 (host/user). However, the
errors in E-Zone#3 (guest/kernel) may have different expected behavior. The effects of
errors may have very broad or very limited impact. In the case of “limited effects”, the
isolation should limit the impact to the victim in the error zone. When errors may have
a broader impact, e.g., the entire node, the effects of errors can result in failures for the
full system (i.e., “global effects”). If the effects of errors are more disparate then the
associated management will be mixed and errors will have “varied effects”. Restated,
the policy for how to manage the errors will vary.
In summary, the error model for this virtualization-enabled context (Figure 3) is:



E-Zone#1 – errors may crash full system (global effects)
E-Zone#2 – errors may crash individual victim (limited effects)
E-Zone#3 – errors may crash full system (global effects), or

errors may be managed in mixed manner (varied effects), or
errors may crash individual victim (limited effects)

E-Zone#4 – errors may crash individual victim (limited effects)

The reason for the variation in the error model for E-Zone#3 instances is mainly
due to the balance between isolation and performance. Figure 4 illustrates this isola-
tion/performance continuum. In some instances, strong isolation is the most critical
criteria and may outweigh performance criteria. For example, if there are many vir-
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Fig. 4. Performance / Isolation continuum

tual machines on a single host (i.e., web hosting platforms with direct user access) the
protection against a user crashing a virtual machine and indirectly crashing the host
(and all other users) is more critical than individual user performance. In contrast, more
relaxed isolation may be appropriate if performance is important and reasonable pro-
tection mechanisms can be used that offer an acceptable level of control.

Notice that in the case that strong isolation is the highest criteria, then E-Zone#3
is equivalent to E-Zone#4 in order to limit the effects of errors. Additionally, if perfor-
mance is the most important criteria (even at the cost of isolation) then E-Zone#3 can
devolve to being equivalent to E-Zone#1, where errors have a global effect. As such,
a guest/kernel error could crash the full system and have an impact on the entire node
(global effects).

The case where E-Zone#3 ≡ E-Zone#1 is still (potentially) a valid case in some
HPC contexts. For example, one motivation mentioned previously for virtualization in
HPC was to provide additional functionality beyond what is provided by the default mi-
crokernel case. In this scenario, virtualization enables users to run full-featured legacy
OS instances in VMs on top of the native microkernel OS [20]. Therefore, this error
model (E-Zone#3 ≡ E-Zone#1) may be appropriate as the objective is not added pro-
tection, but added functionality.

Hobbes Context The Hobbes project is interested in system software for next-generation
systems. This research includes work in designing OS/R interfaces for large-scale HPC
systems. There are two key distinguishing elements to the project: (i) enclaves and
(ii) composition. An enclave is a partitioned region given to a particular application or



service [2, 4]. Enclaves house applications and therefore will be composed to form more
complex application instances [4]. Virtualization can be used to implement this parti-
tioning and isolation between enclaves. Therefore, enclave composition will require
selectively relaxing the isolation to accommodate the required interactions between the
OS instances, which are shown in Figure 1 [4].

An important step in the resilience effort for the Hobbes project, and HPC in gen-
eral, is to begin to refine the error models. As such, we begin by presenting our initial
thoughts on an error model that takes into consideration the distinguishing elements of
Hobbes, namely: enclaves and composition.

Based on this, an important question for the Hobbes project will be to identify in-
stances where the E-Zone#3 model can employ mixed policies for error management.
This is likely to be influenced by the performance cost for implementing the isolation.
Additionally, in the Hobbes context the E-Zone#3 policies will be influenced by enclave
composition. For example, consider the previously noted case where the objective is to
offer increased functionality via virtualization, so E-Zone#3 ≡ E-Zone#1 may be ap-
propriate. When composing different enclaves, this may be less straightforward due
to cross-enclave dependencies that should limit indirect effects. Restated, crashing a
single enclave (VM) may be acceptable but if there are multiple enclaves (VMs) then
the isolation may need to be increased to avoid indirectly affecting another instance.
Figure 5 illustrates the two axes that influence the policies for E-Zones in the Hobbes
context. In Figure 5(a), two Enclave OS (EOS) instances are shown and reflect the re-
lationship during enclave composition. The other case that will influence the balance of
isolation is depicted in Figure 5(b), which shows the vertical relationship between the
Node Virtualization Layer (NVL) and Node OS (NOS).

EOS	   EOS	  

Composition 

(a) Enclave Composition

NOS	  

NVL	  

Virtualization 

(b) Virtualization

Fig. 5. Diagrams showing two key building blocks in the Hobbes design: (a) enclave composition,
and (b) virtualization.

4 Evaluation

We performed a set of tests to demonstrate the viability of leveraging VMs to improve
protection during fault-injection experiments. The experiments presented in this section
demonstrate the following: (i) host OS system log (syslog) monitor to notify when vio-
lations occur in a Palacios guest VM based on guest OS heartbeats; (ii) demonstration
of VM isolation to avoid corruption of host context.



4.1 Setup

The host OS was Linux v3.5.0. KVM was version v1.0+noroms-0ubuntu13, which was
installed from the Ubuntu 12.04 LTS packages. QEMU was v1.7.0, which was installed
from source. Palacios was Git clone 619573f (11-mar-2014) with minor patches for
compilation issues under Linux v3.5.0. The KVM and Palacios VMMs are implemented
as loadable kernel modules and were loaded exclusively, i.e., only one module was
active during the tests. The QEMU VMM was run without the acceleration support and
ran entirely as a user-space application.

The guest OS used a Linux v2.6.33.7 kernel with Busybox v1.20 to create a very
small system installation. In the Palacios case, the guest VM is configured to use shadow
paging with a Linux virtio-based NIC that is bridged via the VMM to the host network
interface. The KVM and QEMU cases did not have networking enabled during the tests.

All tests were performed on a Linux cluster (SAL9000) at ORNL. The machine was
configured with a dual-bonded 1 Gbps Ethernet interconnect. The 40 compute nodes
each have 2 AMD64 CPU (24 cores), a Nvidia Tesla S2050 GPU, 64 GB of memory,
and run a Ubuntu Linux 12.04 LTS operating system. The guest OS startup script files
were updated to automatically load a custom fault-injection (FI) kernel module (de-
scribed below). The guest OS configuration was identical in all tests, as was the host
OS configuration. The only differences between test runs were related to the virtual-
ization solution being used. The experiments were all run on a single compute node
(node40) of the SAL9000 cluster.

4.2 Guest OS Errors

The experiments use different virtualization solutions to demonstrate the isolation pro-
vided by VMs. The three virtualization implementations used during these tests were:
QEMU [3], KVM [19, 14], and Palacios [13, 18].
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Fig. 6. Diagram showing the VM+FI harness with an OS Kernel crash running in the Guest VM,
isolated from the host context managing the experiment.

A custom kernel module (kerncrash) was written to intentionally cause a failure
when a timer expired. The kernel module would perform a divide-by-zero error that



forced a fatal exception that would crash the kernel. When the module is loaded into
the kernel it sets a timer and after N seconds the error occurs. The tests used manual
inspection to confirm that the kernel crashed based on console output, which could also
have been obtained from system logs if the VM was forwarding the syslogs over the
network or to the host via a virtual serial log. The integrity of the host was determined
by whether or not the host was responsive after the crash for running further tests.
Figure 6 depicts the self-injected error in the guest OS.

4.3 Testing

The experiments that introduced guest OS errors show the benefits of running with
strong isolation. The fatal guest OS experiments were each run 5 times on a single node
of the SAL9000 cluster. As expected, the kerncrash resulted in a fatal guest kernel
error in all instances. The KVM and QEMU test cases offered a clear separation with no
change in the host after the guest OS’s kernel crash. In the Palacios case the results were
mixed. When run on SAL9000, the host became unstable soon after the guest crashed
and required a reboot to resolve the issue. At the time of writing, the root cause for this
error has not been determined but additional testing on another development machine
indicated that the problem might be due to some shared networking used by the Palacios
guest. The preliminary investigation indicated that this might be related to the virtual
network bridge that Palacios establishes between the host and guest to provide network
access in the guest VM. Subsequent experiments on a different machine resulted in
similar disruptions of the host environment and showed a Palacios-related kernel thread
that was responsible for much of the load (a network related routine running as Linux
kernel thread in host OS). This may be a host-level misconfiguration or more simply an
implementation bug.

4.4 Discussion & Observations

The use of virtualization potentially offers good separation between the target and con-
trol harness. The encapsulation of the VM is helpful for repeating experiments, and can
be used to capture output and monitor the guest environment. Also, the reproducibil-
ity is useful with benchmarking (both performance and resilience) to ensure consistent
machine configurations. The use of virtualization for OS-level targets provides useful
support for isolating error studies involving corruption (e.g., soft error fault injection).
VMs also enable over-subscription of the native resources, so a single physical machine
can be used to run multiple tests concurrently or in series, which can have entirely dif-
ferent configurations.

In the low-level system software use case, the fact that the exact same environment
with the exact same OS and synthetic bug could be reproduced on the same hardware
platform is a clear benefit of using VMs for resilience investigations. It also allows for
repeatable research and low-level debugging capabilities, e.g., VMM embedded debug-
ger in QEMU. The issues raised during testing with Palacios and host/guest sharing
highlight a more fundamental point to consider when working with virtualization and
HPC. There are many instances where the isolation properties are intentionally relaxed
to gain performance. For example, the host network interface might be directly mapped



into the guest OS to provide near native performance from within the guest environ-
ment. This might also be due to the fact that the network device is not easily virtualiz-
able, i.e., not able to multiplex between the host and guest OS. These are factors that
must be considered when using VMs in a HPC context for performance reasons and
they are factors that must be managed when used for resilience investigations.

5 Conclusion

This paper discussed details associated with resilience for virtualization-based HPC
systems. In this context, we propose a new error model as well as an initial evaluation.
Thus, our contributions are (i) a classification of the various errors, (ii) an analysis of the
resilience/isolation trade-offs, and (iii) a set of experiments to elucidate the discussion.

The proposed classification is based on the distinctions between four “error zones”
and different scenarios were outlined to illustrate the applicability of the concept to
HPC. Experiments were performed that reflected three different data points along the
isolation/performance continuum: QEMU, KVM, and Palacios. Finally, we presented
an analysis of how the concept of error zones can be used in the context of the Hobbes
project, which aims at developing OS/R interfaces for extreme-scale systems. More
precisely, we analyzed the impact of failures on the overall Hobbes’ architecture, es-
pecially on the composition capability. Ultimately, this study provides input to help
respond to questions about errors in HPC environments, and more specifically in cases
where virtualization is used.

The current focus has been to refine the error models to provide structure to guide
the research into resilience, which can be beneficial for the Hobbes project. In future
work, as the OS/R interfaces for the Hobbes software stack (Figure 1) are published, we
plan to perform robustness testing [12] on the APIs. The intent is to identify any weak-
ness in the interfaces and offer feedback for improvements in system-level resilience.
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