
A Cooperative Approach to Virtual Machine Based
Fault Injection

Thomas Naughton1, Christian Engelmann1, Geoffroy Vallée1, Ferrol Aderholdt1, and
Stephen L. Scott1,2

1 Oak Ridge National Laboratory?

Computer Science and Mathematics Division
Oak Ridge, TN 37831, USA
2 Tennessee Tech University

Computer Science
Cookville, TN, 38505, USA

Abstract. Resilience investigations often employ fault injection (FI) tools to
study the effects of simulated errors on a target system. It is important to keep the
target system under test (SUT) isolated from the controlling environment in order
to maintain control of the experiement. Virtual machines (VMs) have been used
to aid these investigations due to the strong isolation properties of system-level
virtualization. A key challenge in fault injection tools is to gain proper insight
and context about the SUT. In VM-based FI tools, this challenge of target con-
text is increased due to the separation between host and guest (VM). We discuss
an approach to VM-based FI that leverages virtual machine introspection (VMI)
methods to gain insight into the target’s context running within the VM. The key
to this environment is the ability to provide basic information to the FI system
that can be used to create a map of the target environment. We describe a proof-
of-concept implementation and a demonstration of its use to introduce simulated
soft errors into an iterative solver benchmark running in user-space of a guest
VM.

Keywords: fault injection, virtualization, virtual machine introspection, resilience tools

1 Introduction

Tools for controllably experimenting with synthetic failures are an essential element
of resilience investigation. These tools generally employ some form of software im-
plemented fault injection (SWIFI) since it is highly adaptable, in contrast to hardware
? Corresponding author: T. Naughton naughtont@ornl.gov. This manuscript has been au-

thored by UT-Battelle, LLC under Contract No.DE-AC05-00OR22725 with the U.S. Depart-
ment of Energy. The United States Government retains and the publisher, by accepting the ar-
ticle for publication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-
plan).



based approaches [11]. However, low-level hardware approaches have some advantages
for performing tests that can originate at the lowest layers of the system. System-level
virtualization has been explored as a way to combine the advantages of SWIFI with the
low-level hardware oriented approaches using virtual machines (VMs) [14, 18, 21].

There are several advantages to using virtual machines with fault injection. The use
of virtualization allows for strong isolation between the system under test (SUT) and
control environment. The VMs provide a basis to customize the target environment and
setup repeatable testing configurations. The strong isolation provided by the VMs can
be beneficial for resilience experiments that might include tests that compromise the
overall investigation environment, e.g., data corruption, high crash rates.

A major challenge of virtual machine based fault injection (VMFI) is providing ade-
quate context about the target to inform site selection choices. Additionally, the target’s
context must be sufficiently understood in order to monitor the target’s status and in-
terpret the effects of injected errors. The lack of insight into the target (guest) context
is a common issue with virtualization and emerges in many instances where informa-
tion maintained within the guest’s context would be useful outside the guest VM, e.g.,
process monitoring. The technique of virtual machine introspection (VMI) was devel-
oped to overcome just these types of challenges and has been applied to performance
monitoring and security.

We have used VMI methods with VM-based fault injection to bridge the gap be-
tween the target (in guest) and controller (outside guest). We describe the approach and
demonstrate a proof-of-concept experiment where we can perform fault injection on a
process in a VM using commands from the host (outside the VM). This approach main-
tains the strong isolation of VMFI and leverages VMI methods to gain target context.
The primary contributions of this paper are:
– The presentation of tools for HPC Resilience investigations that support experiments

at both user and kernel levels, which can be performed with strong separation be-
tween control and system under test environments;

– A description of a cooperative VM-based fault-injection (FI) mechanism, which in-
cludes a discussion of how VMI can benefit FI;

– The demonstration of proposed FI mechanism to study soft error resilience in itera-
tive solver benchmark running in user-space of guest VM.

2 Background

2.1 Virtualization

The virtualization of physical hardware enables a privileged software layer to multiplex
the underlying physical resources. This management layer is called a virtual machine
monitor (VMM), or hypervisor, and is responsible for providing VMs with efficient,
controlled access to the physical resources [23, 20]. The VMM runs on a host machine,
and a VM runs on the VMM. The VM is often termed the guest and the operating system
(OS) running in the VM is termed the guest operating system (or guest OS). There are
two categories of VMMs that are distinguished by their position in the software stack
with respect to the physical hardware [20]: i) executes directly on the hardware (type-I),
ii) executes atop or within a host OS (type-II).



There are several open-source and commercial offerings for virtualization. Pala-
cios [13] is a VMM that has been developed specifically for use in high-performance
computing (HPC) environments. It can be embedded within the Kitten light-weight ker-
nel or Linux OS. The implementation uses hardware extensions available in modern x86
processors to provide efficient virtualization. Palacios runs on standard x86 commodity
clusters and Cray XT/XK supercomputers. Palacios is currently being used as part of
the Hobbes OS research project [2].

2.2 Virtual Machine Introspection

Virtual machine introspection allows for a guest’s internal state to be exposed to an ex-
ternal viewer, commonly another VM [19], the VMM [1], or a process on the host [8].
Because the VM is executing on a software or hardware abstraction of physical re-
sources, the amount of state exposed by VMI is extensive, ranging from device regis-
ters to the memory of the guest. This allows for the external software to both observe
and modify the guest’s state. However, the view of the guest’s state is often difficult to
understand because of the “semantic gap” [4]. To overcome this obstacle, researchers
often create a bridge across the semantic gap by means of a memory map of a partic-
ular process or the guest OS. An example of this bridge with respect to Linux is the
System.map file, which holds a significant amount of information including the vir-
tual address of the various functions, data structures, and other data residing within the
kernel.

2.3 Fault Injection

Virtualization offers several useful mechanisms for implementing fault injection. Suess-
kraut et al. [24] used VMs to speed FI campaigns by taking a snapshot of the full
execution state before an experiment and then rolling back to the pre-injection state.
This also allows for all software dependencies to be fully contained within the guest
VM to allow tests to be spread across multiple physical machines. This encapsulation of
the experimental environment was noted by Clark et al. [6] as a benefit for reproducing
results and performing repeatable research.

DeBardeleben et. al [7, 9] have used virtualization to develop a platform for vul-
nerability assessments. Their approach is based on the widely used QEMU emulator,
which supports a dynamic translation layer for evaluating the instructions executed by
the guest VM. Their tool, F-SEFI, can be used to study the effect of soft errors on appli-
cations. They have used the tools to simulate soft errors to affect instruction operands
(e.g., corruption of operands to FMUL instruction), which can be done randomly or on a
per-function basis for an application. They model soft errors as single or multi-bit cor-
ruptions and can inject the errors on a deterministic and probabilistic basis. This work
uses a different virtualization environment (QEMU) from our type-II virtualization soft-
ware (Palacios). Also, they introduce errors at the instruction level via the dynamic
translation layer of QEMU, whereas our approach introduces errors via a character de-
vice that exposes the guest’s memory with VM introspection techniques to identify the
full process and memory layout for the target environment.



Le and Tamir [14] highlight advantages and challenges associated with using virtu-
alization for FI based on their experiences developing and using the Gigan tool. They
studied the fidelity of software implemented fault injection (SWIFI) running injection
campaigns in a virtualized context versus running without virtualization (i.e., on bare
hardware) and found the environments are comparable with some clear benefits for
SWIFI based studies, i.e., isolation, logging, fast boot and crash detection. Their Xen
based tool, Gigan, employed fault injectors at the (a) VMM level for injecting from
outside the guest VM, and (b) kernel level for targeting kernel-space data structures and
user-space processes within the VM. Lastly, they used the Gigan FI tool to develop a
more robust hypervisor (ReHype) [14].

Note, others [5, 22] have investigated the fidelity of SWIFI in comparison to other
FI approaches, showing that in some instances the software-based approach may be
susceptible to an overestimation of errors in contrast to non-SWIFI approaches. The
lessons being that single-bit failures introduced via SWIFI at the program level (in con-
trast to RTL or environment/hardware) may overestimate the effects of bit-flips. This
has a bearing on vulnerability analysis that is derived from synthetic injection cam-
paigns. Koopman [12] cited similar concerns for avoiding pitfalls when using fault-
injection as a basis for dependability benchmarking. Therefore, the mechanisms em-
ployed in our work may not accurately mirror true hardware vulnerabilities, but have
use for application testing and controlled experimentation where the user is mindful of
the potential overestimations associated with SWIFI.

Li et al. [15] developed a binary instrumentation fault injection tool for studying
soft errors in HPC applications. Their tool, BIFIT, is based on the PIN instrumentation
tool and includes failure characterization based on injections into specific symbols/data-
structures in the target HPC application based on profiling information for the applica-
tions. This work did not employ virtualization, but did study the effects of simulated
“soft errors” on three HPC applications (Nek50000, S3D & GTC) by injecting bit-
flips into global, heap and stack data objects. They limited the injections to application
specific data, i.e., exclude middle-ware libraries, and observed that global data was sig-
nificant to the influence of all three application’s output and execution state. They also
observed time and location of the injection is significant for each application with in-
jections at later stages of application execution seeming to have a greater influence on
the application’s output & execution state. These soft error injections also affected the
execution duration (walltime) of these applications, often with a 2x or greater increase
in execution time. In our experiments, we target a different HPC application but focused
on application specific data that is algorithmically important.

3 Cooperative Approach to Fault Injection

The placement of the SUT in a virtual machine enables FI campaigns to maintain a
separation between the target and controlling system, regardless of whether the victim
resides in user or kernel space. The separation of virtual/physical resources allows the
resilience tests to operate within a guest virtual machine. The FI tests can be run from
within the VM or from the host level entirely outside of the guest context. This di-
vision permits the host to control the guest, and can be an opportunity to modify the



state within the guest (e.g., inject virtual device errors, inject data corruption into guest
memory). This separation does increase the complexity involved in the experimental
environment and requires additional steps to overcome the semantic gap between the
host and guest contexts.

3.1 Fault Injection Mechanism

The FI mechanism is implemented using a modification to the Palacios VMM that ex-
ports the guest VM’s memory as a character device in the host OS. This device file
enables host-level access to the memory of the guest OS and user-space tasks. A VM
FI utility (VMFI) that runs on the host is configured with details about primary data-
structures of the guest OS, e.g., address of the task structure symbol init_task. This
provides details about the context of the kernel running in the guest VM and is similar
to techniques used for VMI [17].

In the guest OS, another utility is used to provide a well-known marker to search for
within the list of tasks. This is a small launch utility called wrapper that simply starts
a command, i.e, fork()/exec(). This wrapper command is used to identify the
process to target within the guest context.

On startup the wrapper utility prints its process identifier (PID). This PID can be
passed as input to the VMFI utility, running outside of the VM, or the VMFI utility can
be used to scan for the wrapper process in the VM. In the case of scanning for the
wrapper process, the list of tasks within the guest OS is traversed (from outside the
guest OS) to find all instances where the process name matches and the associated PID
is displayed. This information (PID) then provides the necessary pointers to obtain the
children tasks started by the wrapper and details about memory associated with those
children. This lookup procedure results in the VMFI utility knowing the location of
the memory associated with the wrapper’s child process, which is the target (victim)
application running in the guest OS.

The startup of the wrapper and vmfi are currently manual steps. The other crit-
ical data that is necessary for the VMFI utility to function correctly is: the symbol
names and addresses for the target application (that will run within the guest OS), and
the value to write to the victim’s target address. These target addresses are limited to
symbol names in order to simplify the lookup process. The value to inject is provided
as input to the VMFI utility. A brief description with example usage information for the
VMFI and wrapper utilities is given in Figures 1 & 2.

4 Evaluation

When performing fault injection experiments the integrity of the target environment can
be corrupted and lead to unexpected behavior. The use of virtualization provides a soft-
ware layer that strengthens the isolation between the guest (target) and host (control).
The following tests were performed to demonstrate the cooperative approach to VM-
based experiments that use guest system and application context running in the VM to
perform fault injection from the host environment (outside the VM). While not tested
here, the VM-based FI approach can be used for tests targetting system software in the



1 Usage:
2 ./wrapper <executable> [args]
3

4 Description:
5 Wrapper utility to launch application and display useful information.
6 Also, used a sentinel for locating the target process in the guest
7 context, which is the child process of the wrapper utility.
8

9 Example:
10 ./wrapper ./HPCCG 100 200 100

Fig. 1. Usage information for wrapper utility that runs within the guest VM context.

1 Usage:
2 ./kmem list
3 --or--
4 ./kmem <wrapper_pid> <wrapper_map_file> <victim_map_file> \
5 <target_symbol> <data_to_inject> <data_num_bytes> \
6 <offset_from_symbol>
7

8 wrapper_pid The pid of wrapper process residing in the guest
9 wrapper_map_file Mapping file for the wrapper process

10 victim_map_file Mapping file for the victim process
11 target_symbol The name of the symbol in the victim
12 process to inject a fault
13 data_to_inject What to inject into the victim process
14 data_num_bytes How many bytes to write
15 offset_from_symbol Any additional bytes (offset) from target symbol
16

17 Description:
18 VMFI utility that can be used to LIST information about the guest context,
19 or used to inject errors into a victim application running in the guest
20 context.
21

22 Example:
23 ./kmem 198 wrapper.map HPCCG.symmap rtrans 6 4 0

Fig. 2. Usage information for VMFI utility that runs on the host (outside VM).

VM that operates in a privileged mode and could crash or misbehave, without affecting
the controller on the host.

4.1 Setup

The experiment used the Palacios VMM running within a Linux v3.5.0 host OS. The
guest OS is a Linux v2.6.33.7 kernel using Busybox v1.20 to create a very small system
installation. The guest VM configuration included shadow memory paging. The guest
used bridged networking, whereby a Linux virtio network interface in the guest was
connected to the host’s network interface. The HPCCG: Simple Conjugate Gradient
Benchmark [16] was used as the target application. All tests were performed on a Linux
cluster testbed (SAL9000) at ORNL. The machines in the cluster have 1 AMD64 CPU
with 24 cores, 64 GB of memory, and dual-bonded 1 Gbps Ethernet. The host operating
system was Ubuntu Linux 12.04 LTS.



4.2 Guest Application Errors

To investigate the feasibility of doing host-level injections into a guest-level context,
the FI mechanism for Palacios described in Section 3 was leveraged. The HPCCG
benchmark was used to test this FI functionality. The benchmark performs an itera-
tive refinement until reaching a solution within a given threshold, or until a maximum
number of iterations are performed. Previous studies have found iterative algorithms
to be resilient to some errors [3], possibly at the cost of taking longer to converge on
an appropriate value. The HPCCG benchmark has also been identified as a more rep-
resentative metric for current scientific applications and was identified by Heroux and
Dongarra as an alternate metric for future Top 500 indexes [10]. The HPCCG bench-
mark was slightly modified to expose the rtrans variable in the HPCCG function to
be a global symbol. This was necessary in order for the vmfi utility to locate a target
address within the guest OS. The rtrans variable was selected through manual code
inspection; the variable is used throughout the life of the iterative application. The only
other change to HPCCG was to vary the value of tolerance to allow the algorithm
to adjust the solution threshold. For example, tolerance=0.0 results in the algo-
rithm always running to the maximum number of iterations [16], in contrast to setting
tolerance=0.0000001 that allows for a slight margin that can satisfy the thresh-
old and (possibly) terminate before the maximum number of iterations. The binary was
statically linked and run in serial mode (i.e., no use of MPI or OpenMP).

Host	
  OS	
  

VMM	
  

VM	
  
	
  
	
  
	
  
	
  

Guest	
  OS	
  

App	
  (HPCCG)	
  

VMFI	
  

Fig. 3. Diagram showing the VM+FI setup with an application (e.g, HPCCG) target running in
the Guest VM.

The overall layout is shown in Figure 3. The host level vmfi injects a value into a
specified memory address within the context of an application running within the VM.
The application used in our tests, HPCCG, is reflected by the orange App (HPCCG)
box that resides in the space of the VM (green box). Figure 3 also illustrates the vmfi
utility running outside the VM context and injecting an error into the target running
within the VM.

4.3 Discussion & Observations

The guest application error testing confirmed that the host-level injector functioned
correctly and caused non-fatal errors in the target application, HPCCG. The intent was



to simulate, at a very course-grain, data corruption of a key variable in the HPCCG
program. The application was run 30 times both with and without injected errors.
The same input parameters were used for all runs, nx = 100, ny = 200, nz =
100, which are the blocks of the matrix in the x/y/z dimensions [16], e.g., wrapper
./test HPCCG tol0.0 100 200 100. These values were selected to fit the avail-
able memory size and keep the execution time for the benchmark within the VM to a
small amount of time to speed testing. The default maximum iterations max_iter=
150 was used, and the tolerance was set to tolerance=0.0000001. All non-error
cases resulted in identical output for the value of the Residual (rtrans) on each iter-
ation, and the Final residual printed at the end (normr) as shown in Table 1(a). The
same tests were re-run with errors injected into the rtrans variable during the execu-
tion. The fault injections took place at 1 second intervals and injected a random value
between 1..100. This value was written as 4-bytes into the target variable (rtrans) to
emulate multiple bit-flips in a single data value. As expected, there were no fatal errors
as the changes were controlled to be only in the specific data value of rtrans, but
there were slight perturbations due to the data errors as shown by Table 1(b) which did
not occur in the non-error case of the benchmark. This experiment verified the ability
to perform silent data corruption into an application running in a guest OS context from
the host OS. All tests (with and without errors) completed in 74 iterations.

Table 1. The effects to the Final residual (normr). These statistics show the results for the
serial HPCCG test without (a) and with (b) random data errors. In the error case, values between
[1..100] at 1 second intervals were injected into the rtrans variable. The statistics are based
on the Final residual at the end of the benchmark. The parameters for the benchmark were nx =
100, ny = 200, nz = 100, and tolerance = 0.0000001.

(a) HPCCG No Errors

Field Value
Num. runs 30
Minimum 8.97885e-08
Maximum 8.97885e-08

Mean 8.97885e-08
Median 8.97885e-08
Mode 8.97885e-08

Variance 0
Std.Dev. 0

(b) HPCCG With Errors

Field Value
Num. runs 30
Minimum 8.97878e-08
Maximum 8.97881e-08

Mean 8.97879766666667e-08
Median 8.9788e-08
Mode 8.9788e-08

Variance 8.0500807188788e-27
Std.Dev. 8.97222420522292e-14

5 Conclusion

The use of VMs offers the ability to strongly separate the target from the hosting en-
vironment, which is useful when conducting fault injection experiments. The hosting
platform has full access to the virtual guest context, but the details within the guest VM
are not transparent from outside the guest’s context. To overcome this issue a coop-
erative approach was explored where details about the guest OS were made available



to tools in the host context. In the guest context, additional wrapper command was
added that provides information that host level tools can be leveraged to lookup details
within the guest context. Additionally, the symbol maps for the guest kernel and ap-
plication were made available to the host-level VMFI tools. This cooperative approach
helps to reduce the semantic gap between the VM/host contexts.

The VM also provides a reusable execution context to support repeatable test con-
figurations. This is very useful when creating a cooperative testing environment be-
cause the guest configuration is well known and customized as appropriate. Therefore
assumptions can be made for the purposes of the FI experiments. For example, pre-
compiled binaries can be placed in the VM that are also available on the host so symbol
information (name/address) can be used for the FI experiments. This holds for the guest
OS too, which can be made available at the host level for performing experiments on
guest kernel data structures (e.g., via embedded VMM debuggers) or for accessing in-
formation about processes within the guest OS. The key insight being that the VM
offers a customizable container that can be adapted as needed to simplify and aid FI
experiments. The VM also offers full access to the guest context that would otherwise
be difficult to achieve from a purely software approach.

A disadvantage of this low-level VMFI approach is an increased level of complexity
and an increased semantic gap. This gap emerges because the higher level contextual
information about the application (target) is divorced from the lower level VM vantage
point. To overcome this challenge additional capabilities may need to be put in place,
i.e., cooperative services, that provide additional information about the application con-
text. For example, while the memory region for a guest OS is known by the VMM, the
guest OS specific data structures within the VM are opaque. Therefore, a cooperative
exchange of data is necessary to inform the host about details associated with the guest
OS. For example, providing the VMM with a system map with the symbol names and
address of functions and data structures of the guest OS running within the VM.

The prototype VMFI approach that we discussed in this paper was greatly influ-
enced by VMI techniques. As demonstrated in the experiment, we were able to use
these techniques to inject errors from outside the VM into specific data structures of a
real benchmark (HPCCG) running within the guest VM. The iterative solver (HPCCG)
reached the correct result, as expected, but the effects of our silent data corruption were
detectable in an increased variance in the final residual (normr). While this experiment
is very simplistic, it does show that the VMFI tool is working correctly and is usable
for studies on applications running within a VM.

This work used the strong isolation of VMs to separate the FI controller from the
FI target. Another approach that would be interesting to explore is the use of container-
based virtualization to provide the isolation between the FI controller and target. The
failure isolation properties of VMs and containers are not identical, and the container-
based environments are restricted to a single OS kernel. Therefore, if the intent was
to pursue FI campaigns against low-level system software (e.g., guest OS targets), the
VMFI approach would be a better option than a container-based approach. However,
if the target is an entirely user-space application, the isolation between containers may
be sufficient for the FI experiments. A container-based approach would not suffer the
semantic gap problem associated with VMs because there is a single OS kernel and



the FI controller (outside container) could have full visibility of all running processes.
In general, further investigation is required to better understand the failure isolation
properties of these single and multiple kernel approaches to virtualization.

6 Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research program.

References

1. Aderholdt, F., Ghafoor, S., Siraj, A., Scott, S.L.: Integrity based intrusion detection system
for enterprise and cloud environments. In: Proceedings of the 4th IEEE/ACM International
Conference on Utility and Cloud Computing (2011)

2. Brightwell, R., Oldfield, R., Maccabe, A.B., Bernholdt, D.E.: Hobbes: Composition and vir-
tualization as the foundations of an extreme-scale OS/R. In: Proceedings of the 3rd Interna-
tional Workshop on Runtime and Operating Systems for Supercomputers (ROSS). pp. 2:1–
2:8. ROSS’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/
2491661.2481427

3. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra methods.
In: Proceedings of the 22nd Annual International Conference on Supercomputing. pp. 155–
164. ICS ’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/
1375527.1375552

4. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems. pp. 133–138. HOTOS ’01, IEEE Computer
Society, Washington, DC, USA (May 2001), http://dl.acm.org/citation.cfm?
id=874075.876409

5. Cho, H., Mirkhani, S., Cher, C.Y., Abraham, J.A., Mitra, S.: Quantitative evaluation of
soft error injection techniques for robust system design. In: Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE. pp. 1–10 (May 2013)

6. Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Matthews, J.N.:
Xen and the art of repeated research. In: Proceedings of the Annual Conference on USENIX
Annual Technical Conference. pp. 47–47. ATEC ’04, USENIX Association, Berkeley, CA,
USA (2004), http://dl.acm.org/citation.cfm?id=1247415.1247462

7. DeBardeleben, N., Blanchard, S., Guan, Q., Zhang, Z., Fu, S.: Experimental framework for
injecting logic errors in a virtual machine to profile applications for soft error resilience.
In: Proceedings of the 2011 International Conference on Parallel Processing - Volume 2.
pp. 282–291. Euro-Par’11, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.
org/10.1007/978-3-642-29740-3_32

8. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: Proc. Network and Distributed Systems Security Symposium (February
2003)

9. Guan, Q., Debardeleben, N., Blanchard, S., Fu, S.: F-sefi: A fine-grained soft error fault
injection tool for profiling application vulnerability. In: Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. pp. 1245–1254 (May 2014)

10. Heroux, M.A., Dongarra, J.: Toward a New Metric for Ranking High Perfor-
mance Computing Systems. Tech. Rep. SAND2013-4744, Sandia National Laboratories
(Jun 2013), http://www.sandia.gov/˜maherou/docs/HPCG-Benchmark.



pdf, uRL: http://www.sandia.gov/˜maherou/docs/HPCG-Benchmark.pdf (Last visited:
April 26, 2014).

11. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer 30(4),
75–82 (Apr 1997)

12. Koopman, P.: What’s wrong with fault injection as a benchmarking tool? In: Proceed-
ings of the Workshop on Dependability Benchmarking (WDB’02) (Jun 25, 2002),
http://homepages.laas.fr/kanoun/ifip_wg_10_4_sigdeb/external/
02-06-25/index.html, in conjunction with IEEE Conference on Dependable Systems
and Networks (DSN-2002)

13. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke, A., Ja-
conette, S., Levenhagen, M., Brightwell, R.: Palacios and Kitten: New high performance
operating systems for scalable virtualized and native supercomputing. In: IEEE International
Symposium on Parallel Distributed Processing (IPDPS). pp. 1–12 (Apr 2010)

14. Le, M., Tamir, Y.: Fault Injection in Virtualized Systems – Challenges and Applications.
Transactions on Dependable and Secure Computing 12(3), 284–297 (May/June 2015),
http://www.cs.ucla.edu/˜tamir/papers/tdsc15.pdf

15. Li, D., Vetter, J.S., Yu, W.: Classifying soft error vulnerabilities in extreme-scale scientific
applications using a binary instrumentation tool. In: International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). ACM (Nov 2012)

16. Mantevo mini-application downloads, http://www.mantevo.org/packages.php,
project URL: http://www.mantevo.org/packages.php (Last visited: April 6, 2014).

17. Nance, K., Bishop, M., Hay, B.: Virtual machine introspection: Observation or interference?
IEEE Security and Privacy 6(5), 32–37 (2008)

18. Naughton, T., Vallée, G., Engelmann, C., Scott, S.L.: A case for virtual machine based fault
injection in a high-performance computing environment. In: Proc. of the 5th Workshop on
System-level Virtualization for High Performance Computing (HPCVirt’11). pp. 234–243.
Euro-Par’11, Springer-Verlag (2012)

19. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure active
monitoring using virtualization. In: Proceedings of the IEEE Symposium on Security and
Privacy (May 2008)

20. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation architec-
tures. Commun. ACM 17(7), 412–421 (1974)

21. Potyra, S., Sieh, V., Cin, M.D.: Evaluating fault-tolerant system designs using FAUmachine.
In: Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems (EFTS’07).
p. 9. ACM, New York, NY, USA (2007)

22. Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault-injection based compar-
ison of program susceptibility to soft errors. In: 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. pp. 319–330 (June 2015)

23. Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Processes. Mor-
gan Kaufmann (2005)

24. Süßkraut, M., Creutz, S., Fetzer, C.: Fast fault injection with virtual machines (Fast Abstract).
In: Supplement of the 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN2007) (Jun 2007), http://wwwse.inf.tu-dresden.de/
papers/preprint-suesskraut2007DSNb.pdf


