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Abstract  

This paper presents various aspects of reliability, availability and serviceability (RAS) systems as 
they relate to group communication service, including reliable and total order 
multicast/broadcast, virtual synchrony, and failure detection. While the issue of availability, 
particularly high availability using replication-based architectures has recently received upsurge 
research interests, much still have to be done in understanding the basic underlying concepts for 
achieving RAS systems, especially in high-end and high performance computing (HPC) 
communities. Various attributes of group communication service and the prototype of symmetric 
active replication following ideas utilized in the Newtop protocol will be discussed. We explore 
the application of group communication service for RAS HPC, laying the groundwork for its 
integrated model.  

1  Introduction  

Recent developments in terascale computing have been aided by cluster computing, which is a 
distributed computing environment consisting of loosely coupled computers working together to 
solve one “large” problem [45]. Computer clusters are regarded as commodity clusters since they 
are generally made of low-cost commercial-off-the-shelf (COTS) computers, connected through 
fast local area networks. The concept of computer clustering is not new, the first computer cluster 
was built in the 1950s and many cluster-based computer systems have been developed ever since 
[45]. There has been a tremendous growth in research interests in the application of computer 
clusters in HPC within the last two decades, see [38] and [45]. This is due largely to the rapid 
improvements and dramatic cost reduction in computing technologies in both hardware and 
software. The competitive price/performance ratio of commodity clusters poses a serious 
challenge for traditional massively-parallel-processors supercomputers [3], [22], [24]. The em-
phases in HPC have shifted to commodity clusters, for reasons of easy deployment, 
interoperability, flexibility, scalability, upgradeability and low-cost [23], [26].  Message 
passing libraries, such as the Parallel Virtual Machine (PVM) and Message Passaging Interface 
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(MPI), providing interprocessor communication amongst computing nodes, propelled research in 
parallel computing adopting computer clusters [38], [45]. They are considered the de facto 
standards for programming parallel systems. These libraries and many of their variants 
(OpenMPI, Local Area Multicomputer MPI, MPICH, Harness) and several new others have been 
developed over the years to meet different needs in HPC [3], [4]-[15]. High performance 
computing has also benefited in great measures from advances in algorithms for distributed 
systems. Better job schedulers, such as the Portable Batch System (PBS) (and subsequently, 
OpenPBS), Condor, Sun Grid Engine (SGE), and Maui have enabled development of several 
HPC clusters [4]-[15]. 

The proliferation of software systems supporting cluster computing led to many variations of 
software techniques for parallel computing. Several of the parallel processing software systems 
are application-specific, limiting their wide utilization. To mitigate this complexity of cluster 
configuration, several cluster management systems, such as the Open Source Cluster Application 
Resource (OSCAR) and Rocks have been developed, see [45] for detailed information about both 
software packages.  

The architecture of a computer clusters comes in two flavors, namely, symmetric and asymmetric 
[45]. In a symmetric model, the computing nodes are connected to an existing communication 
network and they function as individual computers, accepting requests to users directly from the 
external network and Internet; the asymmetric model has a node designated as the headnode to 
which all users’ requests are sent [45]. The headnode or the frontend serves as gateway for the 
rest of the compute nodes. These configurations have associated with them issues such as 
reliability, availability and serviceability that are pertinent to high-end, high performance 
computing. The concepts of reliability, availability and serviceability are interrelated and connote 
different things to different people [47], [48]; to the hardware manufacturers, RAS means that 
hardware system works continuously even in the presence of failure in any of the constituent 
hardware components; to software developers, RAS indicates failures in the underlying processes 
and hardware components do not cause any interruptions in the overall system performance. A 
computer system that satisfies RAS criteria are fault-tolerant - in a hardware realm, an RAS 
system implies building a fault-tolerant system that possesses the capabilities of sustaining fail-
ures.  

This paper describes various aspects of reliability, availability and serviceability in high 
performance computing. While the symmetric model plausibly supports the high available cluster 
architecture, it is difficult to manage due to problems associated with workload distribution and 
reduced optimal performance [45], [50]. As indicated above, the headnode in the asymmetric 
model serves as the primary server, providing public interface to the entire cluster and hence, 
constitutes a single point of failure (SPOF), and therefore, a degradation for RAS [4]-[15]. The 
asymmetric model has been commonly utilized in many cluster systems due to it ease in 
implementation and coordination of interconnected computing nodes. The cluster management 
systems, OSCAR and Rocks implement the asymmetric model, which means that while both 
toolkits may be highly valuable in high performance computing, they suffer from the single point 
of failure and hence, may not have high availability property.  

There is a growing number of research interests in developing RAS software systems embedded 
in the cluster management systems. Examples are the highly available Linux system (HA-Linux), 
highly available OSCAR toolkit (HA-OSCAR), and fault-tolerance MPI (FT-MPI) [3], [24]-[26]. 
This paper would focus on algorithms for developing RAS, fault-tolerant cluster systems. 
Distributed algorithms for process group systems (group communication services), reliable 
multicast/broadcast, total order (atomic) multicast/broadcast, virtual synchrony have consistently 
been described in the literature to support RAS and fault-tolerant systems. This paper will discuss 
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algorithms for process groups in the context of RAS for high performance computing. Algorithms 
for process groups are characterized using safety and liveness properties. Many variations of 
these classifications and specifications are prevalent in literature. A particularly interesting 
categorization was one given by Morgan and Ezilchelvan [43] and implemented in the Newcastle 
Total Order Protocol (Newtop). This would be presented in this paper in addition to description of 
broadcast service developed and implemented by Oestreicher [49]. These specifications would 
pave the way for the design, development and implementation RAS for terascale computing. 

  
2  High Availability  

Developing highly available HPC systems and thereby, increasing the quality of HPC software 
and networks, is a critical component in the US legislation entitled, “The High-Performance 
Computing Revitalization Act.” The bill establishes security standards and practices for critical 
systems serving critical infrastructures, the national defense, and advanced scientific applications 
[51]. To understand the concept of high availability, it is important to describe the concepts of 
reliability, availability and serviceability. RAS are essential attributes of a computing system 
design [49], [50]. A reliable system is one that consistently produces the same results and thus, 
maintaining data integrity. Reliability pertains to system’s ability to operate continuously without 
failures or outages. An outage or fault refers to deviation from the specified behavior of the 
system. Faults or outages may be due to error in design, failure in hardware component, over-
loading of engineered system resources, and error in executing procedures [47]. Mean Time 
Between Failure (MTBF), Failures-In-Time (FITS), Mean Time To Failure (MTTR), Mean Time 
to Repair (MTTR) are parameters generally used for measuring system reliability. Availability is 
the degree to which a system suffers degradation or interruption in its service to the customer as a 
consequence of failures of one or more of its parts. It is the percentage of time when a system is 
operational. Resnick [47] distinguished basic availability from continuous and high availability. 
A system is said to have basic availability if it is designed, implemented and deployed with 
sufficient components (hardware, software and procedures) to satisfy the system’s functional 
requirements; high availability is designed, implemented and deployed with sufficient 
components to satisfy the system’s functional requirements and also has sufficient redundancy in 
components (hardware, software and procedures) to mask certain defined faults or outages [47]. 
While high availability masks unplanned outages, continuous availability masks both planned and 
unplanned outages. Using the reliability parameters above, availability can be expressed 
mathematically as  

       MTTF  
Availability =  ---------------------- 

              MTTF + MTTR  
 

Note that MTBF = MTTF + MTTR [47]. The computed availability is typically specified in terms 
of nines. A 1-nine is 90% availability, 2-nines is 99% availability, 3-nines is 99.9% availability, 
and so on. The downtime of 1-nine available system is 36.5 days per year; 2-nines available 
system is 3.65 days per year. Apparently, the higher the number of nines the highly available the 
system becomes. The importance placed on high availability continues to resonant in high 
performance computing. High availability attribute in hardware and software systems has repeat-
edly been modeled using redundancy or replications. This led to a further characterization of 
computer clusters, namely, high availability clusters, load balancing clusters and high 
performance clusters. High availability cluster systems are implemented for the purpose of 
improving the availability of services that the system provides [3], [45], [47], [50]. Examples of 
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software systems supporting high availability clustering are the HA-Linux, HA-OSCAR, 
Distributed Replicated Block Device (DRBD), and FT-MPI. Load balancing clusters use one or 
more load-balancing front ends to distribute workload to a collection of back end servers. The 
Beowulf-based cluster systems using OSCAR or Rocks are examples of load balancing clusters. 
The high performance clusters provide increased performance by splitting a computational task 
across many different nodes in the cluster. The distinction between all three categories is very 
subtle, high performance and load balancing are characteristics of high availability cluster 
systems. High availability is crucial in high performance computing. The last of the RAS concept 
is serviceability and it is defined as the ease with which corrective maintenance or preventative 
maintenance can be performed on a system. Clearly, serviceability improves system availability 
and reliability.  

Redundancy or replication, group communication and virtual synchrony play central role in the 
design and implementation of high availability clusters. Redundancy or replication would be 
discussed in this section and group communication and virtual synchrony, in the following 
sections.  

There are three levels of replications that are essential in the description of high availability -cold 
standby, warm standby and hot standby. The cold and warm standby are also called passive 
replication and hot standby, active replication. In the case of cold standby, the redundant (or 
secondary) component serves as a backup and it is only activated whenever the primary 
component fails. The secondary system receives scheduled backups and it is initialized to enter 
service to accept rollback to the last consistent and committed state of the failed server. The warm 
standby model is similar to cold standby, except that the scheduled backups are done more 
frequently, mirroring the primary system at regular intervals. In the hot standby, the redundant (or 
backup) server runs concurrently with the primary component, mirroring the primary server in 
real time so that both servers contain identical information. Many software systems supporting 
high availability and implementing passive and active replication model or their combinations 
have been developed recently. Majority of these HA systems run on the open source Linux 
operating systems and many have claimed success in mission-critical applications. Existing HA 
systems (HA-OSCAR, Linux-HA, and ShaoLin HA Cluster) support two server nodes, one 
primary and the other cold or warm or hot standby server node [4]-[15].  

3  Group Communication Service  

Distributed systems are commonly described abstractly as consisting of the application layer at 
the top level and communication network layer at the bottom layer and the centralized level or 
middleware, made of the group communication layer. The centralized group communication layer 
simulates the group communication service (GCS) and it is critical in the design of distributed 
systems. The group communication service, sometimes called view-oriented group 
communication service, has been an active research in distributed computing for more than two 
decades. The terms group membership service and process groups have been used to describe 
group communication. Without loss of generality, we would use group communication service in 
this paper. Distributed computing devises algorithms for a set of processes that seek to achieve 
some form of cooperation [2], [1], [16]-[21], [29]-[44]. The distributed system may permit some 
of the processes to fail, leave or join; reconstituting a new set of processes for the group. This 
complicates algorithms supporting group communication service. GCS provides two key services, 
namely, a membership service and a multicast service. The multicast service is a means by with 
the processes in the group communicate with each others, while the membership service provides 
a tracking mechanism for processes currently in the group (the view) [42], [44], [46]. Depending 
on the application, the multicast service may be replaced with broadcast service, in which case, 
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all processes in the group are expected to receive the same requests. In a multicast service, 
requests are received by a selected number of processes in the group. The terms primary partition 
and partitionable group membership service are used to distinguish group communication 
services allowing single view of a group (broadcast) and multiple views of the group (multicast), 
respectively. However, it must be pointed out that the distinction between broadcast and multicast 
have not be made clear. The view of a group is the collection of the current participating 
processes within the group. A dynamic process group is one in which group membership changes 
by allowing processes to leave, join or be removed due to failures. A primary partition process 
group designates a process group partition as the primary partition, whose member processes are 
allowed to deliver messages. On the contrary, a partitionable process group allows all processes 
to deliver messages regardless of the partition they belong [40]-[44].  

The concurrency in the operations of the processes in GCS makes it an excellent candidate for 
replication, which, as indicated in the preceding section, supports high availability, making GCS 
a difficult problem to tackle. It is not surprising that there are approximately sixty-four group 
communication algorithms reported in literature. Additional motivation for the support of group 
communication service for high availability systems stems from its ability to integrate failure de-
tection algorithms (hence, allowing for the construction of fault-tolerant dynamics necessary for 
RAS), virtual synchrony (the topic for next section), and a variety of other interesting semantics. 
GCS applications include state machine or active replication; primary backup replication; 
distributed and clustered operating systems; distributed transactions and database replication; 
resource allocation; load balancing; system management and monitoring; and high available 
servers. This section describes the specifications (also called semantics) and implementation of 
group communication. The basic configuration of group communication service will be presented 
as well as the safety and liveness properties required for the characterization of different group 
communication protocols or primitives. We first provide definitions for basic group communi-
cation terminologies [2], [1].  

We use the abstraction provided in [2], [1], [41], [42] to describe group communication service. 
A group communication service is assumed to compose statically of a set of N processes, 
uniquely identified as p1, p2,..., pN. Processes communicate by exchanging uniquely specified 
messages through communication links. A correct process is one that does not exhibit faulty 
behaviors resulting from crash, omission, timing or Byzantine failures; it must successfully exe-
cutes all assigned automaton, a sequence of local and global events defining the algorithm of the 
process, either within a bounded unit of time (synchronous algorithm) or an unbounded time units 
(asynchronous algorithm). An event may involve one process receiving a message from another 
process, executing a local computation or sending a message from one process to another. The 
performance of a distributed algorithm is measured by the latency, the amount of time for a 
message to be delivered from one process to the other, bandwidth of the communication links, 
and throughput, the speed at which local events are performed. Performance analysis of the 
distributed algorithm(s) described here would be presented in another report, however, it is worth 
mentioning that while some researchers have claimed successes in comparative study using 
performance analysis for different group communication services, much still need to be done in 
research terms in this area. In the remainder of this section we would discuss the reliable order 
and total order broadcast algorithms; safety and liveness properties; mechanisms for message 
ordering in group communication systems.  

In describing the safety and the liveness properties, we assume a static single process group view 
and for simplicity, the events are represented by primitives, namely, broadcast(m) (this is 
assumed to be executed once) and deliver(m),where m is the message. As indicated above, a 
message must be uniquely defined by its original sender, (in this case, we define an operation 
sender(m) to return the sender process identifier), the sequence number assigned by the original 

 5



sender, local lock together with the process identifier [2], [1], [44].  

Definition Process p broadcasts message m if p executes broadcast(m).  

Definition Process p delivers message m if p executes deliver(m).  

Using these two definitions and sender(m) we state the safety and liveness properties [2].  

Validity: A correct process that broadcasts a message m eventually delivers it.  
 
Uniform Agreement: If a process p delivers a message m, then every correct processes must 

delivers m.  

Uniform Integrity: Every process delivers message m at most once only if m was previously 
broadcasts by sender(m).  

Uniform Total Order: If process p broadcasts messages m1 and m2, and q broadcasts m1 and 
m2, then p delivers m1 before m2, if and only if q delivers m1 before m2.  

The safety properties include the Uniform Integrity and Uniform Total Order properties, which 
when violated at time t would never be satisfied. Validity and Uniform Agreement properties 
form the liveliness properties, which mean that these properties are eventually guaranteed to hold 
at some time t. A reliable broadcast group communication service is one satisfying Validity, 
Uniform Agreement, Uniform Integrity properties and a total order broadcast or atomic broadcast 
group communication service satisfies all four properties. Let dst(m) be the set of processes at 
which m is delivered. We define total order broadcast and multicast as 

Total Order Broadcast: dst(m)= {p1,p2,…,pN} for all m.  

Total Order Multicast There exists a message m for which sender(m) is not equal to  dst(m) and 
messages mi and mj for which dst(mi ) is not equal to dst(mj ).  

There are non-uniform counterparts of Uniform Agreement and Uniform Total Order properties 
that permit only correct processes to deliver messages, weakening the restriction placed on faulty 
processes. To design fault-tolerant total order broadcast may require both uniform and non-
uniform properties. While we would not discuss non-uniform properties any further, it must be 
remarked that these properties may be beneficial in the design of RAS systems using group 
communication service. Safety and liveness properties do not guarantee the absence of 
contamination in correct processes, since it is possible for a faulty process to reach an inconsistent 
state before crashing [2], [1]. Ordering properties are used to ensure that processes deliver 
messages that may not lead to an inconsistent state. Let tr(p) be the trace of process p, that is, the 
set of all events at p, the following are the ordering properties. 
 
Prefix Order: For any two processes p and q, either tr(p) prefix tr(q) or tr(q) prefix tr(p). 

Gap-Free Uniform Total Order: If some process delivers message m1 after message m2, then a 
process delivers m1 only after it has delivered m2.  

FIFO Order: If a correct process broadcasts m before m, then no correct process delivers m be-
fore m.  

Causal Order: If the broadcast of m1 causally precedes m2, then no correct process delivers m1 
before m2.  
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Local Order: If a process broadcasts m1 and a process delivers m1 before it broadcasts m2, 
then no correct process delivers m2 before m1.  

In a total order broadcast and multicast protocols, the algorithms or primitives for ordering 
messages are very important. As mentioned earlier, a message is identified by its sender, 
destination or sequencer process. Depending on the process group dynamics, the sender and 
destination processes are easily determined. The sequencer process assigns a unique sequence 
number to the message. The order in which messages are delivered is a crucial problem in group 
communication service. While there are many message ordering mechanisms, we focus on a few 
discussed in [41], [42] - fixed sequencer: a single process is elected to serve as the sequencer for 
all messages, there are three variants of this (unicast to broadcast, broadcast to broadcast, unicast 
to unicast to broadcast); moving sequencer or token-based: amongst the possible sender 
processes, one is elected to serve as a sequencer for each message using token, where a token 
passes from sender process to next, token-ring approach has prominently been utilized for moving 
sequencer; privileged-based: in this case, the sender process broadcast messages only when 
granted the privilege using the process of arbitration; communication history: uses timestamps in 
message delivery while ensuring total order, two variants of this algorithm are causal history and 
deterministic merge; and destinations agreement: delivery order is based on agreement amongst 
destination processes. Existing algorithms, Ameoba developed by Kaashock and Tanenbaum, 
MTP by Armstrong et al., Tandem by Carr, Isis by Birmann et al., Phoenix by Wilhelm and 
Schiper, Rampert by Reiter, use the fixed sequencer algorithm; RMP by Whetten et al., DTP by 
Kim and Kim, Pinwheel by Cristian et al., support the moving sequencer; On-Demand by Cristian 
et al., Train by Cristian, Token-FD by Ekwell et al., Totem by Amir et al., TPM by Rajagopalan 
and McKinley, RTCAST by Abdelzaher et al., MARS by Kopetz et al., are privileged-based 
algorithms; Lamport by Lamport, Psync by Peterson et al., Newtop by Ezilchelvan et al., Trans-
Total by Moser et al., ATOP by Chockler et al. CORel by Keida and Dolev, Deterministic Merge 
by Aguilera and Strom, HAS by Cristian et al., are based on communication history; Skeen by 
Birman and Joseph, Prefix Agreement by Anceaume, Quick-A by Berman and Bharali are 
destination agreement algorithms.  

We end this section by discussing in depth the New-top protocol. In their motivation for Newtop 
(acronym for Newcastle Total Order Protocol), Morgan and Ezilchelvan [43] presented an 
interesting characterization for replication, which, as previously mentioned, offers high 
availability in the presence of failures. They distinguished between request dissemination (D) and 
reply collection (C), which are two guiding principles of how messages are sent, delivered and 
replies collected by replicas. D1 represents a situation in which a request is sent directly to one 
replica called request manager and D2, when the request is broadcast to the entire group. C0 
denotes the case when the sender waits for no reply; C1, the sender waits for one reply; C2, the 
sender waits for all replies from destination processes; C3, the sender waits for replies from a 
majority of the destination processes. R1 is used to represent passive replication: a designated 
replica server called primary executes the sender process’ request and multicasts to other replicas, 
note that, multiple process groups are acceptable; R2, for active replication: all replica servers 
execute sender process’ request. O1 is used to denote asymmetric ordering: a replica is designated 
to assume the responsibility of ordering the messages; O2, to denote symmetric ordering: in this 
case, all members use the same deterministic algorithm for message ordering. A group 
communication policy is formed by a combination of attributes D, C, R and O. Clearly, R1 cannot 
combine with C2 or C3, giving a total 24 different policies. The Newtop protocol is based on 
partitionable process group that allows different asymmetric and symmetric message orderings in 
different groups. That is, message ordering may be symmetric in one process group and 
asymmetric in another. The protocol supports a variety of group communication policies. A 
policy including R2 has been successfully argued to support high availability. It would be 
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interesting to see performance analyzes of several of the group communication policies for high 
performance computing applications in multiple process group situations.  

4  Virtual Synchrony 

Group communication services supporting virtual synchrony are guaranteed to have identical set 
of messages delivered in the previous view of the process group. In a virtual synchrony, 
membership change and view are very important. In this section, we would discuss the various 
concepts of virtual synchrony and how there are used to enhance group communication service. A 
variation of virtual synchrony, called extended virtual synchrony would also be described. What 
is the hype about virtual synchrony and extended virtual synchrony? Why has virtual synchrony 
been so important in the development of group communication service? Why it is necessary to 
enforce virtual synchrony in the design of RAS for high performance computing? All these 
questions and many more would be addressed in this section.  

A group communication service system that has a virtual synchrony communications (VSC) [41] 
must have in addition to the set of events or primitives for group communication service describe 
the following: the viewchng which returns new view of the process group consisting of the 
current participating processes while executing an event; send(m) and receive(m) for point-to-
point broadcast communications. Virtual synchrony properties are  

If a correct process p sends a message m to a correct process q, then q eventually receives m.  

For each message m, a process p receives m at most once, and only if m was previously sent to p 
by some process q.  

If a correct process p broadcasts a message m, then it eventually delivers m.  

For each message m, each process delivers m at most once, and only if m was broadcasted by 
some process.  

If a process (respectively, a correct process) p delivers m in view v, then all processes which are 
either correct or faulty deliver in a view change event v delivered m.  

If a process p delivers a message m in view v1 and a process q broadcasts m in view v2, then 
v1 = v2.  

We have already seen that the first four properties are satisfied by total order broadcast. The last 
two properties enforce virtual synchrony in a group communication service, guaranteeing that 
messages are delivered in the view they were sent and hence, supporting fault-tolerance necessary 
for building RAS systems. In virtual synchrony, processes installing new view based on the 
previous view must have the same messages received in the old view. Therefore, virtual 
synchrony is essential for applications implementing replication using state machine approach 
(active replication). According to Chockler, Keidar and Vitenberg [1], a group communication 
system that supports virtual synchrony allows processes to avoid state transfer among processes 
that “continue together” from one view to another. The extended virtual synchrony introduces 
transitional set, agreement on successors and safe message properties to virtual synchrony. A 
transitional set contains information that allows processes to locally determine whether the virtual 
synchrony applies or a state transfer is required to create transitional view. This is implemented in 
Tansis and Totem by Moser et al. The agreement successor property ensures that every member 
process in the intersection of p’s current view and p’s previous view is also coming from the 

 8 



same view [3]. It is implemented in Horus by Friedman and Vaysburg and Ensemble by Hickey 
et al. The safe message property, implemented in Transis and Totem, guarantees that a process p 
receives a message m if the group communication service knows that the message is stable, that 
is, all member processes in the current view have received the message from the network.  

One can not overestimate the relevance of group communication service that supports virtual 
synchrony and extended virtual synchrony in RAS systems for high performance computing. 
Symmetric active replication group communication service for high availability clusters will 
benefit from consistency in message delivery achievable in virtual synchrony and extended 
virtual synchrony group communication service. 
  
5  Fault-Tolerance  

Building a group communication service that is fault-tolerant requires mechanisms for detecting 
process and message delivery failures and for taking corrective and recovery measures for the 
failed processes. Synchronous and asynchronous group communication systems are categorized 
using the parameters, the process speed interval, the difference between the speeds of the slowest 
and fastest process; and communication delay or communication latency [2]. While a syn-
chronous system places a bound on the parameters, for asynchronous systems, these parameters 
are unbounded. By making values of these parameters to be infinitesimally small, it is possible to 
have asynchronous systems, called timed asynchronous systems. Using oracles that processes can 
query, fault-tolerant systems are constructed implementing timed asynchronous systems. Failure 
detectors and randomized values are examples of oracle. Failure detectors are classified into 
perfect, eventually perfect, strong, and eventually strong. All classes satisfy the property that 
every faulty process is permanently suspected by all correct processes. In the perfect class, 
processes are not suspected before they crash and in the eventually perfect, correct processes are 
not suspected by correct processes after a specified elapsed time. In the strong class, some 
processes are never suspected and eventually strong class, some correct processes are never 
suspected after a specified elapsed time. Sometimes, process controlled crash, where processes 
are given the authority to kill other processes or commit suicide, is used for failure detection [2], 
[42]. Fault-tolerant systems are built using a combination of algorithms failure detection using 
oracles, group membership service based on process-controlled crash integrated in the virtual and 
extended virtual synchrony, message stability using the technique of safe messages, consensus 
amongst member processes, resilient patterns and mechanisms for lossy channels. The failure 
detection, group membership service and message stability approaches seem plausible for group 
communication service for RAS-based high performance computing. 

6  Preliminary Experience with Process Groups Algorithm  

The first author’s initial experience with group communication service involves designing 
modules as depicted in Fig.1. These object-based modules are the group membership service 
module, the multicast and broadcast module, the virtual and extended virtual synchrony module 
and the fault-tolerance and failure detection module. The group membership module includes 
objects for groups and processes. The message queue is treated as a referential object, supposedly 
to allow for easy deletion and insertion of message object. The group object employs the queue 
class to track process membership. Processes are allowed to join or leave the group. While the 
implementations of these group behaviors are preliminary, they would form the basis for future 
design and development of group membership service for HPC. Every process object keeps a 
record of its events, called the trace, in a queue fashion. No ordering mechanisms have yet been 
integrated; this would expectedly be included when the multicast/broadcast, virtual and extended 
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virtual synchrony and failure detection modules have been completed.  

Symmetric active replication model will be favored in RAS systems for high performance 
computing. This is because symmetric active replication enables fault-tolerance necessary for 
RAS. The model shown in the figure would support symmetric active replication by ensuring that 
the group communication service when successfully implemented would consist of characteristics 
of all four modules - effective group membership service integrated with virtual synchrony and 
failure detection and efficient multicast/broadcast service that would support both virtual 
synchrony and failure detection. 
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