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Abstract—Sequencer, privilege-based, and communication his-
tory algorithms are popular approaches to implement total
ordering, where communication history algorithms are most
suitable for parallel computing systems, because they provide
best performance under heavy work load. Unfortunately, post-
transmission delay of communication history algorithms is most
apparent when a system is idle. In this paper, we propose a
fast delivery protocol to reduce the latency of message ordering.
The protocol optimizes the total ordering process by waiting for
messages only from a subset of the machines in the group, and by
fast acknowledging messages on behalf of other machines. Our
test results indicate that the fast delivery protocol is suitable for
both idle and heavy load systems, while reducing the latency of
message ordering.

I. INTRODUCTION

Total order broadcasting is essential for group communi-
cation services [1]–[3], but the agreement on a total order
usually bears a cost of performance: a message is not delivered
immediately after being received, until all the communication
machines reach agreement on a single total order of delivery.
Generally, the cost is measured as latency of totally ordered
messages, from the point the message is ready to be sent, to
the time it is delivered by the sender machine.

Traditionally three approaches are widely used to implement
total ordering: sequencer, privilege-based, and communication
history algorithms [3]. In sequencer algorithms, one machine
is responsible for ordering the messages on behalf of other
machines in the group. Privilege-based algorithms rely on the
idea that senders can broadcast messages only when they are
granted the privilege to do so. For example, in a token-based
algorithm [4], a token is rotated among machines in the same
group, and one machine can only send messages while it holds
the token. In communication history algorithms, total order
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messages can be sent by any machine at any time, without
prior enforced order, and total order is ensured by delaying
the delivery of messages, until enough information of com-
munication history has been gathered from other machines.

Three types of algorithms have both advantages and disad-
vantages. Sequencer algorithms and privilege-based algorithms
provide good performance when a system is relatively idle.
However, when multiple machines are active and constantly
send messages, the latency is limited by the time to circulate
the token or produce the order number from the sequencer.
Communication history algorithms have a post-transmission
delay [3], [5]. To collect enough information, the algorithm
has to wait for a message from each machine in the group,
and then deliver the set of messages that do not causally
follow any other, in a predefined order, for example, by sender
ID. The length of the delay is set by the slowest machine
to respond with a message. The post-transmission delay is
most apparent when the system is relatively idle, and when
waiting for response from all other machines in the group.
In the worst case, the delay may be equal to the interval of
heart beat messages from an idle machine. On the contrary,
if all machines produce messages and the communication in
the group is heavy, the regular messages continuously form a
total order, and the algorithm provides the potential for low
latency of total order message delivery.

In a parallel computing system, multiple concurrent requests
are expected to arrive simultaneously. A communication his-
tory algorithm is preferred to order requests among multiple
machines, since such algorithm performs well under heavy
communication loads with concurrent requests. However, for
relatively light load scenarios, the post-transmission delay is
high. We propose a fast delivery protocol to reduce this post-
transmission delay. The fast delivery protocol forms the total
order by waiting for messages only from a subset of the
machines in the group, and by fast acknowledging a message if
necessary, thus it fast delivers total order messages. To verify
our protocol, we implemented a prototype in the Transis [5]
group communication system and applied this protocol to an
active/active replication scenario.



Let mi and mj are two total order broadcasting
messages:

1) if mi causally precedes mj , all machines that
deliver mi and mj deliver mi before mj .

2) if mi and mj are concurrent, if machine p
delivers mi before mj , then any machine q that
belongs to the same partition with p delivers mi

before mj .
Fig. 1. The definition of total order broadcasting service.

II. TOTAL ORDER BROADCASTING SERVICE

In this section, we briefly discuss the services a total order
broadcasting system should provide. We assume that there is
a substrate layer providing basic broadcasting services.

A. Basic Broadcasting Services

The machines in the system use a broadcasting service to
send messages. A broadcast message is sent once by it’s source
machine, and arrives to all destined machines in the system, at
different time. The broadcasting service is responsible for the
reliable delivery of messages. Internally, the causal delivery
order [6] of messages is guaranteed by the service.

(Definition): Message mi and message mj are concurrent,
if mi does not causally precedes mj , and mj does not causally
precedes mi.

The basic broadcasting service receives the messages of the
network. It keeps causal order of messages and delivers them
to our fast delivery protocol. The broadcasting service does not
guarantee the same delivery sequence of concurrent messages
on all machines in the system.

B. Total Order Broadcasting

On top of the basic broadcasting service, totally ordered
broadcasting extends the underlying causal order to a total
order for concurrent messages.

(Total Order): If two correct machines p and q both deliver
message mi and mj , then p delivers mi before mj if and only
if q delivers mi before mj .

The total order broadcasting provided by the system does
not guarantee the total order across multiple partitions. As long
as partitions do not occur, all machines deliver the messages
in the same total order. When a partition occurs, machines in
every partition continue to form the same total order. However,
this total order may differ across partitions. The total order
broadcasting service of the system is defined in Fig. 1.

III. FAST DELIVERY PROTOCOL FOR TOTAL ORDER
BROADCASTING

In this section, we describe a fast delivery protocol to
provide the total order broadcasting service defined in Sec-
tion II-B. We assume that the protocol works on top of the
basic broadcasting services described in Section II-A. We
first consider a static system of n machines, which means
no failure of machines, no network partitions and re-merges,
no new machines. Those features will be considered in the

Section IV, in which we show how to extend the protocol to
handle dynamic environments.

Each machine will not deliver any messages until it collects
a message set from other machines in the group. The message
set should contain enough information to guarantee the totally
ordered delivery. After receives enough messages, the machine
delivers the set of messages that do not causally follow
any other, in a predefined order. Idle machines periodically
broadcast heart beat messages with a predefined interval on
behalf of other machines. Those heart beat messages will not
be delivered, but used by machines to determine the order of
received messages.

A. Notation and Definition

We define that a partition P consists of a group of machines
{p1, p2, · · · , pN}. We assume each machine in the group P has
a distinct ID. For a machine p, function id(p) returns its ID.
If the number of machines in the primary group P is N ,

∀p, q ∈ P, id(p), id(q) ∈ {1, 2, · · · , N},
id(p) 6= id(q)

We associate with each machine p ∈ P the functions prefix
and suffix which are defined:

1) prefix(p) = {q|∀q ∈ P, id(q) < id(p)}
2) suffix(p) = {q|∀q ∈ P, id(q) > id(p)}
The input to the fast delivery protocol is a stream of

causally ordered messages from underlying the broadcasting
service. We denote by mq,i the ith message sent by machine q.
sender(mq,i) = q. If message mq,i is delivered before mk,j

in machine p, deliver(mq,i) < deliver(mk,j)
We define a pending message [7] to be a message that was

received by the protocol but has not be agreed to total order,
thus, not delivered for processing. A pending message that
follows only delivered messages is called a candidate mes-
sage. The set of concurrent candidate messages is called the
candidate set. This is the set of messages that are considered
for the next slot in the total order. For example, a system
has 5 machines, {p1, p2, p3, p4, p5}. After a certain time, there
is no undelivered messages on any machines. Machine p1

broadcasts a message mp1, and machine p4 broadcasts a
message mp4. All five machines receive both mp1 and mp4,
but none of them can deliver the two messages, because
except the sending machines, no one knows if messages mp2
and mp3 are sent by p2 and p3, concurrently with mp4, or
not. All machines should not deliver mp1 and mp4, until
enough information is collected to determine a total order. The
message set of mp1 and mp4 is called the candidate set, and
messages mp1 and mp4 are called candidate messages. Let
Mp = {m1,m2, · · · ,mk} be the set of candidate messages in
a machine p. We associate with Mp a function senders.

senders(Mp) = {sender(mi)|∀mi ∈ Mp}

Let Mdp is the set of messages ready to be delivered in a
machine p. Mdp ⊆ Mp. The Mdp is called the deliver set.



When receiving a regular message m in machine p:
1) if (m is a new candidate message)

add m into candidate set Mp

2) if (Mp 6= φ)
for all (mi ∈ Mp)

if prefix(sender(mi)) ⊆ senders(Mp)
add mi into delivery set Mdp

3) if (Mdp 6= φ)
deliver all messages mj in Mdp in the
order of id(sender(mj))

4) if (sender(m) 6∈ suffix(p))
return

if (message m is not a total order message)
return

if (messages are waiting to be broadcast from p)
return

if (∃mi ∈ Mp, id(sender(mi)) = p)
return

otherwise, fast acknowledge m

Fig. 2. The fast delivery protocol.

B. The Fast Delivery Protocol

The fast delivery protocol is symmetric, and we describe it
for a specific machine p (the pseudo code is shown in Fig. 2).
The key idea of the fast delivery protocol is that it forms the
total order by waiting for messages only from a subset of the
machines in the group. Assuming a candidate message m is in
candidate set Mp, we use the following delivery criterion to
define what messages a machine has to wait before delivering
m:

1) Add m into deliver set Mdp when:

prefix(sender(m)) ⊆ senders(Mp)

2) Deliver the messages in the Mdp with the following
order:

∀mi,mj ∈ Mdp,

id(sender(mi)) < id(sender(mj))
−→ deliver(mi) < deliver(mj)

With the same example in Section III-A, we explain how the
protocol works. All five machines could deliver mp1 immedi-
ately, because prefix(p1) = φ, and senders(Mp) = φ. The
five machines could not deliver mp4, because prefix(p4) =
{p1, p2, p3}, and senders(Mp) = p1. Machines have to wait
messages from both p2 and p4, but do not need to wait a
message from p5, because p5 6∈ prefix(p4).

According to the protocol, if prefix(sender(m)) 6⊆
senders(Mp). the machine p has to wait messages from other
machines before delivering m. If any of those machines is idle,
the waiting time could be the interval of heart beat messages.
To speedup the delivery of m, the idle machines should
immediately acknowledge m on behalf of other machines. If
a machine q receives a message m, and q is idle, q broadcasts
a fast acknowledgment when:

sender(m) ∈ suffix(q)

In the same example, if p2 and p3 are idle, they should
fast acknowledge mp4, because p4 ∈ suffix(p2), and p4 ∈
suffix(p3). If p5 is idle, it does not need to send fast
acknowledgment because p4 6∈ suffix(p5).

fast acknowledgment reduces the latency of message
delivery, however, it injects more packets into network. If
communication is heavy, fast acknowledgment may burden
network and machines, thus increase delivery latency. To
reduce the cost of fast acknowledgment, we define the
following acknowledgment criterion:

(ACK) Fast acknowledge a message m from a machine q
when:

1) Message m is a total order message.
2) There is no message waiting to be sent from the machine

q.
3) 6 ∃mj ∈ Mp, id(sender(mj)) = q.
It is very straightforward of conditions 1. Condition 2 means

if a machine is sending regular messages, it is not a idle
machine, and the regular messages themselves are enough to
form a total order. Condition 3 means if a machine already
sent a regular message which is still in the Mp, that message
can be used to form a total order, without an additional
acknowledgment. In the same example, if p1 is idle after sent
mp1, it does not need to send any acknowledgment (although
p4 ∈ suffix(p1)), because mp1 is still in Mp.

In a parallel system, when multiple concurrent requests
arrive a machine simultaneously and the system is busy, condi-
tions 2 and 3 are very unlikely to be satisfied simultaneously,
so almost no additional acknowledgments are injected into the
network when communication is heavy.

IV. FAST DELIVERY PROTOCOL FOR DYNAMIC SYSTEMS

The fast delivery protocol operates on an asynchronous
stream of causal order messages. In this section, we show
how to extend the protocol to handle failures, the network
partitioning and re-merge, and joining machines.

Fast delivery protocol is integrated into the group commu-
nication service to provide total order delivery of messages
on top of the basic broadcasting service. We assume that
the system contains membership service, which maintains a
view of current membership set (CMS) consistent among all
machines in the dynamic environment. When machines crash
or disconnect, the network partitions and re-merges, or the
new machines join, the membership service of all connected
machines must reconfigure and reach a new agreement of
CMS.

After a new agreement is reached, membership service de-
livers a view change event indicating a new configuration. All
connected machines in the new configuration agree on the set
of regular messages that belong to the previous membership,
and must be delivered before the new view change event. Fast



# of machines Single All
1 235
2 952 971
3 1031 1461
4 1089 1845
5 1158 2236
6 1213 2646
7 1290 3073
8 1348 3514

TABLE I
REQUEST LATENCY (µs) COMPARISON OF MULTIPLE MACHINES.

”SINGLE” MEANS ONLY ONE MACHINE IN A RELATIVELY IDLE SYSTEM
BROADCASTS REQUESTS. ”ALL” MEANS ALL MACHINES IN A BUSY

SYSTEM BROADCAST REQUESTS.

delivery protocol is extended to define how to deliver such
messages in the dynamic environment.

We assume that after a new agreement of CMS, the mem-
bership service notifies fast delivery protocol with a special
event. With such event, the protocol gets the machine set, Pf ,
which belongs to previous configuration, but is included in
the new configuration. The new prefix(p) and suffix(p)
are calculated based on the Pf :

1) prefix(p)new = prefix(p)old − Pf

2) suffix(p)new = suffix(p)old − Pf

Using the algorithm described in Section III, the set of
regular messages that belong to the previous configuration
are delivered before the view change event with the new
prefix(p) and suffix(p). Since a new CMS always com-
pletes within a finite delay of time, any total order message
could be delivered within a limited time interval.

V. EXPERIMENTAL RESULTS

To verify above model, a proof-of-concept prototype for
fast delivery protocol has been implemented in Transis [5],
and deployed on the XTORC cluster at Oak Ridge National
Laboratory, using up to 8 machines in various combinations
for functional and performance testing. The computing nodes
of the XTORC cluster are IBM IntelliStation M Pro series
servers. Individual nodes contain a Intel Pentium 2GHz pro-
cessor with 768MB memory, and a 40GB hard disk. All
nodes are connected via Fast Ethernet (100MBit/s full duplex)
switches. Fedora Core 5 has been installed as the operating
system. Transis v1.03 with fast delivery protocol is used to
provide group communication services. Failures are simulated
by unplugging network cables and by forcibly shutting down
individual processes.

An MPI-based benchmark is used to send concurrent re-
quests from multiple machines. The latency is measured with
blocked requests, and an average latency is calculated from
100 requests of each machine. The results under various
configurations are provided for comparison from 1 to 8 ma-
chines (Table I). In the configuration of only one machine, the
latency overhead mainly comes from processing cost of the
group communication service. When the number of machines
increases, additional overhead is introduced by the network
communication and total order communication algorithm to

reach agreement among machines. For each configuration, we
measure the latency under both idle and busy systems. In an
idle system, only a single machine is active to send requests.
In a busy system, all machines send concurrent requests,
and the communication traffic is heavy. The proof-of-concept
prototype showed that although the latency increases with the
number of machines, the fast delivery protocol works well to
keep the overall overhead acceptable for any HPC system. The
overhead is consistent for both idle and busy systems. The
fast acknowledgment aggressively acknowledges total order
messages to reduce the latency of idle systems when only
a single machine is active. The protocol is smart enough to
hold its acknowledgments when the network communication
is heavy because more machines are involved.

We compared the fast delivery protocol with the traditional
communication history algorithm provided by the original
Transis system. In idle system, the post-transmission delay
of traditional communication history algorithm is apparent. It
is not a constant value, and in worst case, the latency is equal
to the interval of heart beat messages from a idle machine.
A typical interval is in the gratitude of hundred milliseconds,
which is unacceptable, compared to the latency of fast delivery
protocol. In a busy system, the latency of fast delivery protocol
is almost the same as the traditional communication history
algorithm, because the protocol holds unnecessary acknowl-
edgments. We found that when all machines sent concurrent
requests, the fast delivery protocol did not acknowledge any
broadcast, and the regular messages continuously form a total
order.

VI. RELATED WORK

Group communication systems typically provide different
group broadcast services with a variety of ordering and reli-
ability guarantees [1]. A totally ordered service extends the
causal service by ensuring that messages sent to a set of
processes are delivered by all these processes in the same
order. Past research on total ordering algorithms focuses on
three popular approaches [3]. Sequencer algorithms [8]–[10]
rely on one machine to order the messages on behalf of
other machines in the group. Privilege-based algorithms [4],
[11] force the total order in the process of competition of a
privilege among all machines in the group. Communication
history algorithms [5], [7], [12]–[14] ensure the total order by
delaying the delivery of messages, until the enough informa-
tion of communication history has been gathered from other
machines. The agreement on a total order in communication
history algorithms usually bears a cost of performance: post-
transmission delay [3], [5]. Several studies have been made to
reduce the cost. Early delivery algorithms [7], [13] reduce the
latency by reaching agreement with a subset of the machines
in the group. Optimal delivery algorithms [15], [16] deliver
messages before the total order is determined, but notify
the applications and cancel the delivery if the final order is
different with delivered order.

Researchers have considered using totally ordered broad-
casting to provide high availability for HPC systems [17].



Past research in high availability primarily focused on the
active/standby model [18]–[21]. Recent research of symmetric
active/active replication model [22], [23] uses multiple re-
dundant service nodes running in virtual synchrony [24] and
totally ordered broadcasting.

VII. CONCLUSION

In this paper, we propose a fast delivery protocol to reduce
the latency of message ordering in group communication.
The protocol optimizes the total ordering process by waiting
for messages only from a subset of the machines in the
group. The protocol performances well for both idle and busy
systems. Furthermore, the fast acknowledgment aggressively
acknowledges total order messages to reduce the latency when
some machines are idle. The protocol is smart enough to
hold the acknowledgments when the network communication
is heavy.

We implemented a prototype of the fast delivery protocol
and discussed an application of this protocol in symmetric
active/active replication in parallel computing systems. Our
performance results are encouraging: they indicate that the fast
delivery protocol is suitable for both idle and heavy loaded
systems.
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