Symmetric Active/Active Metadata Service for Highly Available Cluster Storage Systems

Li Ou¹, Xubin (Ben) He¹, Xin Chen¹, **Christian Engelmann^{2,3}**, Stephen L. Scott²

¹ Tennessee Tech University, Cookeville, USA
² Oak Ridge National Laboratory, Oak Ridge, USA
³ The University of Reading, Reading, UK

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

The University of Reading

Background and Motivation

- Large-scale HPC systems with 10,000-210,000 processors
- 100-480 TFlop/s LINPACK performance and 10-100TB RAM.
- Current systems: IBM Blue Gene/P and Cray XT4 Top500.org
- Next-generation: Peta-scale IBM Blue Gene/P and Cray ??
- Applications: Climate change, nuclear astrophysics, fusion energy, materials sciences, biology, nanotechnology, ...
- Single application runs for days, weeks, and even months
- Reliability, availability, and serviceability is crucial for success
- · Head and service nodes are single points of failure and control
- Efficient redundancy strategies are needed for high availability

Active/Standby with Shared Storage

- Commonly employed technique
- Single active head node
- Backup to shared storage
- Simple checkpoint/restart
- Fail-over to standby node
- Possible corruption of backup state when failing during backup
- Introduction of a new single point of failure
- Correctness and availability are NOT ALWAYS guaranteed
- ➔ Metadata servers (MDS) of Parallel Virtual File System (PVFS) and Lustre (not part of standard install)

Symmetric Active/Active Redundancy

- Many active service nodes
- Work load distribution
- Symmetric replication between service nodes
- Continuous service
- Always up-to-date
- No fail-over, no restore-over
- State-machine replication
- Virtual synchrony model
- Complex algorithms (process group communication)
- JOSHUA prototype for Torque batch job queue and resource manager
- PVFS MDS (this paper)

Internal Replication Method

Symmetric Active/Active Metadata Service Architecture

Symmetric Active/Active Metadata Service Design for the Parallel Virtual File System

	read	update	write
read			Х
update		Х	Х
write	X	X	Х

MDS Record Locking Conflicts Resolved by Transaction Control

Symmetric Active/Active PVFS Metadata Service Request Handling

MDS Read Request Handling

MDS Write Request Handling

Experimental Setup

- Transis v1.03 group communication system with fast delivery protocol (see ICCCN 2007 paper)
- Parallel Virtual File System (PVFS) v2
- ORNL XTORC cluster
 - Dual Intel Pentium 2GHz nodes
 - 768MB memory and 40 GB hard disk space per node
 - 100MBit/s Fast Ethernet (full duplex)
 - Linux Fedora Core 5 operating system
- MPI-based benchmark using multiple clients to send concurrent MDS read and write requests

Symmetric Active/Active PVFS Metadata Service Performance and Overhead

Writing Throughput

100 Mbps Ethernet LAN Environment

Symmetric Active/Active PVFS Metadata Service Performance and Overhead

100 Mbps Ethernet LAN Environment

Symmetric Active/Active PVFS Metadata Service Availability Improvement

- A_{component} = MTTF / (MTTF + MTTR)
- $A_{system} = 1 (1 A_{component}) n$
- T_{down} = 8760 hours * (1 A)
- Single node MTTF: 5000 hours
- Single node MTTR: 72 hours

Nodes	Availability	Est. Annual Downtime		
1	98.58%	5d 4h 21m		
2	99.97%	1h 45m		
3	99.9997%	1m 30s		
4	99.999995%	1 s		

Single-site redundancy for 7 nines does not mask catastrophic events.

Nov. 23, 2007

Summary and Future Work

- Developed a symmetric active/active metadata service (MDS) for the Parallel Virtual File System (PVFS)
- Solution ensures no loss of service and no loss of state
- Minimal performance impact for MDS write requests
- Significant performance gain for MDS read requests
- Significant availability improvement for MDS
- Employed concepts are applicable to any networked file system that utilizes a MDS
- Ongoing work focuses on more complex scenarios in service-oriented architectures (SOAs), such as dependencies between multiple services

Symmetric Active/Active Metadata Service for Highly Available Cluster Storage Systems

Li Ou¹, Xubin (Ben) He¹, Xin Chen¹, Christian Engelmann^{2,3}, Stephen L. Scott²

¹ Tennessee Tech University, Cookeville, USA
² Oak Ridge National Laboratory, Oak Ridge, USA
³ The University of Reading, Reading, UK

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

The University of Reading

