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ABSTRACT

In the world of high-performance computing, fault tolerance
and application resilience are becoming some of the primary
concerns because of increasing hardware failures and mem-
ory corruptions. While the research community has been
investigating various options, from system-level solutions
to application-level solutions, standards such as the Mes-
sage Passing Interface (MPI) are also starting to include
such capabilities. The current proposal for MPI fault tol-
erant is centered around the User-Level Failure Mitigation
(ULFM) concept, which provides means for fault detection
and recovery of the MPI layer. This approach does not ad-
dress application-level recovery, which is currently left to
application developers. In this work, we present a mod-
ification of some of the benchmarks of the NAS parallel
benchmark (NPB) to include support of the ULFM capabil-
ities as well as application-level strategies and mechanisms
for application-level failure recovery. As such, we present:
(i) an application-level library to “checkpoint” and restore
data, (ii) extensions of NPB benchmarks for fault tolerance
based on different strategies, (iii) a fault injection tool, and
(iv) some preliminary results that show the impact of such
fault tolerant strategies on the application execution.

CCS Concepts

eHardware — Failure recovery, maintenance and self-
repair; eComputer systems organization — Parallel
architectures;
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1. INTRODUCTION

The perpetually increasing scale of high-performance com-
puting (HPC) platforms leads to new challenges, from higher
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levels of concurrency to resilience concerns.  Furthermore,
the HPC community can only admit the dominating role of
the message passing execution model, which is not expected
to disappear anytime soon since the research community
seems to agree that Message Passing Interface (MPI) [6]
will still have a role to play for exascale computing. In
this context, extensions to the MPI standard have been pro-
posed and an effort is currently ongoing to extend the stan-
dard with primitives enabling User-Level Failure Mitigation
(ULFM) [4], with the goal of addressing the process fail-
ure model, which only considers failures of MPI ranks. The
ULFM proposal is based on the following principals: (i) fail-
ures are reported through returns code of MPI primitives, so
detection can only happen when the application is trying to
communicate, not during computation phases; (ii) new MPI
primitives are available to have a global agreement about
which MPI ranks failed; and (iii) new MPI primitives are
available to get valid MPI objects that can be used for com-
munications despite failures. We want to emphasize that
ULFM does not focus on failure recovery; it provides prim-
itives to detect failures and ensure that the MPI state is
valid enough to support further communications. Recovery
strategies are assumed to be implemented at the application
level, eventually using recovery-specific libraries.

The document presents modifications of the MPI imple-
mentation of the NASA Advanced Supercomputing Division
(NAS) Parallel Benchmark (NPB) [3, 2] using ULFM. Our
contributions can be summarized as follow:

e an implementation of fault tolerance strategies for the
NPB benchmarks Embarrassingly Parallel (EP) and
Data Transfer (DT);

e a library that can be used by application developers
to save data that also enables data recovery after an
MPT ranks fails;

e a fault injection tool that enables portable and repro-
ducible results by injecting failures at pre-defined po-
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sitions and conditions;

e a series of experiments, using the ULFM implementa-
tion from the University of Tennessee, Knoxville (UTK)
that shows that the proposed modifications behave and
perform as expected.

Finally, note that the goal of this study is not to evalu-
ate the actual performance of any ULFM implementation,
but rather to investigate what fault tolerance strategies can
be implemented using ULFM, what are their tradeoffs in
terms on memory and communication overheads, and if the
observed behavior and performance comply with the over-
all strategy (the literature already has some studies of the
performance of ULFM implementations [5]). As such, we
hope that our work will also be used as a benchmark to
validate the functionalities of ULFM implementations, since
our modified version of NPB exercises ULFM implementa-
tion fairly more extensively than current ULFM tests (which
are more micro-tests).

The remaining of the paper is organized as follow. Sec-
tion 2 presents background information about ULFM. Sec-
tion 3 details how various NPB benchmarks are extended
to support ULFM, as well as an application-level library for
saving data. Section 4 describes a fault injection tool that
we developed to validate the ULFM support. In Section 5,
we evaluate the modified benchmarks to ensure that the wit-
nessed behavior and performance are matching expectations
(note that the performance evaluation of the actual ULFM
implementation is out-of-scope of this paper). Finally, Sec-
tion 6 concludes.

2. ULFM OVERVIEW

ULFM is the draft proposal from the MPI Fault Toler-
ance Working Group (MPI-FTWG) to enhance the MPI
specification for the handling of rank failures. The goal of
ULFM is to provide failure detection and notification, as
well as all the required mechanisms to guarantee correct-
ness during communications after recovery of MPI objects
(ULFM does not support application-level recovery which
is assumed to be the responsibility of the application devel-
oper(s)). Failure detection is performed by adding a new
error type, MPI_ERR_PROC_FAILED, which is issued when a
communication to a failed rank is attempted.

Below is a list of the ULFM functions that are available
to application developers to help deal with failures of MPI
ranks (the ‘X’ in MPIX is to signify that these functions are
not yet part of the MPI standard).

e MPIX_Comm_revoke: Revoke a communicator and force
all further communications to return MPIX_ERR_REVOKED
instead of completing successfully. It also applies to
point-to-point communications between non-failed MPI
ranks, and this is a local operation.

e MPIX_Comm_shrink: Shrink a communicator to exclude
all known failed MPI ranks; collective operation.

e MPIX Comm_failure_ack: Acknowledge rank failures;
local operation.

e MPIX Comm_failure_get_acked: Return a group rep-
resenting the locally acknowledged failed MPI ranks.
This is a local operation and therefore, not necessarily
contain the failed MPI ranks that have been acknowl-
edged by other MPI ranks.

e MPIX_Comm_agree: Perform a collective bitwise AND
on its argument: failed MPI ranks do not contribute
to the result and therefore this operation performs a

global agreement among surviving MPI ranks to iden-
tify failed ranks. Note that if one or more MPI rank
has failed but was not acknowledged locally with
MPIX_Comm_failure_ack, then an exception of the class
MPIX_ERR_PROC_FAILED is raised and the agreement
fails (however, it is then possible to acknowledge these
failed ranks and call the agreement function again).
This is a collective operation.

e MPIX_Comm_iagree: This is a non-blocking version of
the agreement function (MPIX_Comm_agree).

3. ULFM SUPPORT IN NPB

In this section, we first present a proof-of-concept in-memory
data checkpointing mechanism. Secondly, we present the
ULFM-related modifications to the NPB benchmarks.

3.1 Application-level Data Saver

In the context of this work, we have two main goals:
(i) minimize the number of external dependencies to sim-
plify the release of the resulting software as a self-contained
benchmark, and (ii) avoid using a checkpoint/restart solu-
tion that relies on the file system since our testbeds used
for this study do not support any high-performance file I/0O.
For these reasons, we did not use checkpoint/restart solu-
tion such as SCR [8, 7] (which does not mean that such
solutions would not be of benefit when extending this work
to more generic cases and/or scientific applications), but
instead developed a in-memory proof-of-concept solution.
This solution is implemented via an application-level library
that provides a set of basic interfaces and policies to imple-
ment various data fault tolerance and recovery strategies.
We opted for generic interfaces that hide the complexity of
the data checkpoint and recovery policies. In other words,
the application developers do not have to worry about the
implementation of the data checkpoint and recovery strategy
but instead, simply specify which strategy from the library
should be used.

Data checkpointing and recovery is always a trade-off be-
tween checkpoint overhead, recovery overhead and the level
of fault tolerance provided. For example, it is possible for
each rank to save data into a neighbor’s memory, which lim-
its the checkpoint and recovery cost (checkpointing into a
single neighbor’s memory requires only limited additional
memory and communications, and therefore limits the over-
all checkpoint’s cost), but if both the rank and its neighbor
fail, it is not possible to recover from the two failures. On
the other hand, by saving the data onto all other MPI ranks’
memory, the data is always available even if a single rank
survives but it creates a large overhead since using a lot of
additional memory and communications.

At the moment, we implemented two different strategies:
single redundancy (also noted SINGLE_REDUNDANCY) using
a single neighbor, and full redundancy (also noted FULL_
REDUNDANCY) using all MPI ranks.

From a technical point of view, the interfaces currently
assume that: (i) the data is in a void* C array and (ii) the
data is checkpointed and restored within a static set of ranks
(i.e., we cannot spawn a new rank upon failure and have it
restore the data that was previously saved by another rank).
Also, byte order and data type size portability are the re-
sponsibility of the calling application. Finally, the data sav-
ing strategy is selected at the time the library is initialized
by passing a unique identifier (i.e., SINGLE_REDUNDANCY or



FULL_REDUNDANCY).

3.2 NPB Benchmark Extensions for ULFM Sup-

port
3.2.1 Embarrassingly Parallel — EP

EP generates sets of random numbers that go through a
statistical test and, if they pass, are modified to fall into
a normal distribution as Gaussian pairs. Verification is a
simple value check based on the summation of the Gaussian
pairs across all of the ranks.

Original Algorithm.

The original EP algorithm starts on the GenerateInput
step (Algorithm 1 line 4), creating an array of random num-
bers using a seed derived from its rank. These random num-
bers have the CalculateValues function applied to them
(Algorithm 1 line 5) which adds the value to the local solu-
tion when certain conditions are met. When all of the ranks
have finished creating their local solution, they gather them
in CollectResults; rank 0 then outputs the final results.
The only phase where communications occur is during the
CollectResults phase. Figure 1 illustrates the execution
flow of the EP benchmark.

Rank Rank Rank Rank

! ! ! |

Computation Computation Computation Computation

N\

Collect results to produce answer
Figure 1: Graphical overview of the EP algorithm.

Modifications for Fault Tolerance.

To make the EP benchmark fault tolerant, it now starts by
creating a work array in GenerateWorkArray (Algorithm 1
line 2). This work array starts as a simple array from 0 to
n—1, where n is the number of MPI ranks, so each rank has
its own slot in the array and each rank maintains its own
array. Then, in GenerateInputForMyRanksWorkArraySlot
(Algorithm 1 line 4), the ranks each select the i'" slot of
the array, where i is the current rank. The rank then ex-
ecutes the unmodified CalculateValues function using the
select data (Algorithm 1 line 5). It is important to note that
the only occurring communications happen in MPI_Init and
a MPI_Barrier (to synchronize timer initialization), which
are executed before CollectResults (Algorithm 1 line 6).
The collection of local results (CollectResults) has been
modified to tolerate failures: both the original and the fault
tolerant version perform three MPI_Allreduce reductions on
some internal data structures but the error codes for these
reductions are checked in the context of the fault tolerant
version and if a failure occurs, a valid communicator is re-
stored by using MPIX_Comm_shrink. The computation is
then restarted in order to redistribute the work amongst sur-
viving ranks, until the remaining ranks can successfully com-
plete the operation. In UpdateWorkArray, the living ranks

remove all other living ranks workload from their own copy
of the work array. The array is then compacted so that only
work that was not collected, due to failed ranks, is left. The
rank then repeats from the work selection step (Algorithm 1
line 4) with any ranks that have no work, skipping ahead to
the collection step. It is important to note that the rank in
a new communicator resulting from MPIX_Comm_shrink may
be different from the original one, since communicators can-
not be sparse and one or more failed ranks are now evicted
from the communicator.

Fault Tolerance Scope.

In the EP benchmark, fault tolerance begins after the ini-
tial setup and header output, not shown in Algorithm 1,
until just before the DisplayResults. Once the fault toler-
ance section of EP terminates, the critical computation is
completed, but some timers have not yet been collected and
the final answer has not been validated yet.

3.2.2 Data Transfer — DT

DT is an irregular communication benchmark: a directed
graph is generated with a payload that needs to be operated
on. Communication flows from source nodes, i.e., nodes with
no incoming edges, to the sink nodes, i.e., nodes with no
outgoing edges, and ‘other’ nodes that have both incoming
and outgoing edges.

Source
Source —» Other —~— Source

/

Other
Other

\ s Other
Other /
e /

Sink Sink Sink

Figure 2: Graphical overview of the DT algorithm.
Communications related to fault tolerance are not
included

Original Algorithm.

The graph is topologically sorted so that sources come
before all other nodes and sinks are last. The topology of
the graph is determined by the problem size, set at com-
pile time, as well as by the type of graph that is requested
during the invocation of the benchmark. Each rank is in
charge of a single graph node meaning that there must be
at least one rank for each graph node. Potential extra ranks
are not used. In GenerateGraph (Algorithm 2 line 2), ev-
ery rank creates the same graph.When the processing in
PerformOperations (Algorithm 2 line 12) begins, each rank
performs a computation based on the type of the graph’s
node (i.e., source, sink, or other) that is assigned to them.



Algorithm 1 Pseudocode for EP with fault tolerance (right) and without (left)

1: function MAIN

2: 2:

3: 3:

4: input < GENERATEINPUT() 4:

5: a < CALCULATEVALUES(input) 5:

6: b < COLLECTRESULTS(a) 6:

T 7

8: 8:

9: 9:
10: 10: end if
11: DisPLAYRESULTS(b) 11:

12: end function

1: function MAIN

workArray < GENERATEWORKARRAY()

label WorkTop

input <~ GENERATEINPUTFORMYRANKSWORKARRAYSLOT()
a < CALCULATEVALUES(input)

b, error < COLLECTRESULTS(a)
workArray < UPDATEWORKARRAY (error)
if error # Success then

goto WorkTop

DisPLAYRESULTS(b)
12: end function

The 3 types of computation are the following. (i) Source
nodes create a payload to be operated on, by invoking Cre-
ateSourceData (Algorithm 2 line 5), where the payload is
an array of pseudo random double precision floating point
values with a variable size. This payload is then sent to the
nodes pointed to by the outgoing edges of the graph for this
node. (ii) ‘Other’ nodes receive the data from their incom-
ing edges and combine the received arrays. The result of
this combination is now the node’s payload, which is then
sent to outgoing edges. (iii) Sink nodes receive data from
the incoming edges and reduces it into checksums that are
sent to ranko for the validation. After all of the nodes have
been processed, ranko combines all the checksums, in Fi-
nalDataGather (Algorithm 2 line 13). This is then verified
against expected values for the particular graph type and
problem size.

Modifications for Fault Tolerance.

Most of the work to implement a fault tolerant DT is into
serializing and de-serializing the graph when sending data
to other ranks for redundancy. Since every rank starts with
the same local representation of the graph, locally serializing
and storing the initial graph provides a common checkpoint
that all ranks can roll back to without any extra commu-
nication. If there is no failure when saving the results of
CreateSourceData (Algorithm 2 line 5) to remote ranks’
memory, that is used as a checkpoint. In the context of a
failure, the communicator is shrunk, the original graph is
de-serialized and the rank attempts to re-execute the com-
putation. This means that after a failure, a rank may be
responsible for a new graph node, but since all of the graphs
are the same as before the save has been completed, this is
not an issue. If a failure occurs after the save at Algorithm
2 line 3, then the application will rollback to this point (Al-
gorithm 2 line 3). This method requires at least n+ f ranks
to complete successfully where n is the number of nodes in
the graph and f is the number of ranks that will fail. The
previous save from Algorithm 2 line 6 is used as a checkpoint
and any failure will cause the entire application to roll back
to Algorithm 2 line 11, otherwise the application continues
as it does in the original algorithm.

Fault Tolerance Scope.

Fault tolerance in DT begins just after GenerateGraph
(Algorithm 2 line 2) and stops just after performing Final-
DataGather (Algorithm 2 line 13). Because of the nature of
this benchmark, it is difficult to trace the communications to
find points where a global checkpoint can be done. However,
instead of trying to save more work between communication
phases, the strategy provides a fast restart in the event of

failures.

4. FAULT INJECTION TOOL

Faults are injected using a library that we developed,
named FaultInjection. The library is used by placing
FaultInjection_fault calls in the application code. Note
that since ULFM can detect and handle failures only in
the context of a MPI function, we limit the injection points
around the MPI calls. It would be possible to include more
injection points but it would not impact when the failure is
detected and how the failure is handled. These pre-defined
fault injection points take 4 arguments: where in the code
this fault resides, and three arbitrary application defined in-
tegers. This interface is a compromise between flexibility
and simplicity. Based on our experience, three generic argu-
ments (integers) are enough for expressing all requirements
related to fault injection. When all of the values meet a set
of pre-defined conditions, described below, the fault is acti-
vated, i.e., the error is injected. The actual fault itself is one
of the following: (i) a call to the C standard library’s exit
function with a value of 0; (ii) a call to the _exit function
with an value of 0; or (iii) a call to Linux’s kill with a signal
of 9. The method is set at compile time and they all lead to
the same result: the failure of an MPI rank.

Faults are configured through a file that is specified when
launching an MPI job. This configuration file is a Lua script
(Lua is chosen for its permissive license and ease of use [1]),
and enables the description of complex experiments. By
using such a configuration file, it is possible to tailor an ap-
plication with a fault injection configuration, which greatly
helps with experimental reproducibility. This configuration
script calls a C function in the FaultInjection framework
to register failures based on their location in the source code,
the rank that should fail, and the three application defined
integers. When a failure is injected, it is logged to the stan-
dard error (stderr) stream. An example is shown below.

Fault requested at
FaultID: AFTER_KEY_SORT Rank:2 tagl:3 tag2:0 tag3:0
The FaultID is the name of the registered define, in this
case “After_Key_Sort”, that represents the location in the
application’s code. The FaultID is intended to be unique,
but this is not enforced by the library. Rank is the MPI rank
with respect to MPI_COMM_WORLD. Tagl, Tag2, and Tag3 are
the application defined integers.

Internally the information about when to inject a fault is
stored in an array of linked list pointers, each fault location
having its own linked list. If a fault is requested for a lo-
cation that does not have a fault registered, the lookup is



Algorithm 2 Pseudocode for DT with fault tolerance (right) and without (left)

1: function MAIN

%: input < GENERATEGRAPH()
4:
g: a < CREATESOURCEDATA (input)
7
8:
9:
10:
11:
12: b < PERFORMOPERATIONS(a)
%2: ¢ < FINALDATAGATHER(b)
15:
16:
17:
18: DIsPLAYRESULTS(c)

19: end function

1

18:

19

. function MAIN
input < GENERATEGRAPH()
savel < SAVEGRAPH(input)
label Savel_label
a < CREATESOURCEDATA (input)
save2 < SAVEGRAPH(a)
if ErrorHasOccured then
input <— LOADSAVE(savel)
goto Savel_label
end if
label Save2_label
b < PERFORMOPERATIONS(a)
¢ < FINALDATAGATHER(b)
if ErrorHasOccured then
a < LOADSAVE(save2)
goto Save2_label
end if
DisPLAYRESULTS(e)
. end function

just a check to see if a pointer is NULL, minimizing run-
time overheads. If there is at least one fault registered for
that location, the linked list is traversed checking each set
of parameters. If one of the failures in the list matches the
fault request, then the process is killed; if no matches are
found, the entire list is traversed and the process continues
to run. In general, the cost of traversing this linked list is
expected to be quite low and will likely be outweighed by
the surrounding code, especially if the traversal is near MPI
calls. The FaultInjection library does no communication
or coordination after the initialization phase where the con-
figuration file is read by ranko and sent via MPI to all ranks.

4.1 Fault Injection in EP

In EP, faults can be injected into two locations (see Algo-
rithm 3): (i) before CollectResults (called FaultReduce)
and (ii) after Shrink (called FaultRecover). Injecting a
fault before CollectResults simulates a failure at any point
during the main computation. If a failure occurs here then
another failure point can be triggered in the recovery path.
At the FaultRecover injection point, after the FaultReduce
failure has occurred and is detected at Reduction, another
fault can occur after the shrink. This will cause the re-
duction to fail again without exiting the CollectResults
function.

4.2 Fault Injection in DT

Algorithm 4 illustrates where the fault injection points
are added to DT. Failure injection points are inserted both
before and after PerformOperations named PRE_WORK and
POST_WORK, respectively. The first causes little work to be
lost when a failure occurs there. If a fault occurs at POST_
WORK, then almost the entire amount of work done by the
application is lost.

Another failure point is inserted before the SaveGraph
function. This provides an opportunity to inject a failure
before the potentially expensive save operation. The cost as-
sociated to the save depends on the requested strategy as de-
scribed in Section 3.1. The previously mentioned PRE_WORK
can be used to fail after the save operation, if that is desired.

There is another opportunity to insert a failure after Per-
formOperations, at FAULT_P2_POST_RECV_RESULTS, which
is basically after the last set of receives where ranko has
received the results from the sink nodes and is ready to dis-
play the answer. This is the most expensive failure point

Algorithm 3 EP with fault injection points

1: function COLLECTRESULTS(a)

2: error < Success
3: label top
4: b, partial Error < REDUCTIONS(a)
2: error < error + partial Error
T: if partial Error # Success then
8: SHRINK( )
9: FAULTINJECTION_FAULT (FaultRecover)
10: goto top
11: end if
12: return b,error
13: end function
14:
15: function maIN
16: workArray < GENERATEWORKARRAY ()
17: label WorkTop
18: input <~ GENERATEINPUTFORMYRANKSWORKARRAYSLOT()
19: a <+ CALCULATEVALUES(input)
20: FAULTINJECTION_FAULT(FaultReduce)
21: b, error < COLLECTRESULTS(a)
22: workArray < UPDATEWORKARRAY (error)
23: if error # Success then
24: goto WorkTop
25: end if
26: DisPLAYRESULTS(b)

27: end function

and will restore the problem to the state before the main
communication intensive kernel begins.

Other failure points are available in the source code if finer
grained control of failure injection points is desired, but are
not detailed here because of space constraints.

4.3 Experiment Description

Experiments are driven by configuration scripts used for
fault injection, which precisely describe which fault injection
points are activated and in the context of which MPI ranks.
These configuration files are specified via an environment
variable. Because of space limitation, we do not further
describe the syntax of these configuration files.

S. EVALUATION

We present in this section the preliminary evaluation of
the two fault tolerance strategies that have been implemented
by extending the NPB EP and DT benchmarks. As said
earlier, our goal is not to evaluate a specific ULFM imple-
mentation but rather evaluate the cost of each fault toler-
ance strategies, identify problems and challenges with these



Algorithm 4 DT with fault injection points

1: function MAIN
2: input < GENERATEGRAPH()
3: savel <— SAVEGRAPH(input)
4: label Savel_label
5: a + CREATESOURCEDATA (input)
6: save2 < SAVEGRAPH(a)
7 if ErrorHasOccured then
8: input <— LOADSAVE(savel)
9: goto Savel_label
10: end if
11: label Save2_label
12: FaurTINJECTION(PRE-WORK)
13: b < PERFORMOPERATIONS(a)
14: FaurrINgecTioN(POST_WORK)
15: ¢ + FINALDATAGATHER(b)
16: FAULTINJECTION(FAULT_P2_POST_RECV_RESULTS)
17: if ErrorHasOccured then
18: a <+ LOADSAVE(save2)
19: goto Save2_label
20: end if
21: DisPLAYRESULTS(e)

22: end function

strategies, as well as ensuring that the witnessed behaviors
match the expected ones.

5.1 Experimentation Protocol

The experimental platform is a Linux cluster that is com-
posed of 39 compute nodes, each having two 12-core 1.7 GHz
AMD Opteron 6164 HE processors and 64 GB RAM. The
platform also has a bonded dual non-blocking 1 Gbps Ether-
net interconnect that delivers a 1.7 Gbps for point-to-point
communications using TCP. The system is using Ubuntu
12.04 LTS, GCC 4.6 and NPB-3.3. We used ULFM v1.1
from UTK.

Since our goal is to see the impact of the two fault tol-
erant strategies, we decided to run a single MPI rank per
node, i.e., run tests up to 32 ranks (to keep a power of two
number of ranks). This choice has two benefits: (i) clearly
highlight the communication overhead since all inter-rank
communications are going through the network, (ii) the cost
associated with the checkpointing and restoring of data be-
tween two ranks is constant, since 2 ranks cannot be running
on the same node.

We ran each experiment 10 times; all the results are the
mean of the 10 runs and have a low standard deviation, ex-
cept for the class S, which is expected since S has a very
short run time and does not aim at being used as represen-
tative of any real use-case. We do not present the standard
deviation because of space limitations and because it reduces
the readability of the graphs. For all experiments, the native
case represents the unmodified benchmark executed with the
MPI implementation without any fault tolerance capability.
The 0 failure case represents the execution of the modified
version of the benchmark for fault tolerance, which basically
means that data is checkpointed. This case therefore shows
the overhead created by the data checkpointing. The 1 fail-
ure case represents the execution of the benchmark and the
injection of a single fault during the execution. The 2 fail-
ures case refers to the execution of the modified version of
the benchmark and the injection of 2 faults, at the same
injection point, for 2 different ranks. In other terms, the 2
failures are expected to be injected at about the same time
in the context of 2 different MPI ranks and therefore are
expected to trigger a single recovery that will cover the 2
failures.

Class Graph  Minimum number of ranks
S BH 5
S WH 5
S SH 12
N BH 11
w WH 11
w SH 32
A BH 21
A WH 21
A SH 80
B BH 43
B WH 43
B SH 448
C BH 85
C WH 85
C SH 448

Table 1: Requirements in terms of MPI ranks for
each DT class/graph combination.

5.2 Results for the EP Benchmark

The EP benchmark has 5 classes (S, W, A, B, C). For this
evaluation, we use a SINGLE_REDUNDANCY strategy, i.e., each
rank saves data into a neighbor’s memory by explicitly send-
ing the data to the remote via a point-to-point MPI blocking
send. This benchmark being composed of communications
with a main communication phase after the computation
is done to exchange results, the communication overhead is
relatively low compared to the time spent during the compu-
tation phase. We inject failures during this communication
phase. As a result, it is expected that an additional comput-
ing iteration is required to perform the work lost because of
the failure. In other terms, the performance of the bench-
mark is not expected to significantly drop for the fault toler-
ant version of the benchmark (the communication required
to save the data is cheap compared to the computation time)
and the performance is expected to be twice as slow when
injecting 1 or 2 failures (the two failures are injected at the
same injection point and are expected to trigger a single
communicator revoke/shrink and work redistribution). In
the context of a single failure, rank 0 is aborted, while rank
0 and 1 are aborted in the context of 2 failures.

Figure 3 shows the results, where each bar represents
the number of operations reported by the benchmark (the
higher, the better). The observed performance matches the
expected behavior. We can even observe the slight cost of
checkpointing the data for the fault tolerant version of the
benchmark (difference between the native performance and
the 0 failure performance).

5.3 Results for the DT Benchmark

The DT benchmark has very specific requirements, espe-
cially in terms of the number of MPI ranks for a specific
test configuration: DT supports multiple classes of tests (S,
W, A, B, C) and for each class, 3 graphs are available (BH,
WH, SH), each class/graph having a different number of
graph nodes and therefore a different requirement regarding
the number of MPI ranks (since a single graph node is as-
signed to a single MPI rank, extra ranks not being used —
but can be used as spares for fault tolerance purposes). Ta-
ble 1 summarizes the requirement in terms of MPI ranks for
each class/graph combination. Note that since we decided
to have a single MPI rank per node, it implies that all tests
requiring more than 32 ranks are not executed.

For this evaluation, we use a SINGLE_REDUNDANCY strategy.
When injecting a fault, we always inject it after the first data
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checkpoint (line 3 in Algorithm 4), by aborting rank 2 in the 2 failures. Note that the experiments could not successfully
context of a single failure, and rank 2 and 3 in the context of terminate with 1 failure in the context of the W class and SH



graph, and we suspect a bug in the ULFM implementation
since the problems occur while shrinking the communicator.

Figure 4 shows the results (the higher the better). The
results shows that the cost of checkpointing the data signif-
icantly decreases the overall performance of the DT bench-
mark for all combination of class and graph. While we do not
have a detailed break down of the overhead, we believe this is
due to the extra communications and synchronizations that
are necessary for all ranks to save data into a neighbor’s
memory via explicit MPI communications. Furthermore, as
presented in Algorithm 4, the implemented strategy requires
multiple checkpointing of the data. As a result, the modified
version of the benchmark is at least twice as slow than the
unmodified version of the benchmark, even without facing
any failure, down to an order of magnitude slower for the
Class A with the graph BH. When injecting failures, per-
formance is dropping even more because of the restoration
of the data from a checkpoint and the work redistribution,
which implies both extra computation and extra communi-
cations. However, the performance difference between the
case with a single failure and 2 failure is not significant,
which is expected since both failures are injected at the same
failure point, i.e., the recovery phase happens only once (the
time between the failures is not important enough to require
2 communicator revoke/shrink operations, data restorations
and redistributions of the work).

6. CONCLUSION

In this study, we presented: (i) the implementation of
fault tolerance strategies for the NPB Embarrassingly Par-
allel (EP) and Data Transfer (DT) benchmarks; (ii) a library
that can be used by application developers to save data that
also enables data recovery; (iii) a fault injection tool that
allows us to have portable and reproducible results by in-
jecting failures at pre-defined positions and conditions; and
(iv) a series of preliminary experiments.

More specifically, we showed that ULFM is a suitable so-
lution for the implementation of various strategies. It also
shows that the difficulty of implementing such strategies de-
pends on the nature of the application (i.e., embarrassingly
parallel applications are easy to make fault tolerant, while
applications that are more irregular and more heavily re-
liant on communications are more difficult to handle). We
also showed that having a fault tolerant version of a com-
plex application that does not suffer of an important perfor-
mance degradation because of data checkpointing is a non-
trivial task. Fortunately, most complex scientific simula-
tions nowadays rely on application-level checkpoint/restart,
which should ease the transition to fault tolerant applica-
tions based on ULFM (the integration of such application-
level checkpoint/restart solutions with ULFM is out-of-the-
scope of this study).

As future work, we plan on investigating the limitations of
the various data checkpointing strategies based on the over-
all number of failures, their distribution, as well as the scale
of the application’s run. For instance, it would be interesting
to see whether the SINGLE_REDUNDANCY approach is suitable
based on the number of failures and the failure distribution
of current HPC systems. It would also be interesting to
extend addition NPB benchmarks since EP could be con-
sidered as the best use-case and DT as the worst use-case
(because of its irregular communications and the difficulties
for redistributing the work upon failures), and study the effi-

ciency of various strategies. In addition, we are planning on
more precisely analyzing the various overheads of the fault
tolerant version of the DT benchmark and investigate other
strategies that would generate a lower overhead. It would
also be interesting to compare and integrate our checkpoint-
ing solution with existing solutions such as SCR. Finally, we
are expecting that this work will lead to the release of the
NPB-ULFM suite that would be available to the commu-
nity to test and validate current and future implementation
of ULFM.
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