
Adding Fault 
Tolerance to NPB 
Benchmarks Using 
ULFM 
Zachary W. Parchman (TN Tech) 
Geoffroy Vallee (ORNL) 
Thomas Naughton (ORNL) 
Christian Engelmann (ORNL) 
David Bernholdt (ORNL) 
Stephen L. Scott (TN Tech) 



2 FTXS 2016 

Motivation 

•  Fault tolerance (FT) and application resilience is becoming a 
primary concern for HPC 

• Research community has been very active over the past 
decade 
–  Checkpoint/restart 
–  Redundancy 
–  Application Based Fault Tolerance 

• Standards start to consider FT extensions 
The MPI forum fault tolerance working group is proposing the User-

Level Failure Mitigation (ULFM) 



3 FTXS 2016 

Goals & Contributions 

•  This study does NOT aim at evaluating the performance of 
an ULFM implementation 

•  This study aims at 
–  Investigating application-level strategies that leverage ULFM 
–  Providing benchmarks that can illustrate the use of ULFM 

• Other contributions 
–  In-memory checkpoint/restart mechanism 

•  Direct integration into the benchmarks to minimize dependencies 
•  Avoids the cost of going through the file system layers 

–  Fault injection tool based on the ULFM model 



4 FTXS 2016 

ULFM Overview 

•  Target failure model: Process failure 
–  Explicitly handle fail-stop failures 
–  Transient failures are masked as fail-stop 
–  Failures are detected only in the context of MPI operations 
–  NO support for silent and byzantine errors 

•  Target capabilities 
–  Failure detection 
–  Failure notification 
–  Recovery of the MPI layer only 



5 FTXS 2016 

ULFM API - Overview 

• Detection 
–  Assumes perfect fault detectors 
–  Via return codes of MPI communication functions 

• Recovery of the MPI layer 
–  MPI_Comm_shrink() 
–  Creates a new communicator that includes only the surviving ranks 

• Agreement 
–  MPI_Comm_agree() and MPI_Comm_iagree() 
–  All surviving ranks perform a collective consensus to agree on a 

value 



6 FTXS 2016 

In-memory Application Checkpointer 

• Avoid the cost of going through the file system 
•  Implemented using MPI send/receive primitives 

–  Simple 
–  Potentially enables more opportunities to detect failures with ULFM 
–  Checkpointed data is sent to one or more “neighbors” 

•  2 strategies implemented 
–  SINGLE_REDUNDANCY: the data is saved in a single neighbor’s 

memory 
–  FULL_REDUNDANCY: the data is saved in all MPI ranks’ memory 
–  Tradeoff between cost (extra communications and memory) vs. 

number of tolerated failures 



7 FTXS 2016 

Failure Injection Tool 

• Based on ULFM model 
–  Detection only in the context of MPI operations 
–  Failures can be injected right before or after an MPI operation, 

other locations will not change the behavior 

• Annotations of the application code 
• Rely on a configuration file 

–  Help reproducing experiments 
–  Many injection points can be “activated” 
–  When an activated injection point is reached, the MPI rank is 

terminated 



8 FTXS 2016 

NPB Modified for ULFM Support 

•  3 benchmarks have been extended 
–  Embarrassingly Parallel – EP 
–  Data Transfer – DT 
–  Integer Sort – IS 

• EP, DT and IS benchmarks have been modified 
–  Only DT and EP are presented 
–  Based on SINGLE_REDUNDANCY 



9 FTXS 2016 

Experimental Setup 

• Up to 32 ranks, 1 rank per node to highlight the cost of in-
memory checkpoint/restart via the network 

• Nodes have two 12-core AMD Opteron 6164 HE, 64 GB 
RAM and bonded dual non-blocking 1 Gbps Ethernet 

• Comparison of 
–  No FT mechanism enabled 
–  0 failures: highlight the checkpoint/restart cost 
–  1 and 2 failures: highlight the overhead and behavior of the FT 

strategy 

• Performed 10 runs per experiment 



10 FTXS 2016 

Extension of the EP Benchmark 

• Communication pattern 
–  Barrier during initialization 
–  Allreduce to collect the results 

•  FT Modifications 
–  Detect failure during the allreduce 
communication phase 
–  Redistribute the work that was lost because of the failure, after 

surviving ranks complete their work 

• Experiments 
–  Inject failures before executing the allreduce operation 



11 FTXS 2016 

EP – Results (1) 

• Results for Class C 

0 50 100 150 200 250 300 350 400 450 

Class C - Native 

Class C - 0 failure 

Class C - 1 failure 

Class C - 2 failures 

32 ranks 
16 ranks 
8 ranks 
4 ranks 
2 ranks 

Operations per seconds (Mop/s) 



12 FTXS 2016 

EP – Results (2) 



13 FTXS 2016 

Extension of the DT Benchmark 

• Communication/computation patterns 
–  Irregular communications 
–  One-to-one mapping task/rank 
–  All ranks have the same vision of the 
initial graph 
–  At the end, rank0 collects all the results 

•  FT Modifications 
–  Serialize the graph for checkpointing 
–  If a rank fails, a spare rank is 
“activated” and executes the task 

• Experiments 
–  Inject a failure before the result can be retrieved by rank0 



14 FTXS 2016 

DT – Results (1) 

• Results for Class A (both BH and WH graphs) 

0 5 10 15 20 25 30 

Class A - BH - Native 

Class A - BH - 0 failure 

Class A - BH - 1 failure 

Class A - BH - 2 failures 

Class A - WH - Native 

Class A - WH - 0 failure 

Class A - WH - 1 failure 

Class A - WH - 2 failures 

32 ranks 

Operations per seconds (Mop/s) 



15 FTXS 2016 

DT – Results (2) 



16 FTXS 2016 

Conclusion 
• No one-size-fits-all solution 

–  ULFM only provides basic primitives and capabilities: detection, 
notification and MPI runtime recovery 

–  Best strategy really depends on the application (communication 
patterns and checkpoint size) 

–  Understanding the various overheads is difficult 
–  Witnessed behavior basically matches what we expected (based 

on work redistribution) 

• Good illustration of the ULFM potential 
• Work in progress 

–  Detailed profiling 
–  Provide additional strategies, including re-init 
–  Integration of SCR 


