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Abstract—Today’s high-performance computing (HPC) sys-
tems are heavily instrumented, generating logs containing in-
formation about abnormal events, such as critical conditions,
faults, errors and failures, system resource utilization, and about
the resource usage of user applications. These logs, once fully
analyzed and correlated, can produce detailed information about
the system health, root causes of failures, and analyze an
application’s interactions with the system, providing valuable
insights to domain scientists and system administrators. However,
processing HPC logs requires a deep understanding of hardware
and software components at multiple layers of the system stack.
Moreover, most log data is unstructured and voluminous, making
it more difficult for system users and administrators to manually
inspect the data. With rapid increases in the scale and complexity
of HPC systems, log data processing is becoming a big data
challenge. This paper introduces a HPC log data analytics frame-
work that is based on a distributed NoSQL database technology,
which provides scalability and high availability, and the Apache
Spark framework for rapid in-memory processing of the log
data. The analytics framework enables the extraction of a range
of information about the system so that system administrators
and end users alike can obtain necessary insights for their specific
needs. We describe our experience with using this framework to
glean insights from the log data about system behavior from the
Titan supercomputer at the Oak Ridge National Laboratory.

I. INTRODUCTION

Log data is essential for understanding the behavior of high-
performance computing (HPC) systems by recording their
usage and troubleshooting system faults. Today’s HPC systems
are heavily instrumented at every layer for health monitoring
by collecting with performance counters and resource usage
data. Most components also report information about abnormal
events, such as critical conditions, faults, errors and failures.
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This system activity and event information is logged for mon-
itoring and analysis. Large-scale HPC installations produce
various types of log data. For example, job logs maintain
a history of application runs, the allocated resources, their
sizes, user information, and exit statuses, i.e., successful vs.
failed. Reliability, availability and serviceability (RAS) system
logs derive data from various hardware and software sensors,
such as temperature sensors, memory errors and processor
utilization. Network systems collect data about network link
bandwidth, congestion and routing and link faults. Input/output
(I/O) and storage systems produce logs that record perfor-
mance characteristics as well as data about degradations and
errors detected.

HPC log data, when thoroughly investigated both in spatial
and temporal dimensions, can be used to detect occurrences
of failures and understand their root causes, identify per-
sistent temporal and spatial patterns of failures, track error
propagation, evaluate system reliability characteristics, and
even analyze contention for shared resources in the system.
However, HPC log data is derived from multiple monitoring
frameworks and sensors and is inherently unstructured. Most
log entries are not set up to be understood easily by humans,
with some entries consisting of numeric values while others
include cryptic text, hexadecimal codes, or error codes. The
analysis of this data and finding correlations faces two main
difficulties: first, the volume of RAS logs makes the manual
inspection difficult; and second, the unstructured nature and
idiosyncratic properties of log data produced by each subsys-
tem log adds another dimension of difficulty in identifying
implicit correlation among the events recorded. Consequently,
the usage of log data is, in practice, largely limited to detection
of mere occurrences of known text patterns that are already
known to be associated with certain types of events.

As the scale and complexity of HPC systems continues
to grow, the storage, retrieval, and comprehensive analysis
of the log data is a significant challenge. In future extreme
scale HPC systems the massive volume of monitoring and
log data makes manual inspection and analysis impractical,
and therefore poses a data analytics challenge. To address this
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Fig. 1. Schemas for event occurrences: event schema ordered by time of
occurrence (Top) and by location of occurrence (Bottom)

challenge, scalable methods for processing log and monitoring
data are needed. This will require storing the enormous
data sets in flexible schemas based on scalable and highly
available database technologies, which can support large-scale
analytics with low latencies, and high performance distributed
data processing frameworks to support batch, real-time, and
advanced analytics on the system data.

In this paper, we introduce a scalable HPC system data
analytics framework, which is designed to provide system log
data analysis capabilities to a wide range of researchers and
engineers including system administrators, system researchers,
and end users. The framework leverages Cassandra, a NoSQL
distributed database to realize a scalable and fast-response
backend for high throughput read/write operations, the Apache
Spark for supporting rapid analysis on the voluminous system
data. The framework provides a web-based graphical, inter-
active frontend interface that enables users to track system
activity and performance and visualize the data. Using the
framework, users can navigate spatio-temporal event space that
overlaps with particular system events, faults, application runs,
and resource usage to monitor the system, extract statistical
features, and identify persistent behavioral patterns. End users
can also visually inspect trends among the system events and
contention on shared resources that occur during the run of
their applications. Through such analysis, the users may find
sources of performance anomalies and gain deeper insights
into the impact of various system behaviors on application
performance.

The rest of the document is organized as follows: Section
II presents the data model and the design considerations
that influenced the architecture of our framework. Section III
details the architecture of our framework and how it has been
adapted to analyze data from the Titan supercomputer at the
Oak Ridge Leadership Computing Facility (OLCF). Section
IV surveys related works in HPC monitoring frameworks and
the analysis of log data. Finally, Section V concludes the paper
with a discussion on potential future directions.
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Fig. 2. Schemas for application runs: Application schema ordered by time of
occurrence (Top), by name of application (Middle), and by users (Bottom)

II. DATA MODEL

The monitoring infrastructure in supercomputing systems
produces data streams from various sensors, which captures
the resource and capacity utilization, power consumption,
cooling systems, application performance, as well as various
types of faults, errors and failures in the system. With the rapid
increase in the complexity of supercomputing systems due to
the use of millions of cores, complex memory hierarchies,
and communication and file systems, massive amounts of
monitoring data must be handled and analyzed in order to
understand the characteristics of these systems and correlations
between the various system measurements. The analysis of
system monitoring data requires capturing relevant sensor
data and system events, storing them in databases, developing
analytic models to understand the spatial and temporal features
of the data, or correlation between the various data streams,
and providing tools capable of visualizing these system char-
acteristics, or even building predictive models to improve the
system operation. With the explosion in the monitoring data,
this rapidly becomes a big data challenge. Therefore, to handle
the massive amounts of system monitoring data and to support
capabilities for more rigorous forms of user defined analytics,
we adopt storage solutions designed to handle large amounts
of data, and an in-memory data processing framework.

A. Design Considerations

An implementation of an HPC system log analytics frame-
work should start with extracting, transforming, and loading
(ETL) of log data into a manageable database that can serve a
flexible and rich set of queries over large amount of data. Due
to the variety and volume of the data, we considered flexibility
and fast performance to be two key design objectives of the
framework. For an analytics framework to be successfully used
for current and emerging system architectures, we placed em-
phasis on the following design considerations for the backend
data model:

• Scalability: The framework needs to store historical
log data as well as future events from the monitoring



frameworks. The data model should be scalable to ac-
commodate an ever increasing volume of data.

• Low latency: The framework work also needs to serve
interactive analytics that require near-real time query
responses for timely visual updates. The backend data
model should operate with minimal latency.

• Flexibility: A single data representation, or schema,
for the various types of events from different system
components is not feasible. The data model should offer
flexible mechanism to add new event types and modify
existing schemas to accommodate changes in system
configuration, software updates, etc.

• Time series friendly: The most common type of log
analytics that are of interest to HPC practitioners are
expected to be based on time series data, which provide
insights about the system’s behavior over a user specified
window of time.

We believe that these features will enable users to identify
patterns among the event occurrences over time and explain
the abnormal behavior of systems and the impact on applica-
tions. The foundation of the analytics framework on such a
data model will support a variety of statistical or data mining
techniques, such as association rules [1], decision trees [2],
cross correlation [3], Bayesian network [4], etc., to be applied
to the system log data.

For supporting a broad range of analytics, the retention
of the raw data in a semi-structured format will be greatly
beneficial. However, we found the conventional relational
databases (RDBMS) do not satisfy our requirements. First, a
schema of a relational database, once created, is very difficult
to modify, whereas the format of HPC logs tend to change
periodically. Second, due to its support for the atomicity, con-
sistency, isolation, and durability (ACID) properties and two-
phase commit protocols, it does not scale. After investigating
various database technologies, we found the Apache Cassandra
[5] to be most suitable for building the backend data model
for our design of log analytics framework. Cassandra, based
on Amazon’s Dynamo and Google’s BigTable, is a column-
oriented distributed database offering highly available (HA)
services with no single point of failure. Cassandra, a hashing-
based distributed database system, stores data in tables. A data
unit of a table, also known as partition, is associated with a
hash key and mapped to one or more nodes of a Cassandra
cluster. A partition can be considered as a data row that can
contain multiple column families, where each family can be
of a different format. Cassandra’s performance, resiliency, and
scalability come from its master-less ring design, which unlike
a legacy master-slave architecture gives an identical role to
each node. With a replication option that is implemented on
commodity hardware, Cassandra offers a fault tolerant data
service. Also with its column oriented features, Cassandra is
naturally suitable for handling data in sequence, regardless of
data sizes. When data is written to Cassandra, each data record
is sorted and written sequentially to disk. When a database is
queried, data is retrieved by row key and range within a row,

which guarantees a fast and efficient search.

B. Data Model Design

Our data model is designed to initially study the operational
behavior of the Titan supercomputer hosted by the Oak Ridge
National Laboratory. The framework is designed to study
Titan’s system logs collected from console, application and
network logs, which contain timestamped entries of critical
system events. The data model is designed to capture various
system events including, machine check exceptions, memory
errors, GPU failures, GPU memory errors, Lustre file system
errors, data virtualization service errors, network errors, appli-
cation aborts, kernel panics, etc.

We have created a total of eight tables to model system
information, the types of event we monitor, occurrences of
events, and application runs. The partitions for events are
designed to disperse overheads in both reading and writing
data evenly over to the cluster nodes. Fig 1 shows how a
partition is mapped to one of the four nodes by its hash key
of hour and type combination.

• nodeinfos
• eventtypes
• eventsynopsis
• event by time
• event by location
• application by time
• application by user
• application by location
The nodeinfos contains information about the system in-

cluding the position of a rack (or cabinet) in terms of row and
column number, the position of a compute node in terms of
rack, chassis, blade, and module number, network and routing
information, etc. Each node in the Titan system consists of
a AMD CPU and a NVIDIA GPU. Each CPU is a 16-core
AMD Opteron 6274 processor with 32 GB of DDR3 memory
and each GPU is a NVIDIA K20X Kepler architecture-based
GPU with 6 GB of GDDR5 memory. The system uses Cray
Gemini routers, which are shared between a pair of nodes.
Each blade/slot Titan supercomputer consists of four nodes.
Each cage has eight such blades and a cabinet contains three
such cages. The complete system consists of 200 cabinets that
are organized in a grid of 25 rows and 8 columns. The nodeinfo
enables spatial correlation and analysis of events in the system.

The two tables event by time and event by location store
system event information from two perspectives, time and
location to facilitate spatio-temporal analysis. An event in
our data model is defined as occurrence(s) of a certain type
reported at a particular timestamp. An event is also associated
with the location (or the source component) where it is
reported. The two tables illustrate these dual representations
of an event as illustrated in Fig 1. The first table structure
associates an event with its type and the hour of its occurrence;
all events of a certain type generated at a certain hour are
stored in the same partition. In contrast, the second table
structure associates an event with hour and location; all events,
regardless of their type, generated at a certain hour for the



same component, are stored in the same partition. Note that
each partition stores events sorted by their timestamps, which
is a time series representation of events that is one hour long.
This facilitates to support a spatio-temporal query.

For data about user application runs, we added another
dimension: users. More specifically, three tables to represent
user application runs from perspectives of time, application,
and user (see Fig 2). Readers can find this as a set of denor-
malized views on application runs. Note however, although all
application runs in each partition type are depicted the same,
in fact, each application run may include columns unique to
it. For example, a column named as Other Info may include
multiple sub-columns to represent different information.

III. ARCHITECTURE OF THE LOG ANALYTICS
FRAMEWORK

The layout of the overall architecture, illustrated in Fig 3,
consists of three main components: a web-based frontend, the
data analytics server, and the backend distributed database.
The frontend, which consists of a client-side application,
adopts a web interface allowing users to create queries for
the analysis of the data as well as for visual inspection of log
data and application runs in both spatial and temporal domain.
The analytics server translates data query requests received
from the frontend and relays them to the backend database
server in the form of Cassandra Query Language (CQL)
queries. The query results from the backend are returned to the
analytics server either as data that may be transmitted to the
frontend, or as intermediate data for further processing. The
backend distributed NoSQL database stores and manages Titan
system logs and user application logs. The backend server
communicates with the analytics layer through a RESTful
interface. Query results are sent in JSON object format to
avoid data format conversion at the frontend. This framework
is currently being deployed at the ORNL’s Compute and Data
Environment for Science (CADES), which provides flexible
computing, data storage and analytics infrastructure.

A. Analytic Server and Backend Database

The analytics server consists of a web server, a query
processing engine, and a big data processing engine. The user
queries are received by the web server, translated by the query
engine, and either forwarded to the backend database, or the
big data processing unit depending on the type of a user query.
Simple queries are directly handled by the query engine, and
complex queries are passed to the big data processing unit.
The big data processing unit initiates a Spark session over the
Spark cluster that reside on the same nodes with Cassandra.

Since the analytic framework intends to serve numerous
users, who may require long-lived connections and may expect
delayed responses from the server for non-trivial analytics,
we chose the Tornado framework [6], which provides a web
server and asynchronous networking library. Tornado supports
non-blocking I/O, which makes it suitable for long-polling and
WebSockets to implement the long-living connections from the
frontend web-based client.

Fig. 3. Overall architecture of the Log Analytics Framework consisting of
the Cassandra distributed NoSQL database and the Apache Spark in-memory
data processing engine

Fig. 4. Event partitions mapped to Cassandra nodes by hour and event types

The Cassandra backend database server and the Apache
Spark cluster are installed over the same 32 virtual machine
(VM) instances in CADES, that is, a pair of a Spark worker
node and a Cassandra node runs together in each of the 32
VMs. We selected this configuration to maximize data locality
for the computation performed by the analytic algorithms of
the big data processing unit. As described in Section II, a
partition of a table is defined by a combination of hour, user,
application, location, and event type representing the data from
a specific view (this will be defined as a context below).
Each table is distributed over the entire cluster retaining
time ordered data entries within each partition. The big data
processing unit consists of a set of Spark computations that
perform MapReduce operations over time ordered data spread
across the cluster by a context. By associating local partitions
with the same local Spark worker, the big data processing unit
performs analytics efficiently. Fig 4 illustrates an example of
partitions for event occurrences that are mapped to nodes on
the basis of the event hour and event type.



Fig. 5. The physical system map and the temporal map of the frontend
(Top); Distribution of an event type over a selected period as a heat map on
the physical system map and event histograms (Bottom).

B. Frontend: Client Module

The frontend provides a window to the system log data.
Users interact with the frontend to inspect the system status
or perform analytics on log data. Every interaction with the
frontend is translated into a query in Javascript Object Notation
(JSON) format and delivered to the analytic server. The current
frontend provides visualization of events and application runs
in both spatial and temporal dimension on physical system
map and time interval map. The visualization is implemented
using D3 [7] package and HTML5 canvas.

Users interact with the framework by creating a context.
A context is selected on the basis of event type, application,
location, user, time period, or a combination of these, over
which the system status is defined and examined. By selecting
a context, important insights about the system status can be

Fig. 6. Event occurrences (Top) and Application placement (Bottom) rendered
on the Physical System Map

extracted. The selection of an appropriate context also helps
in identifying the root cause of failure events. When a context
is created the appropriate query is passed to the data analytic
server to retrieve data. The frontend allows users to choose
desired contexts and results by interacting with:

• The physical system map
• The temporal map
• The event types map
• The user/application map
• The tabular map of raw log entries

While the physical system map shows the spatial placement
of racks (or cabinets) and the individual nodes within each
rack, the temporal map shows occurrences of events over a
time interval. Fig 5-(Top) shows the physical system map and
the temporal map. Event occurrences, or application displace-
ments, are displayed on the physical system map. Using the
event type map and the temporal map, users can select an
event type of interest at a particular time. The occurrences of
the selected event type at the specified timestamp are shown
on the compute nodes where they occurred in the physical
system map. Likewise, displacements of all applications that
were running at the time of selection, once users select using
the user/application map, are shown on the nodes in the
physical system map. Fig 6 shows Lustre error occurrences
on each compute node (Top) and the placement of user
applications (Bottom) at the specified timestamp. Users can
also select a hardware component such as compute node in
the physical system map. Thus, the physical system map, the
temporal map, the event types map, and the user/application
map are essentially interactive visualization components that
allow discovery of correlations among events, locations, and
applications by tracing occurrences and progression of events.

The temporal map represents a selected time interval. Users



can repeatedly select sub-intervals of interest for narrowed
investigations. With a selected interval, users can extract basic
statistics about event occurrences. First, users can create a heat
map representation of the occurrences of an event type within
the interval on the physical system map, which illustrates
whether the event occurrences were unusually higher (or
lower) in some parts of the system compared to the rest
of the parts. In addition, users can also get distributions
of the event occurrences over cabinets, blades, nodes, and
applications. These two different types of view (heat map
and distributions) offer complementary insights on normal or
abnormal occurrences of a certain event type observed during
a selected period. Fig 5-(Bottom) shows that Machine Check
Exception (MCE) errors occurred abnormally high in some
compute nodes over a selected time period.

C. Big Data Processing using the Frontend

The big data processing unit intends to serve a wide range
of users for intensive analytic processing. We are currently
developing log data analytic application program interfaces
(APIs) through which users can connect to the analytic server
from their chosen applications. The frontend also offers a set of
basic analytics capabilities utilizing big data processing unit.

First, the heat map representation and various distributions
of event occurrences over a selected time interval, which are
mentioned above, are computed by the big data processing.
Second, the investigation of correlation between two event
occurrences within a selected time interval, which can provide
a causal relationship between the two, is also processed by
the big data processing unit. Fig 7-(Top) shows the transfer
entropy plot of two events measured within a selected time
window.

Also, basic text analytics are supported by the big data
processing unit. Identification of important keywords (either
letters or alphanumeric values) from raw system logs often
helps understanding the system status given a massive number
of system events logged. Examples include events from the
filesystem, the network subsystem, etc. For example, Lustre
log message contains descriptions regarding status of hard-
ware, an I/O transaction, the peers of the log generator, etc.
These information are written in texts, hexadecimal numbers,
or special characters. Once properly filtered, each Lustre
event message can be transformed into a set of words that
represents the event occurrence as a point in a metric space.
Such transformations typically involve word counts and/or
term frequency-inverse document frequency (TF-IDF) of log
messages. Note here a Lustre message is treated as a document
from a conventional text analysis point of view. The temporal
event view in Fig 7-(Bottom) shows a period when tens of
thousands Lustre error messages were generated. As shown in
the map, it was a system wide event that lasted several minutes
afflicting most of compute nodes and applications running
therein. In many cases, the root causes of such a system-wide
event are abnormal behaviors of either hardware or a system
software component of which negative impacts propagate over
to the entire system. Although it may be a single source

Fig. 7. Transfer Entropy plot of two event types measured within a selected
time interval (Top). Raw log entries shown in the tabular map and importance
words from logs illustrated as bubbles (Bottom).

problem, it requires to sift through a large volume of Lustre
event logs to identify the problem components. We found that
a simple word counts, which is rapidly executed by Spark, can
locate the source of the problem. Fig 7-(Bottom) shows word
bubbles as the result of text analysis on raw Lustre event logs,
which illustrates an object storage target is not responding.

D. Data Ingestion

The log analytics framework is designed to ingest new
event data in two different modes: batch import and real-time
streaming. The batch import is a traditional ETL procedure
that involves 1) collocation of all data, 2) parsing the data
in search for known patterns for each event type (typically
defined as regular expressions), and 3) batch upload into the
backend database. The batch import is used when a new event
type is identified and all occurrences in the historical data
must be collected. Since such an update may require huge
computational overheads, the analytic framework implements
parsing and uploading using Apache Spark.

The real-time streaming mode, which is currently being
developed through a collaboration with the high-performance



computing operation group of the Oak Ridge Leadership Com-
puting Facility (OLCF), intends to facilitate online analytics
such as real time failure detection by monitoring recent event
streams. The OLCF is developing event producers that not only
parse real-time streams from log sources but also publish each
event occurrence from the streams. Each event occurrence is
published to an Apache Kafka message bus that is available
to consumers subscribing to the corresponding topic. For
example, event logs of a Lustre filesystem are generated at
multiple places: the servers (OSSes, MDSes, and MGS), and
the clients at each compute node. In addition, lower level
components (e.g. disk controllers) also generate separate logs.

The OLCF has deployed Kafka on top of OpenShift Origin,
which is a scalable container-based framework for scheduling
applications. This deployment method allows elastic scale-
out of Kafka nodes and backend databases to accommodate
large upswings in datatype growth. As new supercomputing
resources and high performance filesystems are brought online,
additional OpenShift pods will be deployed as necessary to
handle additional log event types. Conversely, as analytics
frameworks grow in size and complexity, the Kafka install
will be scaled out to meet the demand of any consumers.

To receive event streams from the Kafka instance, the
analytic framework places a subscriber that delivers event
messages to Spark streaming module that in turn converts and
places all event occurrences into the right partitions. Event
occurrences of the same type and same location are coalesced
into a single event if they are timestamped the same. For this,
the time window of the Spark streaming is set to one second.
This real-time upload component will be further extended to
include various online analytic modules.

IV. RELATED WORK

Various monitoring frameworks are used in large-scale com-
puting systems for understanding the use of system resources
by applications, the impact of competition for shared resources
and for the discovery of abnormal system conditions in the
system. Tools such as Ganglia [8] and Nagios [9] are widely
used for in HPC cluster and grid systems as well as in
enterprise clusters. OVIS [10] provides a suite of monitor-
ing and analysis tools for HPC systems that provides finer
grained monitoring to enable understanding platform resource
utilization characteristics of applications.

Several studies have sought to analyze failures in large-
scale systems to characterize the reliability of the system.
These studies attempt to characterize the root causes of single-
node failures as well as system-wide failures from manual
reports and system event logs [11]. These studies perform post-
mortem analysis on the system logs to extract the statistical
properties of system errors and failures [12] [13]. For the
analysis of logs of large-scale systems, certain approaches
apply filtering, followed by extraction and categorization of
error events [14] [15] [16]. Other analyses use approaches
such as time coalescing [17]. Some studies have focused
on analysis of failure characteristics of specific subsystems
or system components in HPC systems, such as disks [18],

DRAM memory [18] [19] [20], graphical processing units
(GPU) [21]. These studies sanitize the system logs using
manual failure reports, or extract specific events of interest,
to compute the relative failure frequencies for various root
causes and their mean and standard deviation in contrast to
our framework, which mines for insights from the unstructured
raw data. Our approach is designed to handle massive amounts
of heterogeneous monitoring and log data, which will be
typical in future extreme-scale systems with complex hardware
and software architectures.

Based on the observation of characteristics of failure events
and correlations between the events, models for failure predic-
tion have been proposed [22] [23]. These prediction algorithms
leverage the spatial and temporal correlation between historical
failures, or trends of non-fatal events preceding failures to de-
sign remedial actions in the system’s configuration, scheduling
algorithms to mitigate the adverse impacts of failure events.

V. CONCLUSION

With the ever-growing scale and complexity of high per-
formance computing (HPC) systems, characterizing system
behavior has become a significant challenge. The systems pro-
duce and log vast amounts of unstructured multi-dimensional
data collected using a variety of monitoring tools. The tools
and methods available today for processing this log data
lack advanced data analytics capabilities, which makes it
difficult to diagnose and completely understand the impact
of system performance variations, fault and error events in
the system on application performance. To handle the massive
amounts of system log data from a diverse set of monitoring
frameworks and rapidly identify problems and variations in
system behavior, it is essential to have scalable tools to store
and analyze the data.

In this paper, we introduced a scalable HPC log data
analytics framework based on a distributed data and com-
putation model. The framework defines a time-series ori-
ented data model for HPC log data. We leverage big data
frameworks, including Cassandra, a highly scalable, high-
performance column-oriented NoSQL distributed database,
and Apache Spark, a real-time distributed in-memory analytics
engine. We presented a data model designed to facilitate log
data analytics for system administrators and researchers as
well as end users who are often oblivious to the impact of
variations and fault events on their application jobs.

Our log analytic framework has been tested with Titan
supercomputer at the Oak Ridge Leadership Computing Fa-
cility’s (OLCF). Although the framework is still evolving,
with new analytics modules being currently developed, the
preliminary assessment shows that the framework can provide
deeper insights about the root causes of system faults, and ab-
normal behaviors of user applications. It also enables statistical
analysis of event occurrences and their correlations on a spatial
and temporal basis. These capabilities will be valuable when
deploying a new HPC system in the pre-production phase, as
well as during operational lifetime for fine tuning the system.



While our existing framework improves upon the state-of-
the-art in HPC log data processing, there is much room to im-
prove. As future work, we are planning several enhancements
and improvements to the framework. First, new and composite
event types will need to be defined for capturing the complete
status of the system. This will involve event mining techniques
rather than text pattern matching. Second, the framework will
need to develop application profiles in terms of event occurred
during its runs. This will help understand correlations between
application runtime characteristics and variations observed in
the system on account of faults and errors. Finally, the frame-
work will need to support advanced statistical techniques,
incorporate machine learning algorithms, and graph analytics
for more comprehensive investigation of log and monitoring
data.
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